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Abstract

For an arbitrary invariant ρ(G) of a graph G the ρ-subdivision number
sdρ(G) is the minimum number of edges of G whose subdivision results in a
graph H with ρ(H) 6= ρ(G). Set sdρ(G) = |E(G)| if such an edge set does
not exist.

In the first part of this paper we give some general results for the ρ-
subdivision number. In the second part we study this parameter for the
chromatic number, for the chromatic index, and for the total chromatic
number. We show among others that there is a strong relationship to the ρ-
edge stability number for these three invariants. In the last part we consider
a modification, namely the ρ-multiple subdivision number where we allow
multiple subdivisions of the same edge.
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1. Introduction

We consider finite simple graphs G = (V (G), E(G)). A (graph) invariant ρ(G) is
a function ρ : I → R

+
0 ∪ {∞}, where I is the class of finite simple graphs. An

empty graph is a graph with empty edge set.
In this paper we investigate graph invariants which are related to the ρ-edge

stability numbers esρ(G) (see [6]). For an arbitrary invariant ρ(G) of a graph G
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the ρ-edge stability number esρ(G) of G is the minimum number of edges of G
whose removal results in a graph H ⊆ G with ρ(H) 6= ρ(G) or with E(H) = ∅
(that is, H is empty and esρ(G) = |E(G)|).

The operation of removing an edge will be replaced by the operation of
subdividing an edge. Subdividing an edge e = uv of a graph G creates a new
graph Ge, in which a new vertex w is added and the edge e is removed and
replaced by two new edges uw and wv. We write GE′ for the graph obtained
by subdividing all edges of E′ ⊆ E(G). Note that each edge of E′ is subdivided
exactly once.

Definition. For an arbitrary invariant ρ(G) of a graph G the ρ-subdivision num-
ber sdρ(G) of G is the minimum number of edges of G to be subdivided such
that the resulting graph H fulfills ρ(H) 6= ρ(G). Let sdρ(G) = |E(G)| if such an
edge set does not exist.

Velammal in 1997 [8] and Arumugam in 2000 (see [4]) studied the domination
subdivision number sdγ(G) where γ(G) is the domination number of G. This was
later the topic of various papers (see e.g. Section III.H in the survey [9]). Subse-
quently this concept was also investigated for the stability number β(G) [4] and
other invariants related to the domination number (see e.g. [3]). Moreover, the
relationship between edge removing and edge subdivision concerning the domi-
nation number was studied, among others, in [3, 4]. For example, sdγ(Kn) = 1
and esγ(Kn) = ⌈n/2⌉ if n ≥ 2.

Some easy observations follow directly from the definition of the ρ-subdivision
number. For example, sdρ(G) = 0 if and only if G is empty. If G is not empty,
then 1 ≤ sdρ(G) ≤ |E(G)|. If ρ(G) does not change by edge subdivisions (as the
number of cycles of a graph G), then sdρ(G) = |E(G)|.

For some specific invariants ρ(G) it is easy to determine the ρ-subdivision
number. In the following we give some examples.

For the order n(G) = |V (G)| and the size m(G) = |E(G)| of a graph G it
holds that sdn(G) = sdm(G) = 0 if G is empty and sdn(G) = sdm(G) = 1 if G is
not empty, since subdividing an edge of a graph increases the order and the size
by 1. Therefore, sdn(G) = sdm(G) for each graph G.

Subdividing an edge gives a homeomorphic graph, hence several invariants
related to drawings of a graph are unaffected by edge subdivisions, for example
the crossing number cr(G) or the thickness θ(G). Therefore, sdcr(G) = sdθ(G) =
|E(G)|.

Subdividing an edge xy does not change the degree of x, y and adds a vertex of
degree 2. Therefore, sdδ(G) = 1 if the minimum degree δ(G) ≥ 3, and sdδ(G) =
|E(G)| otherwise. Moreover, sd∆(G) = 1 if the maximum degree ∆(G) = 1, and
sd∆(G) = |E(G)| otherwise.
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Subdividing an edge does not change the number of cycles but does increase
the length of cycles containing the edge. Therefore, for the circumference c(G)
(the length of a longest cycle inG or∞ for acyclic graphs) it holds that sd c(G) = 1
if G has cycles and sd c(G) = |E(G)| otherwise.

Consider now the girth g(G) of G (the length of a shortest cycle in G or ∞
for acyclic graphs).

Proposition 1. sdg(G) = esg(G) for the girth g(G).

Proof. The result for acyclic graphs is obvious since the girth g(G) cannot be
changed by edge removals or edge subdivisions.

Let G be a graph with cycles. Let E′ ⊆ E(G) with |E′| = esg(G) and
g(G−E′) 6= g(G). Every cycle of length g(G) must contain an edge from E′, that
is, subdividing these edges increases the girth, hence sdg(G) ≤ |E′| = esg(G).

Conversely, let E′′ ⊆ E(G) with |E′′| = sdg(G) and g(GE′′) 6= g(G). Then
every cycle of length g(G) must contain an edge from E′′, that is, removing these
edges increases the girth, hence esg(G) ≤ |E′′| = sdg(G).

In the first part of this paper we investigate the subdivision numbers for
arbitrary invariants and we deduce some general results.

After that the χ-subdivision number sdχ(G) of G, also called chromatic sub-
division number, where χ(G) is the chromatic number ofG, and the χ′-subdivision
number sdχ′(G) of G, also called edge chromatic subdivision number, where χ′(G)
is the chromatic index of G, are considered. It will be shown among others that
sdχ(G) = esχ(G) if χ(G) ≥ 3 and sdχ′(G) = esχ′(G) if χ′(G) = ∆(G) + 1, that
is, in these cases it does not matter whether edge removals or edge subdivisions
will be carried out (as in the example above on the girth). Results on the edge
stability numbers esχ(G) and esχ′(G) can be found, e.g., in [5, 6].

In the next part of this paper we investigate the χ′′-subdivision number
sdχ′′(G) of G, also called total chromatic subdivision number, where χ′′(G) is
the total chromatic number of G. We determine sdχ′′(G) for a large class of type
1 graphs.

In the last part we consider a variation of ρ-subdivision numbers for which
multiple subdivisions of a single edge are allowed, that is, each subdivided edge
is replaced by a path of length at least 2. It will be shown among others that
for the subdivision numbers with respect to the chromatic number χ(G) and to
the chromatic index χ′(G) it does not matter whether single or multiple edge
subdivisions will be carried out while in general the two invariants may differ.

2. General Results

In this section we condider the ρ-subdivision numbers for invariants ρ(G) that
have certain properties.
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An invariant ρ(G) is monotone increasing (with respect to subgraphs) if H ⊆
G implies ρ(H) ≤ ρ(G), and monotone decreasing (with respect to subgraphs) if
H ⊆ G implies ρ(H) ≥ ρ(G) (see, e.g., [7] for a study on graph invariants).

