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Abstract

Perfect digraphs have been introduced in [S.D. Andres and W. Hochstätt-
ler, Perfect digraphs, J. Graph Theory 79 (2015) 21–29] as those digraphs
where, for any induced subdigraph, the dichromatic number and the sym-
metric clique number are equal. Dually, we introduce a directed version of
the clique covering number and define α-perfect digraphs as those digraphs
where, for any induced subdigraph, the clique covering number and the sta-
bility number are equal. It is easy to see that α-perfect digraphs are the
complements of perfect digraphs. A digraph is strictly perfect if it is per-
fect and α-perfect. We generalise the Strong Perfect Graph Theorem and
Lovász ([A characterization of perfect graphs, J. Combin. Theory Ser. B
13 (1972) 95–98]) asymmetric version of the Weak Perfect Graph Theorem
to the classes of perfect, α-perfect and strictly perfect digraphs. Further-
more, we characterise strictly perfect digraphs by symmetric chords and
non-chords in their directed cycles. As an example for a subclass of strictly
perfect digraphs, we show that directed cographs are strictly perfect.

Keywords: perfect digraph, α-perfect digraph, strictly perfect digraph,
Strong Perfect Graph Theorem, Weak Perfect Graph Theorem, dichromatic
number, perfect graph, directed cograph, filled odd hole, filled odd antihole,
acyclic set, clique-acyclic clique.
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1. Introduction

The dichromatic number χ(D) of a digraph D is the minimum size of a partition
of the vertex set of D into subsets that induce acyclic digraphs. The study of
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this generalisation of the chromatic number of a graph was initiated by Neumann-
Lara [11]. We consider perfect digraphs, which, based on the dichromatic number,
were introduced by Andres and Hochstättler [1].

Perfect digraphs are defined as follows. A symmetric clique in a digraph D
is a subdigraph (V ′, A′) of D such that for any ordered pair (v, w) ∈ V ′ × V ′ of
vertices with v 6= w there is an arc (v, w) ∈ A′. The symmetric clique number
ω(D) of D is the number of vertices in a largest symmetric clique of D. It is a
trivial lower bound for the dichromatic number. A digraph is perfect if, for any
induced subdigraph H of D, we have

ω(H) = χ(H).

Here we will define a dual notion, α-perfect digraphs, which turn out to be the
complements of perfect digraphs. We call a digraph strictly perfect if it is perfect
and α-perfect.

1 1

2 2

~C4

1 1

2 2

~C4

Figure 1. The perfect digraph ~C4 and its complement, the non-perfect but α-perfect
digraph ~C4. The numbers indicate a partition into acyclic digraphs (for the digraph

~C4) and a covering by clique-acyclic cliques (for the digraph ~C4; for the definition of
clique-acyclic cliques see Section 2).

An example of a complementary pair of digraphs is the directed 4-cycle ~C4

and its complement ~C4, see Figure 1. It is easy to see that the digraph ~C4 is
perfect (see the numbering in Figure 1), and the digraph ~C4 is not perfect (since

χ(~C4) = 2 > 1 = ω(~C4)). We will see that, therefore, ~C4 is α-perfect and ~C4 is
not α-perfect.

The focus of this paper is on generalising weak and strong Perfect Graph
Theorems to perfect, α-perfect and strictly perfect digraphs.

1.1. Motivation

The notions of perfect and α-perfect digraphs are motivated by the distinction
between χ-perfect and α-perfect graphs (cf. [8, p. 52]) that was made before
Lovász [9] proved the Weak Perfect Graph Theorem. The latter theorem con-
firmed that these notions coincide for undirected graphs.
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Theorem 1 (Weak Perfect Graph Theorem [9]). A graph is perfect if and only
if its complement is perfect.

The first proof of the Weak Perfect Graph Theorem by Lovász [9] uses so-
phisticated methods. In order to prove the Weak Perfect Graph Theorem in a
second, very elegant way, Lovász [10] proved the following asymmetric form of
the Weak Perfect Graph Theorem.

Theorem 2 (Asymmetric Weak Perfect Graph Theorem [10]). A graph is perfect
if and only if, for any induced subgraph H,

ω(H)α(H) ≥ |V (H)|.

Here α denotes the stability number and ω the clique number of H. Obvi-
ously, Theorem 2 implies Theorem 1.

An explicit characterisation of perfect graphs by forbidden induced subgraphs
was proved by Chudnovsky, Robertson, Seymour, and Thomas [6]. Here an odd
hole is an (induced) cycle of odd length ≥ 5 and an odd antihole is an (induced)
complement of an odd hole.

Theorem 3 (Strong Perfect Graph Theorem [6]). A graph is perfect if and only
if it contains neither an odd hole nor an odd antihole as an induced subgraph.

1.2. Key of generalisation and known implications

In order to obtain a generalisation of Theorem 3 to perfect digraphs, Andres
and Hochstättler [1] observed that the perfectness of a digraph is related to
the perfectness of its symmetric part. The symmetric part S(D) of a digraph
D = (V,A) is the graph on V , where vw is an edge if and only if (v, w) ∈ A and
(w, v) ∈ A.

Theorem 4 (Symmetrical Reduction Theorem [1]). A digraph D is perfect if and
only if its symmetric part S(D) is perfect and D does not contain any directed
cycle with at least 3 vertices as an induced subdigraph.