We call ρ(G) non-increasing (with respect to edge subdivisions) if ρ(GE′) ≤
ρ(G) for every E′ ⊆ E(G), and non-decreasing (with respect to edge subdivisions)
if ρ(GE′) ≥ ρ(G) for every E′ ⊆ E(G).

ρ(G) is called ss-monotone (for subgraph and subdivisions) if it is monotone
increasing with respect to subgraphs and non-increasing with respect to edge sub-
divisions, or monotone decreasing with respect to subgraphs and non-decreasing
with respect to edge subdivisions, respectively. Note that the class of ss-monotone
invariants is not empty; for example, constant invariants or the number of cycles
in a graph are ss-monotone.

If H1 and H2 are disjoint graphs, then an invariant is called additive if ρ(H1∪
H2) = ρ(H1) + ρ(H2) and maxing if ρ(H1 ∪H2) = max{ρ(H1), ρ(H2)}.

Some easy observations follow directly from the definitions.

Proposition 2. If ρ(GE′) 6= ρ(G), then sdρ(G) ≤ |E′|.

Proposition 3. If ρ(G) is ss-monotone or does not change by edge subdivisions,

then esρ(G) ≤ sdρ(G).

Proof. If ρ(G) does not change by edge subdivisions, then sdρ(G) = |E(G)| and
esρ(G) ≤ |E(G)| = sdρ(G) follows.

On the other hand, we may assume that there is an edge set E′ ⊆ E(G) with
|E′| = sdρ(G) and ρ(GE′) 6= ρ(G).

If ρ(G) is monotone increasing with respect to subgraphs and non-increasing
with respect to edge subdivisions, then G − E′ ⊆ GE′ implies ρ(G − E′) ≤
ρ(GE′) < ρ(G). If ρ(G) is monotone decreasing with respect to subgraphs and
non-decreasing with respect to edge subdivisions, then ρ(G − E′) ≥ ρ(GE′) >
ρ(G). In both cases it follows that esρ(G) ≤ |E′| = sdρ(G).

The following two theorems on disjoint unions of graphs can be obtained by
transferring results on the edge stability number (see [6]).

Theorem 4. Let ρ(G) be additive, G = H1 ∪ · · · ∪Hk a graph whose subgraphs

H1, . . . , Hk and the integer s ≥ 0 are defined in such a way that ρ(Hi) can be

changed by edge subdivisions if and only if 1 ≤ i ≤ s. Then sdρ(G) = |E(G)| if
s = 0 and sdρ(G) = min{sdρ(Hi) : 1 ≤ i ≤ s} if s 6= 0.

Proof. If s = 0, then ρ(Hi) cannot be changed by edge subdivisions for every
subgraph Hi, which implies by the additivity that also ρ(G) = ρ(H1)+· · ·+ρ(Hk)
cannot be changed by edge subdivisions, and sdρ(G) = |E(G)| follows.

If s 6= 0, then let Hj be a subgraph with sdρ(Hj) = min{sdρ(Hi) : 1 ≤ i ≤ s}
and E′ ⊆ E(Hj) be a set of edges with |E′| = sdρ(Hj) and ρ((Hj)E′) 6= ρ(Hj). By
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the additivity, ρ(GE′) = ρ(H1)+· · ·+ρ(Hj−1)+ρ((Hj)E′)+ρ(Hj+1)+· · ·+ρ(Hk) 6=
ρ(H1) + · · · + ρ(Hj−1) + ρ(Hj) + ρ(Hj+1) + · · · + ρ(Hk) = ρ(G), which implies
sdρ(G) ≤ |E′| = sdρ(Hj).

Let E′′ ⊆ E(G) be a set of edges with |E′′| < sdρ(Hj). By the minimality of
sdρ(Hj), ρ((Hi)E′′∩E(Hi)) = ρ(Hi) for i = 1, . . . , k, which implies ρ(GE′′) = ρ(G)
since ρ(G) is additive. Therefore, sdρ(G) = sdρ(Hj).

For maxing invariants ρ(G) we need an additional property.

Theorem 5. Let ρ(G) be maxing and non-increasing with respect to edge subdi-

visions, let G = H1 ∪ · · · ∪ Hk be a graph whose subgraphs H1, . . . , Hk and the

integer s ≥ 1 are defined such that ρ(Hi) = ρ(G) if and only if 1 ≤ i ≤ s. Then

sdρ(G) = |E(G)| if there is a subgraph Hj, 1 ≤ j ≤ s, such that ρ(Hj) cannot be
changed by edge subdivisions, and sdρ(G) =

∑s
i=1 sdρ(Hi) otherwise.

Proof. If there is a subgraph Hj , 1 ≤ j ≤ s, such that ρ(Hj) cannot be changed
by edge subdivisions, then ρ(G) = ρ(Hj) = ρ(GE′) for every E′ ⊆ E(G), since
the invariant is maxing and non-increasing with respect to edge subdivisions.
Therefore, sdρ(G) = |E(G)|.

Otherwise, let E′ = E′

1 ∪ · · · ∪ E′

s with E′

i ⊆ E(Hi), |E
′

i| = sdρ(Hi), and
ρ((Hi)E′

i
) 6= ρ(Hi) for i = 1, . . . , s. Since the invariant is maxing, ρ(GE′) =

max{ρ((Hi)E′

i
) : 1 ≤ i ≤ s} ∪ {ρ(Hi) : s + 1 ≤ i ≤ k} 6= ρ(G) which implies

sdρ(G) ≤ |E′| =
∑s

i=1 sdρ(Hi).
If GE′′ is considered where E′′ ⊆ E(G) with |E′′| < |E′|, then there is a

subgraph Hj , 1 ≤ j ≤ s, in which less than sdρ(Hj) edges are subdivided,
which implies ρ((Hj)E′′∩E(Hj)) = ρ(Hj) and thus, since the invariant is max-
ing and non-increasing, ρ(GE′′) = ρ(Hj) = ρ(G). Therefore, sdρ(G) = |E′| =∑s

i=1 sdρ(Hi).

Theorems 4 and 5 imply that the ρ-subdivision number sdρ(G) can be com-
puted by the ρ-subdivision numbers of the components of G if the invariant is
additive or if it is maxing and non-increasing with respect to edge subdivisions.
Therefore, it is sufficient to consider connected graphs G in these cases.

A lower bound for esρ(G) given in [6] can be transferred as follows.

Theorem 6. Let ρ(G) be ss-monotone and let G be a nonempty graph with

ρ(G) = k. If G contains s nonempty subgraphs G1, . . . , Gs with ρ(G1) = · · · =
ρ(Gs) = k such that a ≥ 0 is the number of edges that occur in at least two of these

subgraphs and q ≥ 1 is the maximum number of these subgraphs with a common

edge, then both sdρ(G) ≥ 1
q

∑s
i=1 sdρ(Gi) ≥ s/q and sdρ(G) ≥

∑s
i=1 sdρ(Gi) −

a(q − 1) hold.

Proof. Let ρ(G) be monotone increasing with respect to subgraphs and non-
increasing with respect to edge subdivisions.
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Let E′ be a set of edges of G with |E′| = sdρ(G) such that ρ(GE′) < k or
E′ = E(G). If ρ(GE′) < k, then the set E′ must contain at least sdρ(Gi) edges
of each graph Gi, 1 ≤ i ≤ s, since otherwise k > ρ(GE′) ≥ ρ((Gj)E′∩E(Gj)) = k
for some j, 1 ≤ j ≤ s, a contradiction. If E′ = E(G), then all edges of Gi are in
E′ for 1 ≤ i ≤ s.

Therefore, b =
∑s

i=1 |E
′ ∩ E(Gi)| ≥

∑s
i=1 sdρ(Gi) ≥ s.

On the other hand, at most ā = min{a, |E′|} edges of E′ are counted at most q
times in b, every other edge of E′ is counted at most once, so b ≤ ā·q+(|E′|−ā)·1 =
|E′|+ ā(q − 1).

Since ā ≤ |E′|, b ≤ q |E′| and therefore sdρ(G) = |E′| ≥ b/q ≥ 1
q

∑s
i=1 sdρ(Gi)

≥ s/q. On the other hand, ā ≤ a implies sdρ(G) = |E′| ≥ b − a(q − 1) ≥∑s
i=1 sdρ(Gi)− a(q − 1).
The proof for a monotone decreasing with respect to subgraphs and non-

decreasing with respect to edge subdivisions invariant ρ(G) runs analogously.

Corollary 7. Let ρ(G) be ss-monotone and let G be a nonempty graph with

ρ(G) = k. If G contains s nonempty subgraphs G1, . . . , Gs with ρ(G1) = · · · =
ρ(Gs) = k and pairwise disjoint edge sets, then sdρ(G) ≥

∑s
i=1 sdρ(Gi) ≥ s.

Proof. Each edge of G is contained in at most q = 1 of the given subgraphs
since they are pairwise edge disjoint. The result follows from Theorem 6.

Corollary 8. Let ρ(G) be ss-monotone. If H ⊆ G and ρ(H) = ρ(G), then

sdρ(H) ≤ sdρ(G).

Proof. If H is empty, then sdρ(H) = 0 ≤ sdρ(G); otherwise Corollary 7 with
s = 1 implies the result.

Note that in general sdρ(G) must not be monotone increasing with respect
to subgraphs even if ρ(G) has this property.

3. Chromatic Subdivision Number

In this section we consider the chromatic subdivison number sdχ(G) where χ(G)
is the chromatic number of G, that is, the minimum number of colors in a proper
vertex coloring of G. This problem was communicated by Arumugam [1].

Theorem 9. If χ(G) ≥ 3 or if G is acyclic, then sdχ(G) = esχ(G). If χ(G) = 2
and G has cycles, then sdχ(G) = 1 but esχ(G) = |E(G)|.

Proof. If χ(G) ≤ 2, then esχ(G) = |E(G)| by definition. Note that after re-
moving all edges of a non-empty graph the chromatic number drops from 2 to
1. On the other hand, if G is acyclic, then edge subdivisions do not change the
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chromatic number, so sdχ(G) = esχ(G) = |E(G)|. If χ(G) = 2 and G has cycles,
then subdividing an edge from a necessarily even cycle creates an odd cycle with
chromatic number 3, so sdχ(G) = 1.

In the following, let G be a graph with χ(G) ≥ 3. Let E′ ⊆ E(G) with
|E′| = esχ(G) and χ(G − E′) = χ(G) − 1 and consider the graph G′ obtained
from G by subdividing all edges of E′.

Since G−E′ is an induced subgraph of G′, a proper vertex coloring of G−E′

with χ(G)−1 colors gives a partial vertex coloring ofG′ where only the subdivision
vertices are uncolored. Note that each edge e of E′ must connect vertices of the
same color, otherwise E′\{e} would be an edge set with χ(G−E′\{e}) = χ(G)−1
which contradicts the minimality of esχ(G). We complete the vertex coloring of
G′ by coloring the subdivision vertices in an arbitrary order. Each subdivision
vertex is adjacent to two vertices of G of the same color, hence there is an unused
color among the χ(G)− 1 ≥ 2 available colors. It follows that χ(G′) = χ(G)− 1.
By the minimality of sdχ(G), |E′| = esχ(G) ≥ sdχ(G).

Consider now E′′ ⊆ E(G) with |E′′| = sdχ(G) such that subdividing all
edges of E′′ gives a graph G′′ with χ(G′′) = χ(G)− 1. Then G−E′′ ⊆ G′′ which
implies that χ(G − E′′) ≤ χ(G′′) = χ(G) − 1. By the minimality of esχ(G),
|E′′| = sdχ(G) ≥ esχ(G).

The last inequality esχ(G) ≤ sdχ(G) also follows from Proposition 3 since
χ(G) is ss-monotone if χ(G) ≥ 3.

4. Edge Chromatic Subdivision Number

In this section we consider the χ′-subdivison number sdχ′(G) with respect to the
chromatic index χ′(G) of G which is the minimum number of colors in a proper
edge coloring of G. By Vizing’s Theorem (see [2], p. 251), the chromatic index
can only attain one of two values, ∆(G) ≤ χ′(G) ≤ ∆(G) + 1. Graphs with
χ′(G) = ∆(G) are called class 1 graphs and graphs with χ′(G) = ∆(G) + 1 are
called class 2 graphs.

First note that the maximum degree ∆(G) does not change by edge subdi-
visions except if ∆(G) = 1. In this case, the chromatic index increases from 1
to 2. Therefore, sdχ′(G) = 1 if ∆(G) = 1 and, by the definition, sdχ′(G) = 0 if
∆(G) = 0, that is, if G is empty.

Assume in the following that ∆(G) ≥ 2. Since ∆(GE′) = ∆(G) for any set
of edges E′ of G, we have by Vizing’s Theorem

∆(G) ≤ χ′(G), χ′(GE′) ≤ ∆(G) + 1,

which implies that χ′(GE′) 6= χ′(G) if and only if GE′ and G have different classes
(in this case the difference between the chromatic indices is always 1).
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We give some examples.
For cycles Cn it holds that χ′(Cn) = ∆(Cn) = 2 if n is even and χ′(Cn) =

∆(Cn) + 1 = 3 if n is odd, that is, Cn is in class 1 if n is even and in class 2 if n
is odd. Since subdividing an edge of a cycle increases its length by 1, it follows
that sdχ′(Cn) = 1.