The Symmetrical Reduction Theorem will be the key of all our generalisations
of Perfect Graph Theorems to digraphs.

The complement of a perfect digraph needs not be perfect, as illustrated in
Figure 1. Thus, Theorem 1 has no direct analogue in digraphs. However, Andres
and Hochstättler [1] remarked that Theorem 1 and Theorem 4 imply the following
theorem.

Theorem 5 (Complementary Characterisation of Perfect Digraphs [1]). A di-
graph D is perfect if and only if its complement D is a clique-acyclic superorien-
tation of a perfect graph.
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A filled odd hole is a digraph D such that S(D) is an odd hole (i.e., S(D)
is an undirected cycle of odd length ≥ 5). A filled odd antihole is a digraph D
such that S(D) is an odd antihole. Using the Strong Perfect Graph Theorem [6]
and the Symmetrical Reduction Theorem (Theorem 4), perfect digraphs were
characterised by forbidden induced subdigraphs in [1] as follows.

Theorem 6 (Strong Perfect Digraph Theorem [1]). A digraph D is perfect if and
only if it contains no induced

• filled odd holes,

• filled odd antiholes,

• directed cycles with at least 3 vertices.

We note that also generalisations of the Semi-strong Perfect Graph Theorem
(cf. Reed [12]) to digraphs are possible. A specific such generalisation (that
also uses the Symmetrical Reduction Theorem in its proof) was given in a recent
paper by Andres, Bergold, Hochstättler and Wiehe [2].

The Symmetrical Reduction Theorem is extremely useful: Bang-Jensen, Bel-
litto, Schweser and Stiebitz [3] used Theorem 4 in order to establish digraph
analogs of Hajós and Ore constructions.

1.3. Perfect Digraph Theorems: new results

In this paper, by using the Symmetrical Reduction Theorem we generalise the
Weak and the Strong Perfect Graph Theorem in the versions of Theorems 2 and
3 to perfect, α-perfect and strictly perfect digraphs.

In order to generalise Theorem 2 to perfect and α-perfect digraphs, we will
introduce parameters ~α and ~ω that are based on more general concepts of inde-
pendence and cliques, respectively. The acyclic independence number ~α is the
maximum size of an acyclic vertex set. The clique-acyclic clique number ~ω is the
minimum size of a clique that does not contain complements of proper directed
cycles as an induced subdigraph. As generalisations of Theorem 2 we will obtain
the following main results.

Theorem 7 (Weak Perfect Digraph Theorem). For any digraph D the following
conditions are equivalent.

(i) D is perfect.

(ii) For any induced subdigraph H of D, we have

ω(H)~α(H) ≥ |V (H)|.(1)

Theorem 8 (Weak α-perfect Digraph Theorem). For any digraph D the follow-
ing conditions are equivalent.

(i) D is α-perfect.
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(ii) For any induced subdigraph H of D, we have

α(H)~ω(H) ≥ |V (H)|.

We will derive the following dual characterisation to Theorem 6.

Theorem 9 (Strong α-perfect Digraph Theorem). A digraph is α-perfect if and
only if it contains no induced

• superorientations of odd holes,

• superorientations of odd antiholes,

• complements of directed cycles with at least 3 vertices.

Theorems 6 and 9 generalise Theorem 3.
Moreover, we generalise Theorems 2 and 3 to strictly perfect digraphs (Corol-

laries 23 and 24, respectively).

1.4. Remark

Although the results of this paper seem to suggest that there is no big differ-
ence between the two dual classes of perfect digraphs and α-perfect digraphs, we
would like to mention that some essential differences are known. For instance,
by Corollary 18 the α-perfect digraphs are the clique-acyclic superorientations
of perfect graphs. A famous result of Boros and Gurvich [4] says that clique-
acyclic superorientations of perfect graphs always have a kernel. Thus the kernel
existence problem on α-perfect digraphs is trivial (cf. [1]). On the other hand,
Andres and Hochstättler [1] proved that the kernel existence problem on perfect
digraphs is NP-complete. Therefore all three classes of digraphs studied in this
paper, perfect digraphs, α-perfect digraphs and strictly perfect digraphs might
be of independent interest for further studies.

1.5. Structure of the paper

The structure of the remaining sections is as follows. In Section 2 we introduce
the colouring and covering parameters for digraphs and observe some simple
relations. Digraph analogues of the Weak and the Strong Perfect Graph Theorem
are proved in Section 3 and Section 4, respectively. Properties of strictly perfect
digraphs and some open questions are given in Sections 5 and 6.

2. Notation and Basic Observations

All digraphs we consider are finite and without loops, i.e., a digraph D is a pair
(V,A) with a finite vertex set V and a set A of arcs satisfying

A ⊆ V 2
0 := (V × V ) \ {(v, v) | v ∈ V }.
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The complement of D, denoted by D, is the digraph (V,A) on the same vertex
set V with arc set A := V 2

0 \ A. For a digraph D, by V (D) we denote its vertex
set and by G(D) we denote its underlying graph, which is a simple undirected
graph that has an edge vw if and only if (v, w) or (w, v) (or both) is an arc of D.
A superorientation of a graph G is a digraph D with G = G(D).