Let G be an acyclic graph with ∆(G) ≥ 2. By the Theorem of König (see [2],
p. 257), χ′(G) = ∆(G) since G is bipartite. Subdividing edges of G does not
create cycles, so for any set of edges E′ it holds that χ′(GE′) = ∆(GE′) = ∆(G).
Therefore, sdχ′(G) = |E(G)|.

Now we consider class 1 graphs G and we ask when it is possible to increase
the chromatic index of G by edge subdivisions.

Proposition 10. Let G be a class 1 graph and e = uv an edge with d(v) < ∆(G).
Then χ′(Ge) = ∆(Ge) = ∆(G).

Proof. The condition d(v) < ∆(G) implies ∆(G) ≥ 2, thus ∆(Ge) = ∆(G).
Let c be a ∆(G)-edge coloring of G. Consider Ge with subdivision vertex w

and color all edges of Ge except uw,wv with the color used in c, color uw with
the color c(e), and wv with one color not used to color any edge incident with v
in G (which exists since d(v) < ∆(G)). This gives a ∆(G)-edge coloring of Ge,
thus χ′(Ge) = ∆(G) = ∆(Ge).

Therefore, subdivision edges in a minimal set of edges must always connect
vertices of maximum degree. If there are no adjacent vertices of maximum degree,
then GE′ is always in class 1 for any set of edges E′ ⊆ E(G), thus the following
holds.

Corollary 11. If G is a class 1 graph with no adjacent vertices of maximum

degree, then sdχ′(G) = |E(G)|.

Example 12. If G ∼= Ka,b is a complete bipartite graph with a < b, then G is in
class 1 by the Theorem of König. Since adjacent vertices have different degrees a
and b, there are no adjacent vertices of maximum degree, thus sdχ′(G) = |E(G)|.

The following proposition shows that the above result may also hold if a class
1 graph contains two adjacent vertices of maximum degree.

A generalized θ-graph θl1,...,lm , l1 ≤ · · · ≤ lm, is a graph with two vertices
connected by m internally disjoint paths of length l1, . . . , lm. If m = 1, then θl1
is a path of length l1 and if m = 2, then θl1,l2 is a cycle of length l1 + l2 which
have been discussed in the above examples, so in the following we may assume
m ≥ 3. Note that the two vertices of maximum degree m are adjacent if and only
if l1 = 1. Moreover, since only simple graphs are considered, at most one path
has length 1 which implies l2 ≥ 2.
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Proposition 13. If G is a generalized θ-graph θl1,...,lm with m ≥ 3, then G is of

class 1 and sdχ′(G) = |E(G)| = l1 + · · ·+ lm.

Proof. At first we show that every generalized θ-graph θl1,l2,...,lm with m ≥ 3 is
in class 1.

If l1 ≥ 2, then this follows by consecutively applying Proposition 10 on the
complete bipartite graph K2,m which is in class 1 by the Theorem of König. If
l1 = 1 and m ≥ 4 or if l1 = 1, m = 3, and l2 + l3 even, then the subgraph
θl2,...,lm is a class 1 graph (by the above fact or since the subgraph is an even
cycle, respectively) whose edges can be properly colored by colors 1, . . . ,m−1; in
these cases color the additional edge of the path of length l1 = 1 by m. If l1 = 1,
m = 3, and l2 + l3 odd, then l3 ≥ 3 since l2 ≥ 2; color one edge not incident to
a vertex of maximum degree and the edge of the path of length l1 = 1 by m = 3
and the remaining edges of the graph (which form a path) alternately by 1 and
by 2.

It follows that χ′(G) = ∆(G) = m. Since subdividing edges of G always
gives generalized θ-graphs with longer paths and same maximum degree which
are also in class 1, sdχ′(G) = |E(G)| = l1 + · · ·+ lm by definition.

The next result shows that the edge chromatic subdivision number may also
be small for class 1 graphs.

Proposition 14. If G is a regular class 1 graph with ∆(G) ≥ 2, then Ge is in

class 2 for any edge e of G, and sdχ′(G) = 1 follows.

Proof. The edge set of G is partitioned into ∆(G) perfect matchings, thus the
order n of G must be even and the size is m = n∆(G)/2.

Subdividing an arbitrary edge e of G gives a graph Ge of odd order n+1, size
m+1, and maximum degree ∆(Ge) = ∆(G). Since m+1 > ∆(Ge) ⌊(n+ 1)/2⌋ =
m, the graph Ge is overfull and thus in class 2. This implies sdχ′(G) = 1.

In the following we apply this result on some graph classes.

Even cycles are 2-regular class 1 graphs, thus sdχ′(Cn) = 1 if n is even.

If Kn is a complete graph of even order n ≥ 4, then Kn is a regular class 1
graph and sdχ′(Kn) = 1 follows.

If Ka,a is a complete bipartite graph with a ≥ 2, then Ka,a is regular and in
class 1 by the Theorem of König. Therefore, sdχ′(Ka,a) = 1.

We now consider class 2 graphs. The next result implies that it is always pos-
sible to lower the chromatic index by edge subdivisions, just as by edge deletions.
Indeed, the two invariants sdχ′(G) and esχ′(G) are equal for class 2 graphs.

Theorem 15. If G is a class 2 graph, then sdχ′(G) = esχ′(G).
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Proof. Let E′ ⊆ E(G) such that |E′| = esχ′(G) and χ′(G− E′) = ∆(G). Let c
be a proper ∆(G)-edge coloring of G− E′.

If a vertex v of G−E′ is incident to x edges of E′, then dG−E′(v) ≤ ∆(G)−x,
that is, vertex v has at least x missing colors.

Consider an arbitrary edge e = uv ∈ E′. If the same color a is missing at
both end vertices u, v, then the edge e could be colored by a, contradicting the
minimality of E′ with |E′| = esχ′(G). Therefore, the set of missing colors at u
and at v are disjoint for each edge e = uv ∈ E′.

We extend c to a ∆(G)-edge coloring c̄ of GE′ as follows. First, c̄(e) = c(e) for
each edge e ∈ E(G) \E′. If x edges of E′ are incident with a vertex v of G, then
v has at least x missing colors which can be used to color the x subdivided edges
incident to v. Note that the colors of the two edges incident with a subdivision
vertex are different as mentioned above. Therefore, c̄ is a proper edge coloring
of GE′ , and sdχ′(G) ≤ |E′| = esχ′(G) follows. This implies that it is possible to
decrease the chromatic index of a class 2 graph by edge subdivisions.

Consider now E′′ ⊆ E(G) such that |E′′| = sdχ′(G) and χ′(GE′′) = ∆(G).
Then G − E′′ ⊆ GE′′ which implies χ′(G − E′′) ≤ χ′(GE′′) = ∆(G). Therefore,
esχ′(G) ≤ |E′′| = sdχ′(G).

For example, the complete graphs Kn of odd order n ≥ 3 and the Petersen
graph P are class 2 graphs. Therefore, sdχ′(Kn) = esχ′(Kn) = (n− 1)/2 if n ≥ 3
odd and sdχ′(P ) = esχ′(P ) = 2 follow by Theorem 15 and by [6] for the latter
equations.

Let t′(G) be the minimum number of edges in a color class of the graph G
where the minimum is taken over all edge colorings of G with χ′(G) colors.

Proposition 16. If G is a class 2 graph, then sdχ′(G) ≤ t′(G).

Proof. Let c be a (∆(G)+ 1)-edge coloring of G with a color class C of minimal
cardinality |C| = t′(G). Without loss of generality, let C = c−1(∆(G) + 1).

Consider an edge e = uv of C. Since c uses ∆(G) + 1 colors, at least one
color is missing at each vertex. If the same color, say a, is missing at both u and
v, then the edge e could be recolored by a, which contradicts the minimality of
C. Therefore, the sets of missing colors at u, v are disjoint.

We construct from c a ∆(G)-edge coloring cC of GC in the following way:
cC(e) = c(e) for each edge e /∈ C. For an edge e = uv ∈ C, say with subdivision
vertex w, we color uw with a missing color at u and wv with a missing color
at v (according to the edge coloring c). These two new colors are different and
distinct from ∆(G) + 1 which was used at the edge e.

Note that the edges of C are independent and therefore the coloring of the
subdivided edges can be done independently of each other. The obtained edge
coloring cC does not use color ∆(G)+1, that is, χ′(GC) = ∆(G) = ∆(GC) which
implies that sdχ′(G) ≤ |C| = t′(G).
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This result also directly follows from Theorem 15 and the fact that removing
all edges of a color class reduces the chromatic index.

5. Total Chromatic Subdivision Number

In this section we consider the χ′′-subdivison number sdχ′′(G) with respect to the
total chromatic number χ′′(G) of G. A proper total coloring of G is an assignment
of colors to the vertices and edges of G (together called the elements of G) such
that neighbored elements—two adjacent vertices or two adjacent edges or a vertex
and an incident edge—are colored differently. A k-total coloring is a proper total
coloring with k colors. The total chromatic number χ′′(G) of G is defined as
the minimum k in a k-total coloring of G. Obviously, χ′′(G) ≥ ∆(G) + 1 by
definition, and the Total Coloring Conjecture states that χ′′(G) ≤ ∆(G) + 2 for
every graph G (see [2], p. 282). Therefore, the truth of this conjecture would
imply that χ′′(G) attains one of two values for every graph G. Graphs G are
called type 1 graphs if χ′′(G) = ∆(G)+1 and type 2 graphs if χ′′(G) = ∆(G)+2,
respectively.

By the definition, sdχ′′(G) = 0 if ∆(G) = 0. If ∆(G) = 1, then subdividing
an edge does not change the total chromatic number of the graph (which is 3),
thus sdχ′′(G) = |E(G)| if ∆(G) = 1. Assume in the following that ∆(G) ≥ 2,
which implies ∆(GE′) = ∆(G) for any set E′ of edges of G. If the Total Coloring
Conjecture is true, then

∆(G) + 1 ≤ χ′′(G), χ′′(GE′) ≤ ∆(G) + 2,

which implies that χ′′(GE′) 6= χ′′(G) if and only if GE′ and G have different types
(in this case the difference between the total chromatic numbers is 1).

We will ask when it is possible to increase the total chromatic number of a
type 1 graph by edge subdivisions and when it is possible to decrease the total
chromatic number of a type 2 graph by edge subdivisions.

For example, for cycles Cn of order n it holds that χ′′(Cn) = ∆(Cn) + 1 = 3
if n is divisible by 3 and χ′′(Cn) = ∆(Cn) + 2 = 4 otherwise. Since subdividing
an edge of a cycle increases its length by 1, it follows that sdχ′′(Cn) = 1 if n ≡ 0
(mod 3) or n ≡ 2 (mod 3), and sdχ′′(Cn) = 2 if n ≡ 1 (mod 3).

If G is an acyclic graph with ∆(G) ≥ 2, then χ′′(G) = ∆(G) + 1 (proof by
induction on the order of G). Subdividing edges of G does not create cycles, so
for any set of edges E′ it holds that χ′′(GE′) = ∆(GE′)+ 1 = ∆(G)+ 1 = χ′′(G).
Therefore, sdχ′′(G) = |E(G)|.

The χ′′-subdivision number of graphs G with ∆(G) ≤ 2 can be determined
by the above examples.
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Proposition 17. If G is a graph with ∆(G) ≤ 2 and ni cycles of length congruent

to i modulo 3, i ∈ {0, 1, 2}, then sdχ′′(G) = |E(G)| if G is acyclic, sdχ′′(G) = 1
if n1 = n2 = 0 and n0 ≥ 1, and sdχ′′(G) = 2n1 + n2 otherwise.

In the proof of the next proposition we will use the following result on total
colorings of paths.

Lemma 18. Let Pn = (v1, . . . , vn) be a path of order n ≥ 3 with a partial total

coloring c of the vertices v1 and vn and the edges v1v2 and vn−1vn. Then c can

be extended to a 4-total coloring of Pn except if n = 3 and the four precolored

elements use 4 distinct colors, or if n = 4, c(v1) = c(vn−1vn), and c(vn) = c(v1v2).
In these cases c can be extended to a 5-total coloring of Pn.

Proof. Denote the colors of the precoloring by c(v1) = α, c(v1v2) = β, c(vn−1vn)
= γ, and c(vn) = δ and assume without loss of generality that α, β, γ, δ ∈
{1, 2, 3, 4}.

If n = 3, then all elements of Pn are already properly colored except for
the vertex v2 which is adjacent or incident to all 4 other elements. Therefore, c
can be extended to a 4-total coloring of Pn if at most 3 colors were used in the
precoloring, whereas a fifth color is needed to color v2 if the 4 precolored elements
use 4 distinct colors.