A single arc in a digraph D = (V,A) is an arc (v, w) ∈ A for which (w, v) /∈ A.
An orientation of graph G is a superorientation of G in which every arc is a single
arc. The proper symmetric part S′(D) of D is the digraph on the vertex set V that
can be obtained from D by deleting all single arcs. The digraph D is symmetric
if D = S′(D). The symmetric part S(D) of D is defined as

S(D) := G(S′(D)),

which is the underlying undirected graph of the proper symmetric part. Undi-
rected graphs are identified with symmetric digraphs. In this way, edges are
identified with pairs of reversely oriented arcs, see Figure 2. In the following,
we will often switch between the graphical and digraphical perspective of graphs,
respectively, symmetric digraphs, without further mentioning.

Figure 2. Identifying an edge with the arcs of a digon.

Let n ∈ N. For n ≥ 1, by ~Pn we denote the directed path and, for n ≥ 2, by
~Cn we denote the directed cycle on n vertices. A directed cycle on n vertices is
a proper directed cycle if n ≥ 3, and a digon if n = 2. Recall that a digraph is
acyclic if it does not contain a directed cycle as an (induced) subdigraph. Indeed,
it is enough to forbid induced directed cycles since every non-induced directed
cycle has a chord which either is part of a digon (in which case the digon is an
induced directed cycle) or is a single arc (in which case a smaller proper directed
cycle is formed by the chord arc and one of the half-cycles of the original directed
cycle).

A filled odd hole is a digraph D such that S(D) is an odd hole (i.e., S(D) is
an undirected cycle of odd length ≥ 5). A filled odd antihole is a digraph D such
that S(D) is an odd antihole. See Figure 3.

Crucial parameters will be based on different kinds of cliques in digraphs
and their complements. For us, a clique in a digraph D is a set of pairwise
adjacent vertices, i.e., any two vertices are either connected by a single arc or
induce a digon. We will also call any subdigraph induced by a clique in D a
clique. Obviously, the complements of cliques are the orientations of graphs.
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Figure 3. A filled odd hole (left) and a filled odd antihole (right).

A digraph is clique-acyclic if it does not contain the complement of a proper
directed cycle as an induced subdigraph. Equivalent characterisations of clique-
acyclic digraphs are “the subdigraph induced by any clique has no proper directed
cycles”, or “every clique has a vertex of in-degree n − 1, where n is the number
of vertices of the clique”.

A clique-acyclic clique is a clique that induces a clique-acyclic subdigraph of
D. Dually, a vertex set that induces an acyclic subdigraph of D is called acyclic
set.

Observation 10. A digraph is acyclic if and only if its complement is a clique-
acyclic clique.

Proof. Let D be a digraph. The digraph D is acyclic if and only if it contains
neither induced proper directed cycles nor digons. D contains no induced proper
directed cycles if and only if D is clique-acyclic. D contains no digon if and only
if D is a clique.

Symmetric cliques are those clique-acyclic cliques where any pair of vertices
induces a digon. Obviously, symmetric cliques of a digraph D induce stable sets,
i.e., vertex sets of digraphs with an empty arc set, in the complement D.

The crucial colouring parameter for digraphs, the dichromatic number, was
introduced by Neumann-Lara [11]. It is based on the concept of acyclic colourings,
i.e., vertex colourings where each colour class is an acyclic set. We remark that
such a colouring needs not be proper. Dually to acyclic colourings, a clique
covering by clique-acyclic cliques is a (not necessarily proper) vertex colouring in
which all colour classes are clique-acyclic cliques.

The numbering of the vertices of ~C4 in Figure 1 indicates a clique covering
with clique-acyclic cliques.

For the notions χ and ω related to perfect digraphs and acyclicity, we have
the dual notions of k and α related to α-perfect digraphs and clique-acyclicity.
We define the following parameters for a digraph D.
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~ω(D), the clique-acyclic clique number, is the cardinality of a largest clique-
acyclic clique in D;

~α(D), the acyclic independence number, is the cardinality of a largest acyclic
set in D;

ω(D), the symmetric clique number, is the cardinality of a largest symmetric
clique in D;

α(D), the stability number, is the cardinality of a largest stable set in D;

χ(D), the dichromatic number, is the minimum number of colours needed for
an acyclic colouring of D (cf. [11]); and

k(D), the clique covering number, is the minimum number of monochromatic
clique-acyclic cliques needed to cover all vertices of D in a clique cov-
ering by clique-acyclic cliques.

Note that, by definition, ω(D) = ω(S(D)) and α(D) = α(G(D)).
In the case of symmetric digraphs (regarded as undirected graphs), the pa-

rameters ~ω and ω specialise to the usual clique number, ~α and α specialise to
the usual stability number, χ corresponds to the usual chromatic number and k
corresponds to the usual clique covering number of undirected graphs. Thus the
parameters defined above are appropriate to generalise colourings and coverings
from graphs to digraphs.

From the definitions, it is clear that

Observation 11. For any digraph D,

(i) ~α(D) = ~ω(D),

(ii) α(D) = ω(D),

(iii) k(D) = χ(D).

Furthermore, we observe

Observation 12. For any digraph D,

(i) ω(D) ≤ χ(D),

(ii) α(D) ≤ k(D).