Let n = 4. If α = γ and β = δ, then the remaining three elements v2, v2v3, v3
must be colored with three pairwise disctinct colors different from α and β, that
is, c cannot be extended to a 4-total coloring but to a 5-total coloring of P4. If
α 6= γ, then color v2v3 by α, then v3 and last v2 in a greedy manner. If β 6= δ,
then color v2v3 by δ, then v2 and last v3 in a greedy manner.

Let n ≥ 5. Color the elements of the path periodically with three pairwise
distinct colors α, β, and ǫ up to vn−3, where ǫ ∈ {1, 2, 3, 4} \ {α, β}, and then
vn−3vn−2 with a color from {1, 2, 3, 4} \ {c(vn−4vn−3), c(vn−3), δ}, in order to
reduce this case to the case n = 4.

Proposition 19. Let G be a type 1 graph and e = uv be an edge with d(v) <
∆(G). Then χ′′(Ge) = χ′′(G) = ∆(G)+1 with the possible exception that ∆(G) =
3, d(v) = 2, and v is adjacent to two vertices of maximum degree.

Proof. The condition 1 ≤ d(v) < ∆(G) implies ∆(G) ≥ 2, thus ∆(Ge) = ∆(G).

If ∆(G) = 2, then d(v) = 1 and e = uv is the first edge of a component Pp,
p ≥ 2, of G. Subdividing e gives a component Pp+1 of Ge. The assertion follows
from the fact that χ′′(Pn) = 3 for n ≥ 2.

If ∆(G) = 3, then we need to consider several cases. If e is an edge of
an (attached) path Pp in G (including the case d(v) = 1), then we obtain an
(attached) path Pp+1 in Ge, whose elements can be colored in a greedy manner
with the available 4 colors. Hence d(v) = 2 and e is an edge of a path Pp =
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(v1, . . . , u = vi−1, v = vi, . . . , vp) that connects two vertices v1, vp of maximum
degree. According to the assumption let the order p of the path be at least 4.
Then a path Pp+1 of order at least 5 connects in Ge v1 with vp. Color all elements
ofGe except the subdivision vertex w and its incident edges as in a 4-total coloring
of G, color uw as uv, then recolor the elements of the path according to Lemma
18.

Let ∆(G) ≥ 4. Let c be a (∆(G) + 1)-total coloring of G. Consider Ge with
subdivision vertex w and color all elements of Ge except w, uw,wv with the color
used in c. Color uw with the color c(e), color wv with a color not used to color v or
any edge incident to v in G (which exists since d(v) < ∆(G)), and color w with a
color different from the colors of u, v, uw,wv (which exists since ∆(G) ≥ 4). This
gives a (∆(G)+1)-total coloring of Ge, thus χ

′′(Ge) = ∆(G)+1 = ∆(Ge)+1.

Under the same assumption as in Proposition 19 subdivision edges in a min-
imal set of edges must always connect vertices of maximum degree. If there are
no adjacent vertices of maximum degree, then GE′ is always of type 1 for any set
of edges E′ ⊆ E(G), thus the following holds.

Corollary 20. If G is a type 1 graph with no adjacent vertices of maximum

degree, then sdχ′′(G) = |E(G)|, with the possible exception that ∆(G) = 3 and G
has vertices of degree 2 which are adjacent to two vertices of maximum degree.

The following example shows that the result of Proposition 19 may also hold
if ∆(G) = 3, d(v) = 2, and v is adjacent to two vertices of maximum degree.

Example 21. The complete bipartite graph K2,3 is a type 1 graph, that is,
χ′′(K2,3) = 4. By coloring the vertices of degree 3 in K ′ = (K2,3)e with color 4
and the remaining elements with colors 1, 3, 2 and 2, 1, 3 for the paths of length
2 and 3, 2, 4, 3, 1 for the path of length 3 we obtain a 4-total coloring of K ′.

This example can be extended to K2,m, m ≥ 3, and even to generalized
θ-graphs θl1,...,lm , m ≥ 3. Note that if m = 1, then θl1 is a path of length l1
and if m = 2, then θl1,l2 is a cycle of length l1 + l2 which were discussed in
Proposition 17.

Proposition 22. If G is a generalized θ-graph θl1,...,lm with m ≥ 3, then G is of

type 1 and sdχ′′(G) = |E(G)| = l1 + · · ·+ lm.

Proof. At first we show that every generalized θ-graph θl1,...,lm with m ≥ 3 is of
type 1.

Without loss of generality, let l1 ≤ · · · ≤ lm, let x, y be the vertices of degree
m in G and Pi = (x = vi,0, vi,1, . . . , vi,li = y) be the vertices of the ith path of
length li in G (i = 1, . . . ,m).
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If l1, . . . , lm ≥ 2, then color vertices x and y bym+1 (which is possible since x
and y are not adjacent), color edges xvi,1 by i and edges vi,li−1y by (i mod m)+1,
i ∈ {1, . . . ,m}. Then apply Lemma 18 on each path Pi, i ∈ {1, . . . ,m}, in order
to properly color the remaining elements with m + 1 colors. Note that the two
exceptional cases of Lemma 18 do not occur with the above precolored elements.

If l1 = 1, l2 = · · · = la+1 = 2 where a ≥ 0 is the number of paths of length 2,
and li ≥ 3 for i = a+2, . . . ,m, then vertices x and y must be colored differently.

Color vertices x by m+ 1 and y by 2, color edges xvi,1 by i, i ∈ {1, . . . ,m},
and edges vi,li−1y by i + 1, i ∈ {2, . . . ,m}. If a ≥ 1, then color vertices vi,1
by 1 for i ∈ {2, . . . , a + 1} which completes the coloring of paths of length at
most 2. Then apply Lemma 18 on each path Pi, i ∈ {a + 2, . . . ,m}, in order to
properly color the elements of the paths of length at least 3. Note again that the
exceptional cases of Lemma 18 do not occur.

It follows in both cases that χ′′(G) = ∆(G) + 1 = m+ 1. Since subdividing
edges of G always gives generalized θ-graphs with longer paths and same max-
imum degree which are also of type 1, sdχ′′(G) = |E(G)| = l1 + · · · + lm by
definition.

If a graph of type 1 has adjacent vertices of maximum degree, then the
determination of its χ′′-subdivision number is in general open. This includes for
example the class of regular graphs of type 1. Let us determine sdχ′′(K2k+1) for
odd complete graphs as an example.

Example 23. Complete graphs of odd order K2k+1, k ≥ 1, are of type 1:
χ′′(K2k+1) = ∆(K2k+1) + 1 = 2k + 1.

Subdividing an edge e = uv of K2k+1 gives a graph K ′ with 2k + 2 vertices,
(2k+1)k+1 edges, and maximum degree ∆(K ′) = ∆(K2k+1) = 2k. If we assume
that K ′ is also of type 1, then each of the 2k + 1 color classes may contain no
vertex and at most k+1 edges, 1 vertex and at most k edges, or 2 vertices and at
most k edges. Note that this last case may occur at most twice, namely for the
subdivision vertex and a second vertex different from u, v, or for the two vertices
u, v (in which case the color class may only contain at most k − 1 edges).

If no color class has 2 vertices, then at least 2k + 2 color classes are needed
in order to color all vertices. If one color class has 2 vertices, then the other
2k color classes must contain a vertex each, and these classes contain at most
(2k + 1)k < |E(K ′)| edges. If two color classes have 2 vertices, then 2k − 2
classes contain a vertex each and one no vertex, and these classes contain at
most k + k − 1 + (2k − 2)k + k + 1 = (2k + 1)k < |E(K ′)| edges.

Therefore, a contradiction to the assumption follows, and K ′ is of type 2.
This implies sdχ′′(K2k+1) = 1 for k ≥ 1.

The determination of the χ′′-subdivision number of type 2 graphs is still an
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open question. Complete graphs of even order are of type 2. We proved as partial
result that sdχ′′(K4) = 1, sdχ′′(K6) = 2, and 2 ≤ sdχ′′(K2k) ≤ k − 1 for k ≥ 3.

6. Multiple Subdivision Numbers

Instead of subdividing each selected edge exactly once as in the definition of the
ρ-subdivision number (which we call in the following single edge subdivisions) one
could allow multiple subdivisions of the same edge, that is, each selected edge is
replaced by a path of length at least 2 instead of by a path of length exactly 2.
Note that when talking about the number of multiple edge subdivisions we mean
the number of inserted subdivision vertices instead of the number of edges of the
original graph that have been subdivided.

Definition. For an arbitrary invariant ρ(G) of a graph G, the ρ-multiple subdi-
vision number sdρ(G) of G is the minimum number of subdivision vertices (where
multiple subdivisions of the same edge are allowed) such that the resulting graph
H fulfills ρ(H) 6= ρ(G). Let sdρ(G) = ∞ if ρ(G) does not change by multiple
edge subdivisions or if G is empty.

Note that if G is empty or if ρ(G) does not change by multiple edge sub-
divisions, then sdρ(G) = |E(G)| < ∞ = sdρ(G). If ρ(G) can be changed by
single edge subdivisions, then sdρ(G) ≤ sdρ(G), since single edge subdivisions
are allowed in the determination of sdρ(G). If ρ(G) does not change by single
edge subdivisions but by multiple edge subdivisions, then sdρ(G) = |E(G)| and
sdρ(G) may be smaller or larger.

Example 24. 1. Let ρ(G) be the number of components of order at least 4 in
G = aP4 ∪ P2. Then ρ(G) = ρ(GE′) = a for every E′ ⊆ E(G), hence sdρ(G) =
|E(G)| = 3a + 1. On the other hand, it suffices to subdivide the single edge of
the component P2 twice to obtain an additional component P4, hence sdρ(G) = 2
which is larger than sdρ(G) for a = 0 and smaller for a ≥ 1.

2. The eccentricity e(v) of a vertex v in a graph G is e(v) = max{d(v, u) :
u ∈ V (G)} if G is connected, where d(v, u) is the distance between the vertices
v and u, that is, the length of a shortest v-u path in G, and e(v) = ∞ if G is
not connected. The radius rad(G) of G is the minimum eccentricity e(v) over all
v ∈ V (G).

For a path Pn it holds that rad(Pn) = ⌊n/2⌋, thus sd rad(Pn) = sd rad(Pn) = 1
if n ≥ 3 odd, sd rad(Pn) = sd rad(Pn) = 2 if n ≥ 4 even, whereas sd rad(P2) = 1
and sd rad(P2) = 2 since the single edge of P2 must be subdivided twice in order
to increase the radius.

3. For the domination number of a path Pn it holds that γ(Pn) = ⌈n/3⌉,
thus sdγ(Pn) = sdγ(Pn) = 1 if n ≡ 0 (mod 3), sdγ(Pn) = sdγ(Pn) = 2 if n ≡ 2
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(mod 3) and n ≥ 5, sdγ(Pn) = sdγ(Pn) = 3 if n ≡ 1 (mod 3) and n ≥ 4, whereas
sdγ(P2) = |E(P2)| = 1 by definition and sdγ(P2) = 2 since the single edge of P2

must be subdivided twice in order to increase the domination number.

Some easy observations follow directly from the definition.

Proposition 25. If G′ is a graph obtained from a graph G by multiple edge

subdivisions with k subdivision vertices, then sdρ(G) ≤ sdρ(G
′) + k. Moreover, if

ρ(G) 6= ρ(G′), then sdρ(G) ≤ k.

Proof. If ρ(G) 6= ρ(G′), then sdρ(G) ≤ k ≤ sdρ(G
′) + k.

Therefore, assume in the following that ρ(G) = ρ(G′). If ρ(G′) does not
change by multiple edge subdivisions, then sdρ(G

′) = ∞ by definition and
sdρ(G) ≤ sdρ(G

′) + k follows.
Otherwise, let G′′ be a graph obtained from G′ by multiple edge subdivisions

with k′ = sdρ(G
′) subdivision vertices such that ρ(G′′) 6= ρ(G′) = ρ(G). Since

ρ(G) can be changed by multiple edge subdivisions with k′+k subdivision vertices,
sdρ(G) ≤ k′ + k = sdρ(G

′) + k follows.

We consider in the following the multiple subdivision numbers for the chro-
matic number, the chromatic index, and the total chromatic number.

Theorem 26. If G is acyclic, then sdχ(G) = ∞ and sdχ(G) = |E(G)|. Other-

wise, if χ(G) = 2 and G has cycles or if χ(G) ≥ 3, then sdχ(G) = sdχ(G).

Proof. The first assertion follows from the fact that the chromatic number of an
acyclic graph does not change by multiple edge subdivisions.

If χ(G) = 2 and G has cycles, then subdividing an edge from a necessar-
ily even cycle creates an odd cycle with chromatic number 3, hence sdχ(G) =
sdχ(G) = 1.

Assume in the following that χ(G) ≥ 3. Since subdividing all edges of G
once gives a bipartite graph with V (G) as one partition set and all subdivision
vertices as the second partition set, χ(G) can change by single edge subdivisions,
and sdχ(G) ≤ sdχ(G) follows. Moreover, the chromatic number cannot increase
by edge subdivisions, since each subdivision vertex can be properly colored with
the χ(G) ≥ 3 available colors.