Proof. (i) Every vertex in a symmetric clique must be coloured in a different
colour, since every digon is a directed cycle. Thus χ(D) ≥ ω(D).

(ii) follows from (i) by applying Observation 11(ii) and (iii).

In [1] perfectness of digraphs was introduced in terms of the dichromatic
number. A digraph is perfect if, for any induced subdigraph H,

ω(H) = χ(H).
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Dually, we define a digraph to be α-perfect if, for any induced subdigraph H,

α(H) = k(H).

Observation 13. A digraph is perfect (respectively, α-perfect) if and only if each
of its components is perfect (respectively, α-perfect).

Observation 14. A digraph is α-perfect if and only if its complement is perfect.

Proof. This follows from the definitions and Observation 11(ii) and (iii).

This observation motivates the following definition. A digraph is strictly
perfect if it is perfect and α-perfect.

Example 15. Some simple examples of strictly perfect digraphs are

(i) all digraphs on at most 3 vertices except for the directed 3-cycle ~C3;

(ii) transitive tournaments;

(iii) the N -digraph and its complement N (see Figure 4); or, more generally,

(iv) superorientations of a path and their complements;

(v) orientations of cycles of even length that are not directed proper cycles, and
their complements; and

(vi) perfect (undirected) graphs.

N N

Figure 4. The N -digraph and its complement N .

Proof. (i), (ii) and (iii) are obvious.
To prove (iv) and (v), let D be a superorientation of the path Pn on n vertices

with n ∈ N \ {0} or an acyclic orientation of an n-cycle with (even) n ∈ 2N \ {0}.
By (ii) we may assume without loss of generality n ≥ 2. The components of any
proper subdigraph of D are superorientations of a path. Thus, in order to prove
that D is strictly perfect, by Observation 13 it is sufficient to note that

ω(D) =

{
1 (in case D contains no digon)
2 (in case D contains a digon)

}
= χ(D)

and
α(D) =

⌈n
2

⌉
= k(D).
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By Observation 14, strict perfectness follows also for the complement of D.
(vi) Perfect graphs are strictly perfect by the Weak Perfect Graph Theorem

(Theorem 1).

By our identification of symmetric digraphs and undirected graphs, for any
digraph D we have

S(D) = G(D).(2)

Equation (2) implies the following lemma.

Lemma 16. (i) The complements of filled odd holes are the superorientations of
odd antiholes.
(ii) The complements of filled odd antiholes are the superorientations of odd holes.

Example 17. Neither proper directed cycles nor their complements are strictly
perfect.

(i) Proper directed cycles of even length are α-perfect, but not perfect, and
their complements are perfect, but not α-perfect.

(ii) Directed cycles of odd length and their complements are neither perfect nor
α-perfect.

(iii) Superorientations of cycles of odd length ≥ 5 are not α-perfect, their com-
plements are not perfect.

(iv) Superorientations of odd antiholes are not α-perfect, their complements are
not perfect.

(v) Filled odd holes and filled odd antiholes and their complements, respectively,
are not strictly perfect.

Proof. (i) For n ≥ 2, we have

ω(~C2n) = 1 < 2 = χ(~C2n),(3)

thus ~C2n is not perfect, whereas ~C2n is perfect, since

ω(~C2n) = n = χ(~C2n)

and any induced proper subdigraph of ~C2n is the complement of an orientation
of a forest of paths, which is α-perfect by Example 15 (iv) and Observation 13.

(ii) By the same argument as in (3), for any n ≥ 1, the directed cycle ~C2n+1

is not perfect. It is not α-perfect, since

α(~C2n+1) = n < n+ 1 = k(~C2n+1).(4)

(iii) As (4) still holds when the directed cycle ~C2n+1 is replaced by any
superorientation D of C2n+1, no such D is α-perfect.
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(iv) Let n ≥ 0 and D be a superorientation of an odd antihole on 2n + 5
vertices. Then, by Lemma 16, its complement D is a filled odd hole. Thus

α(D) = ω(D) = 2 < 3 = χ(C2n+5) ≤ χ(D) = k(D).

Thus D is not perfect and D is not α-perfect.
The other assertions of (i), (ii), (iii) and (iv) follow by Observation 14. More-

over, by Lemma 16, (iii) and (iv) imply (v).

3. Proof of Weak Perfect Digraph Theorems

As we have seen in Example 17(i), the first form of the Weak Perfect Graph The-
orem (Theorem 1) does not generalise directly to digraphs (since the complement
of a perfect digraph is not necessarily a perfect digraph), but it generalises in the
form of Theorem 5.

Using Observation 14, Theorem 5 can be reformulated in the following way.

Corollary 18. A digraph is α-perfect if and only if it is a clique-acyclic super-
orientation of a perfect graph.

In his second proof of the Weak Perfect Graph Theorem, Lovász [10] refor-
mulated the Weak Perfect Graph Theorem in the asymmetric form of Theorem 2:
a graph is perfect if and only if, for any induced subgraph H,

ω(H)ω(H) ≥ |V (H)|.(5)

The latter condition (5) is obviously equivalent to

ω(H)α(H) ≥ |V (H)|.(6)

In the following, by weakening the condition (6), we will deduce a set of two
generalisations of Theorem 2 to the case of digraphs from Theorem 4 given in
Theorems 7 and 8.