Let G′ be a graph obtained from G by multiple edge subdivisions of the edges
E′ of G with sdχ(G) subdivision vertices such that χ(G′) = χ(G)−1. Consider a
proper vertex coloring of G′ with χ(G)−1 colors. Each edge e of E′ is incident to
vertices of the same color since otherwise the multiple subdivision of e could be
removed from the set of subdivisions which contradicts the minimality of sdχ(G).
Moreover, a multiple edge subdivision of e ∈ E′ can be replaced by a single edge
subdivision, since each new subdivision vertex is adjacent to two vertices of G of
the same color which implies that there is an unused color among the χ(G)−1 ≥ 2
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available colors that can be used to color the new subdivision vertex. Therefore
we can assume that only single edge subdivisions of E′ occur, that is, G′ ∼= GE′ ,
which implies that sdχ(G) ≥ sdχ(G) by the minimality of sdχ(G). It follows that
sdχ(G) = sdχ(G) if χ(G) ≥ 3.

Theorem 27. If χ′(G) does not change by multiple edge subdivisions, then

sdχ′(G) = ∞ and sdχ′(G) = |E(G)|. Otherwise, sdχ′(G) = sdχ′(G).

Proof. The first assertion follows by the definitions. This holds for example for
acyclic graphs G with ∆(G) 6= 1.

Assume in the following that χ′(G) can be changed by multiple edge subdi-
visions.

If ∆(G) = 1, then subdividing an edge of G once gives an acyclic graph with
maximum degree 2, thus sdχ′(G) = sdχ′(G) = 1. If ∆(G) = 2 and G has n0 even
cycles and n1 odd cycles, then it is easy to see that sdχ′(G) = sdχ′(G) = 1 if
n1 = 0, n0 > 0 and sdχ′(G) = sdχ′(G) = n1 if n1 > 0.

If ∆(G) ≥ 3, then we consider two cases.

Case 1. G is in class 1. Let G′ be a class 2 graph obtained from G by
multiple edge subdivisions with sdχ′(G) subdivision vertices. By the minimality
of sdχ′(G), performing multiple edge subdivisions with exactly sdχ′(G) − 1 of
these vertices gives a class 1 graph, which implies by Proposition 10 that every
considered edge subdivision must be a single edge subdivision (since subdivision
vertices have a degree of 2 < ∆(G)). Therefore, sdχ′(G) ≥ sdχ′(G) by the
minimality of sdχ′(G). On the other hand, sdχ′(G) ≤ sdχ′(G) holds since single
edge subdivisions are allowed in the determination of sdχ′(G). It follows that
sdχ′(G) = sdχ′(G) for class 1 graphs.

Case 2. G is in class 2. As in the proof of Theorem 26, subdividing all
edges of G once gives a bipartite graph of the same maximum degree which is
in class 1. Therefore, χ′(G) decreases by single edge subdivisions which implies
that sdχ′(G) ≤ sdχ′(G).

Let G′ be a class 1 graph obtained from G by multiple edge subdivisions
of the edges E′ of G with sdχ′(G) subdivision vertices. Consider a proper edge
coloring of G′ with ∆(G) colors. Each edge e of E′ is replaced in G′ by a path of
length at least 2. If the first and the last edge of the path are colored the same,
then the subdivisions of e could be removed and e could be colored by the now
unused color, which contradicts the minimality of sdχ′(G). On the other hand,
if the first and the last edge of the path are colored differently, then multiple
subdivisions of e could be replaced by a single subdivision whose edges could be
colored by the two different colors. Consequently, we can assume that only single
edge subdivisions of E′ occur, that is, G′ ∼= GE′ . Therefore, sdχ′(G) ≥ sdχ′(G)
by the minimality of sdχ′(G) which implies that sdχ′(G) = sdχ′(G) for class 2
graphs.
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For the total chromatic number we present a partial result.

Theorem 28. If χ′′(G) does not change by multiple edge subdivisions, then

sdχ′′(G) = ∞ and sdχ′′(G) = |E(G)|. Otherwise, if ∆(G) = 2 or if G is of

type 1 and ∆(G) ≥ 4, then sdχ′′(G) = sdχ′′(G).

Proof. The first assertion follows by the definitions. This holds for example for
acyclic graphs. Note that χ′′(P2) = χ′′(P3) = 3 but the type changes from 2 to 1.

Assume in the following that χ′′(G) can be changed by multiple edge subdi-
visions of G.

If ∆(G) = 2, then sdχ′′(G) is determined in Proposition 17, and the same
result and proof also hold for sdχ′′(G), since each cycle of G must be subdivided
at most twice in order to change its type, and multiple edge subdivisions can
therefore be replaced by single edge subdivisions.

Assume in the following that G is of type 1 and ∆(G) ≥ 4. Let G′ be a type
2 graph obtained from G by multiple edge subdivisions with sdχ′′(G) subdivision
vertices. By the minimality of sdχ′′(G), performing multiple edge subdivisions
with exactly sdχ′′(G) − 1 of these vertices gives a type 1 graph, which implies
by Proposition 19 that every considered edge subdivision must be a single edge
subdivision (since subdivision vertices have a degree of 2 < ∆(G) and since we
excluded graphs of maximum degree 3).

Therefore, sdχ′′(G) ≥ sdχ′′(G) by the minimality of sdχ′′(G). On the other
hand, sdχ′′(G) ≤ sdχ′′(G) holds since single edge subdivisions are allowed in the
determination of sdχ′′(G). It follows that sdχ′′(G) = sdχ′′(G) for type 1 graphs
with ∆(G) ≥ 4.

7. Concluding Remarks

In this paper we investigated the ρ-subdivision numbers sdρ(G) of graphs G for
arbitrary invariants ρ(G) of G. Starting with some general results we proved
subsequently that the ρ-subdivision number coincides with the ρ-edge stability
number in the case that ρ(G) is the chromatic number χ(G) and χ(G) ≥ 3.

In the next section we could prove the same coincidence in case that ρ(G) is
the chromatic index χ′(G) and G is class 2. For class 1 graphs we found some
partial results, but in general this case remains open.

In the case that ρ(G) is the total chromatic number χ′′(G) we determined
the ρ-subdivision number for a large class of type 1 graphs. For type 2 graphs
the problem of determining sdχ′′(G) remains nearly completely open.

A subdivision of an edge is a replacement of this edge by a path of length 2.
If we replace an edge by a path of arbitrary length, then we obtain a so-called
multiple subdivision of this edge. If we compare the ρ-subdivision number sdρ(G)
with the analogously defined ρ-multiple subdivision number sdρ(G), then it turns
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out that these two parameters coincide if ρ(G) is the chromatic number or the
chromatic index, or the total chromatic number if the graph G is of type 1 and
∆(G) ≥ 4. We conjecture that this coincidence holds in general for the total
chromatic number. On the other hand, sdρ(G) and sdρ(G) may differ for other
invariants.
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