Note that Theorem 2 does not generalise directly to digraphs. Consider the
transitive tournament ~Tn on n vertices. Its complement is isomorphic to ~Tn.
Since S(~Tn) = Kn, the tournament ~Tn is perfect by Theorem 4. But for n ≥ 2
we have

ω(~Tn)ω
(
~Tn

)
= ω(~Tn)α(~Tn) = 1 6≥ n.

However, it is possible to prove the modification of Theorem 2, stated in Theo-
rem 7, which is equivalent to Theorem 2 in the case of undirected graphs. For
that we use the notion of the acyclic independence number ~α(D) of a digraph D:
recall that it is the maximum number of vertices of an induced acyclic subdigraph
of D. We start with two observations.
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Observation 19. For any digraph H, α(H) ≤ ~α(H) ≤ α(S(H)).

Observation 20. For any digraph H = (V,A), we have

χ(H)~α(H) ≥ |V |.

Proof. Let c : V −→ {1, 2, . . . , χ(H)} be an acyclic colouring of H with χ(H)
colours. Then

|V | =
χ(H)∑
i=1

|c−1(i)| ≤
χ(H)∑
i=1

~α(H) = χ(H)~α(H).

Proof of Theorem 7 using Theorem 2 and Theorem 4. Let D be a per-
fect digraph and H = (V,A) be an induced subdigraph of D. By the perfectness
of D and by Observation 20, we have

ω(H)~α(H) = χ(H)~α(H) ≥ |V |,

thus condition (1) in (ii) holds, which proves the implication (i)=⇒(ii).

For the (nontrivial) implication (ii)=⇒(i), let D be a non-perfect digraph.
By Theorem 4, either the digraph D contains an induced subdigraph H that is a
directed cycle of length at least 3 or the symmetric part S(D) of D is an imperfect
graph.

In the former case, if H is a directed cycle ~Cn for some integer n ≥ 3, then
ω(H) = 1 and ~α(H) = n− 1. Thus

ω(H)~α(H) = n− 1 < n = |V (H)|.

In the latter case, by Theorem 2 the symmetric part S(D) has an induced
subgraph H ′ = (V ′, E′) with the property

ω(H ′)α(H ′) < |V ′|.(7)

Let in this case H = D[V ′] be the subdigraph of D induced by the vertex set V ′

of H ′. In particular, we have S(H) = H ′. Thus, trivially, we have

ω(H) = ω(S(H)) = ω(H ′),(8)

and by the second inequality in Observation 19 we have

~α(H) ≤ α(S(H)) = α(H ′).(9)
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Therefore,

ω(H)~α(H)
(8),(9)

≤ ω(H ′)α(H ′)
(7)
< |V ′| = |V (H)|.

In both cases, (1) is violated, which proves the implication (ii)=⇒(i).

In line with the above notion of ~α corresponding to acyclicity we have defined
a dual notion ~ω corresponding to clique-acyclicity: recall that the clique-acyclic
clique number ~ω(D) of a digraph D is the maximum number of vertices of an
induced subdigraph of D that is a clique-acyclic superorientation of a clique
in G(D).

Dually to Observations 19 and 20 and Theorem 7, we have the following.

Observation 21. For any digraph H, ω(H) ≤ ~ω(H) ≤ ω(G(H)).

Observation 22. For any digraph H, we have

k(H)~ω(H) ≥ |V (H)|.

Proof of Theorem 8. This follows easily from Theorem 7 by applying Obser-
vation 11 (respectively, Observation 14).

D is α-perfect.
Obs 14⇐⇒ D is perfect.
Thm 7⇐⇒ For any induced subdigraph H of D

ω(H)~α(H) ≥ |V (H)|.

Obs 11⇐⇒ For any induced subdigraph H of D

α(H)~ω(H) ≥ |V (H)|.

Combining Theorem 7 and Theorem 8 we obtain the following corollary.

Corollary 23 (Weak Strictly Perfect Digraph Theorem). For any digraph D,
the following conditions are equivalent.

(i) D is strictly perfect.

(ii) For any induced subdigraph H = (V,A) of D, we have

ω(H)~α(H) ≥ |V |(10)

and

α(H)~ω(H) ≥ |V |.(11)
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4. Proof of Strong Perfect Digraph Theorems

Theorem 6 was already proved by Andres and Hochstättler [1]. Here we prove
its dual, Theorem 9.

In order to be able to apply Theorem 6 to prove Theorem 9, we need the
obvious Lemma 16 as a key.

Proof of Theorem 9. For any digraph D, we have the following equivalences.

D is α-perfect
Obs 14⇐⇒ D is perfect
Thm 6⇐⇒ D contains no filled odd hole, filled odd antihole, or proper directed

cycle as an induced subdigraph.
Lem 16⇐⇒ D contains no superorientation of an odd antihole, superorientations of

an odd hole, or complement of a proper directed cycle as an induced
subdigraph.

As an immediate consequence of Theorem 6 and its dual, Theorem 9, we
obtain the following.

Corollary 24 (Strong Strictly Perfect Digraph Theorem). A digraph is strictly
perfect if and only if it contains no induced

• filled odd holes,

• filled odd antiholes,

• superorientations of odd holes,

• superorientations of odd antiholes,

• directed cycles with at least 3 vertices,

• complements of directed cycles with at least 3 vertices.

5. Characterisation of Strictly Perfect Digraphs by Semi-Filled
Directed Cycles

In the following two sections, we turn our attention to the concept of strictly
perfect digraphs.

Firstly, in this section we would like to mention some analogues of the Sym-
metrical Reduction Theorem (Theorem 4) for α-perfect and strictly perfect di-
graphs. Though trivial consequences of Theorem 4, the latter one implies a
characterisation of strictly perfect digraphs by a concept that we call “semi-filled
directed cycles”. This characterisation might be of independent interest for fur-
ther studies on strictly perfect digraphs.
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In line with the symmetric part of a digraph, we define the co-symmetric part
coS(D) of a digraph D as the graph G(D) having an edge (digon) for every pair
of non-adjacent vertices of D, or equivalently, as S(D) (see equation (2)).

Definition and Remark 25. coS(D) := G(D) = S(D).

The oriented (or asymmetric) part O(D) of a digraph D = (V,A) is the
digraph (V, ~A), where ~A is the set of all single arcs of D.

Theorem 26 (Symmetrical Reduction Theorem for α-perfect digraphs). A di-
graph D is α-perfect if and only if its co-symmetric part coS(D) is a perfect graph
and D contains no induced complement of a proper directed cycle.

Proof. By Observation 14, the statement is equivalent to saying that “D is
perfect if and only if coS(D) is a perfect graph and D contains no induced proper
directed cycle”. This is true by the Symmetrical Reduction Theorem (Theorem 4)
for perfect digraphs applied to D, since coS(D) = S(D).

Theorem 27 (Symmetrical Reduction Theorem for strictly perfect digraphs).
A digraph D is strictly perfect if and only if its symmetric part S(D) and its
co-symmetric part coS(D) are perfect graphs and D contains no induced proper
directed cycle or complement of a proper directed cycle.

Proof. This is an immediate consequence from the combination of Theorem 4
and Theorem 26.

~D0

Figure 5. The semi-diamond ~D0.

A semi-filled directed cycle is a digraph on n vertices for some n ≥ 3 such
that O(D) is the directed n-cycle ~Cn and D is neither ~Cn nor (isomorphic to)

its complement ~Cn. Obviously, there does not exist a semi-filled directed cycle
for n = 3 and a unique one, which we call semi-diamond, for n = 4, see Figure
5. The 6 non-isomorphic semi-filled directed cycles on 5 vertices are depicted in
Figure 6.

By the definition of semi-filled directed cycles, the statement of the following
main result of this section is a corollary of Theorem 27.
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Figure 6. The semi-filled cycles on 5 vertices.

Theorem 28 (Semi-filled directed cycle characterisation). A digraph D is strictly
perfect if and only if its symmetric part S(D) and its co-symmetric part coS(D)
are perfect graphs and the vertex set of every (not necessarily induced) minimal
proper directed cycle in O(D) induces a semi-filled directed cycle in D.

We remark that, in the formulation of Theorem 28, we cannot waive the
precondition of minimality of the proper directed cycles. For example, the strictly
perfect digraph from Figure 7 has a directed 5-cycle which does not induce a semi-
filled directed cycle, but the directed 4-cycle, which is a minimal proper directed
cycle here, induces a semi-filled directed cycle (the semi-diamond).

Figure 7. A strictly perfect digraph that is not a semi-filled directed cycle.

6. Cuts in Strictly Perfect Digraphs

In this section we prove that directed cographs and Cartesian products of directed
3-cycles are strictly perfect. We further discuss some open problems towards
characterising strictly perfect digraphs.

Let D = (V,A) be a digraph and V = V1 ∪ V2, V1 ∩ V2 6= ∅, V1 6= ∅, V2 6= ∅.
The cut with sides V1 and V2 is the arc set

{(v, w) ∈ A | (v ∈ V1 ∧ w ∈ V2) ∨ (v ∈ V2 ∧ w ∈ V1)}.

A cut C is empty if C = ∅, respectively, forward directed complete if C = V1×V2,
respectively, symmetric complete if C = (V1 × V2) ∪ (V2 × V1). More generally, a
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cut C is forward directed if C ⊆ V1 × V2 and forward mixed semi-complete if

V1 × V2 ⊆ C ⊆ (V1 × V2) ∪ (V2 × V1).

By changing the roles of V1 and V2 we might define analog types of cuts, which
are backward instead of forward.

Thus directed cuts and mixed semi-complete cuts are complementary no-
tions. In particular, empty cuts and symmetric complete cuts are complemen-
tary notions, and the notion of directed complete cuts is self-complementary (only
switching between forward and backward).

Theorem 29. Let D = (V,A) be a digraph and C be a cut that is either empty,
symmetric complete or forward directed complete and let D1 and D2 be the sub-
digraphs induced by the two sides of the cut. Then the following conditions are
equivalent.

(i) D is strictly perfect.

(ii) Both D1 and D2 are strictly perfect.

Proof. The assertion (i)=⇒(ii) is trivial by definition of perfect and α-perfect,
since D1 and D2 are induced subdigraphs of D.

To prove (ii)=⇒(i), assume that D is a counterexample to the theorem with
a minimal number of vertices and D1 = (V1, A1) and D2 = (V2, A2) are strictly
perfect and H is a subdigraph of D. We have to prove that H is strictly perfect.
This is obvious if H is a subdigraph of either D1 or D2. Otherwise, there is a
cut C ′ that is either empty, symmetric complete or forward directed complete
and partitions H into H1 (a nonempty subdigraph of D1) and H2 (a nonempty
subdigraph of D2). Since H1 and H2 are strictly perfect, by the minimality of D
we may assume that H = D and H1 = D1 and H2 = D2 and need only to show
that ω(D) = χ(D) and α(D) = k(D).

We consider three cases.

Case 1. C is an empty cut. In this case, Observation 13 implies that, since
D1 and D2 are strictly perfect, the digraph D is strictly perfect.

Case 2. C is a symmetric complete cut. Since D1 and D2 are strictly perfect
and the cut C with sides V1 and V2 in D is an empty cut, the assertions follow
easily from Case 1 (applied to D) by Observation 11:

ω(D) = α(D) = k(D) = χ(D),

α(D) = ω(D) = χ(D) = k(D).

Case 3. C is a forward directed complete cut. Since D1 and D2 are perfect,
for any i ∈ {1, 2}, there are acyclic colourings fi of Di with colours {1, . . . , ω(Di)}.
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Then the function f , defined by f(v) = fi(v) if v ∈ Vi (for some i ∈ {1, 2}), is an
acyclic colouring with

ω(D) = max{ω(D1), ω(D2)}

colours, i.e., (using Observation 12 (i)) we have ω(D) = χ(D).
Since D1 and D2 are perfect and the cut C with sides V1 and V2 in D is a

backward directed complete cut, we conclude in a similar way that ω(D) = χ(D).
By Observation 11, this implies

α(D) = ω(D) = χ(D) = k(D).

Thus in any case, we have a contradiction to our assumption that D is a coun-
terexample to the theorem.

One might conjecture that Theorem 29 generalises to forward directed cuts
and forward mixed semi-complete cuts. However, this is not true in general,
as the the example in Figure 8 shows: note that the digraph D+ in the figure
consists of two strictly perfect digraphs joined by a directed mixed semi-complete
cut. But D is not perfect, since S(D) is isomorphic to the non-perfect graph C5.
Therefore, D+ is not α-perfect. Note that D+ consists of two strictly perfect
digraphs joined by a directed cut.

D+

Figure 8. An imperfect digraph built from two strictly perfect digraphs joined by a
directed mixed semicomplete cut.

A directed cograph is a digraph that can be constructed recursively from K1

(the graph with one isolated vertex) by taking two directed cographs D1 and D2

and joining them by either an empty cut, a symmetric complete cut, or a forward
directed complete cut. These kinds of joins are denoted by D1 ∪D2 (the union),
D1 ∨ D2 (the complete join), and D1~∨D2 (the forward directed complete join),
respectively.

Theorem 29 immediately implies the following.

Corollary 30. Directed cographs are strictly perfect.
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The explicit notion of directed cographs has been introduced by Crespelle
and Paul [7]. This concept and its undirected analogue, cographs, were also the
initial motivation in a recent paper [2], where Reed’s Semi-strong Perfect Graph
Theorem [12] is generalised in a certain way to perfect digraphs.

We remark that there are many strictly perfect digraphs that are no directed
cographs. The smallest examples are the directed path ~P3 on three vertices and
its complement. Other examples are ~P−3 and ~P+

3 , see Figure 9. Among the
examples with four vertices are the N and its complement N (see Figure 4).

~P−3
~P+
3

Figure 9. Two self-complementary strictly perfect digraphs that are no directed cographs.

The most important basic families of strictly perfect digraphs that are no
directed cographs are directed paths ~Pn with n ≥ 3 vertices and symmetric paths
Pn with n ≥ 4 vertices. The latter characterise cographs (in the undirected case):
it is well-known that cographs are exactly the P4-free graphs.

Crespelle and Paul [7] characterised directed cographs as those digraphs that
contain no induced

~P3, ~P3, N,N, ~P
−
3 ,

~P+
3 , P4, ~C3.

As remarked above, the first seven of them are strictly perfect, whereas the latter
is not.

Extending the constructive approach. In view of constructively character-
ising strictly perfect digraphs, one might define the basic set B as the inclusion-
minimial set of isomorphism classes of strictly perfect digraphs, such that every
strictly perfect digraph can be constructed recursively from digraphs from this
set by applying unions, complete joins and forward directed joins.

By the above, we have

B ⊇ {K1, ~P3, ~P3, N,N, ~P
−
3 ,

~P+
3 , P4}.(12)

Problem 31. Determine B.

Problem 32. Is B an infinite set?

Proposition 33. For any n ∈ N, the Cartesian product

~Pn3 := ~P3� · · ·�~P3︸ ︷︷ ︸
n times

is strictly perfect.



928 S.D. Andres

Proof. The digraph ~Pn3 is perfect, since it is acyclic. Since it is an orientation of
a bipartite graph, the symmetric part of its complement is the complement of a
bipartite graph, which is a perfect graph. Note further that ~Pn3 does not contain

complements of proper directed cycles. Thus, by Theorem 4, the complement ~Pn3
is a perfect digraph. Therefore, ~Pn3 is strictly perfect for any n ∈ N.

The example of the series (~Pn3 )n∈N given in Proposition 33 seems to suggest
that B is an infinite set. In particular, a construction of ~Pn3 from ~P 0

3 , . . . ,
~Pn−13

seems not to be possible. However, there might be some finite number of other
members of B from which such a construction of ~Pn3 might be possible. The
author did not yet find a formal proof of an affirmative answer to Problem 32.

We conjecture a generalisation of Theorem 29.

Conjecture 34. Let m ∈ N and D = (V,A) be a digraph such that D or its
complement D is composed by digraphs D1, . . . , Dm+1 arranged in a line. Let Ci
(i = 1, . . . ,m) be the cut that separates Di and Di+1 and let furthermore Ci be
empty, symmetric complete or forward (or backward) directed complete. Then the
following are equivalent.

(i) D is strictly perfect.

(ii) For every i ∈ {1, . . . ,m+ 1}, Di is strictly perfect.

This conjecture is motivated by Example 15(iv): superorientations of paths,
which are composed of isolated vertices separated by symmetric complete, forward
or backward directed complete cuts on a line, are strictly perfect.

If Conjecture 34 is true, then the seven obstructions to directed cographs
occurring in (12) in the basic set B can be constructed. However, still other
strictly perfect digraphs cannot be constructed, namely such ones that are based
on a tree that is not a path. An example of such a complementary pair is given
in Figure 10.

F3 F3

Figure 10. Strictly perfect digraphs that cannot be constructed by means of Conjec-
ture 34.

Refined constructive methods. Even if one might prove a generalisation
of Conjecture 34 based on an arrangement of the Di on a forest instead of a
path (line), there are still strictly perfect digraphs that cannot be constructed by
disjoint unions, complete joins and forward directed complete joins based on a
tree structure. One example is the semi-diamond, which is depicted in Figure 5.
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One reason might be that unions, complete joins and forward directed joins
are not sufficient to easily characterise strictly perfect digraphs constructively.
In a recent paper, Bang-Jensen, Bellitto, Schweser, and Stiebitz [3] considered
some other types of joins, so-called directed Hajós joins, directed Ore joins and
bidirected Ore joins, in order to characterise m-dichromatic critical digraphs.
Their proof strongly relies on the characterisation of perfect digraphs given in
Theorem 4. Therefore, using such kind of joins and inventing some dual join
concepts for α-perfect digraphs might enable us to get a finer constructive method
for strictly perfect.

However, since the concepts of joins considered by Bang-Jensen et al. [3]
involve glueing vertices together and replacements of arcs, it is not clear whether
these operations can be backtracked efficiently. We wonder whether any con-
structive method for strictly perfect digraphs might be impossible by reasons of
complexity of the recognition of strictly perfect digraphs.

Complexity. Using the Strong Perfect Graph Theorem by Chudnovsky,
Robertson, Seymour, and Thomas [6], the characterisation of Berge graphs by
Chudnovsky, Cornuéjols, Liu, Seymour, and Vušković [5] implies that the recog-
nition problem for perfect graphs is in polynomial time.

By a reduction from 3SAT Andres and Hochstättler [1] showed that the
recognition problem for perfect digraphs (and thus also for α-perfect digraphs)
is coNP-complete. However, the reduction seems not to be transferable in an
obvious way to strictly perfect digraphs. The following questions are open.

Problem 35. Determine the complexity of recognising strictly perfect digraphs.

Problem 36. Determine the complexity of recognising strictly perfect digraphs
with no induced ~D0.

Problem 37. Determine the complexity of recognising strictly perfect digraphs
with no induced ~D0, F3, F3.

Acknowledgements

When we worked on our paper [2] on the Semi-strong Perfect Digraph Theorem,
some inspiring discussions with Winfried Hochstättler motivated me to consider
the directed cographs in Section 6. In particular, the idea of Theorem 29 origi-
nates from a discussion of the author with Winfried Hochstättler.

Furthermore, the author acknowledges the suggestions of both referees, which
helped to improve the readability of the paper. In particular, Figure 7 originates
from one of the referees.

References

[1] S.D. Andres and W. Hochstättler, Perfect digraphs, J. Graph Theory 79 (2015)
21–29.
https://doi.org/10.1002/jgt.21811

https://doi.org/10.1002/jgt.21811


930 S.D. Andres

[2] S.D. Andres, H. Bergold, W. Hochstättler and J. Wiehe, A semi-strong perfect
digraph theorem, AKCE Int. J. Graphs Comb. 17 (2020) 992–994.
https://doi.org/10.1016/j.akcej.2019.12.018

[3] J. Bang-Jensen, T. Bellitto, T. Schweser and M. Stiebitz, Hajós and Ore construc-
tions for digraphs, Electron. J. Combin. 27 (2020) #P1.63.
https://doi.org/10.37236/8942

[4] E. Boros and V. Gurvich, Perfect graphs are kernel solvable, Discrete Math. 159
(1996) 35–55.
https://doi.org/10.1016/0012-365X(95)00096-F
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