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Abstract

Given a graph G = (V,E), a vertex u ∈ V ve-dominates all edges inci-
dent to any vertex of NG[u]. A set D ⊆ V is a vertex-edge dominating set if,
for any edge e ∈ E, there exists a vertex u ∈ D such that u ve-dominates e.
Given a graph G, our goal is to find a minimum cardinality ve-dominating
set of G. In this paper, we designed two linear-time algorithms to find a min-
imum cardinality ve-dominating set for interval and bipartite permutation
graphs.
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1. Introduction

For a graph G = (V,E), let NG(v) (or NG[v]) be the open (respectively, closed)
neighbourhood of v in G. A set D ⊆ V is called a dominating set of a graph
G = (V,E) if |NG[v] ∩D| ≥ 1 for all v ∈ V . Domination problem is one of the
classical problems in graph theory where the objective is to find a dominating
set of minimum cardinality of a given graph. This minimum cardinality of a
dominating set is known as the domination number of G and denoted by γ(G).
Over the last few decades, quite a few variants of the classical domination problem
have been introduced and studied in the literature [6, 7]. In this paper, we have
studied one variant of the domination problem, namely vertex-edge domination
problem, also known as ve-domination problem.

Given a graph G = (V,E), a vertex u ∈ V ve-dominates all edges incident
to any vertex of NG[u]. A set D ⊆ V is a vertex-edge dominating set (or simply
a VED-set) if, for every edge e ∈ E, there exists a vertex u ∈ D such that u
ve-dominates e. The minimum cardinality among all the VED sets of G is called
the vertex-edge domination number (or simply VED number) and is denoted by
γve(G).

The vertex-edge domination problem was introduced by Peters [17] in his
PhD thesis in 1986. However, it did not receive much attention until Lewis [14]
in 2007 introduced some new parameters related to it and established many new
results in his PhD thesis. In his PhD thesis, Lewis has given some lower bound on
γve(G) for different graph classes like connected graphs, k-regular graphs, cubic
graphs, etc. In [15], the authors have characterized the trees with equal domina-
tion and vertex-edge domination number. In [12], both upper and lower bounds
on the ve-domination number of a tree have been proved. Some upper bounds on
γve(G) and some relationship between the ve-domination number and other dom-
ination parameters have been proved in [3]. In [21], Żyliński has shown that for
any connected graph G with n ≥ 6, γve(G) ≤ n/3. On the algorithmic side, Lewis
has proved that the ve-domination problem is NP-complete for bipartite, chordal,
planar, and circle graphs. Approximation algorithm and approximation hardness
results are proved in [14]. In [16], the authors designed a linear-time algorithm
for the ve-domination problem in block graphs and showed that this problem re-
mains NP-complete for undirected path graphs. Recently, Jena and Das [9] have
studied the ve-domination problem in unit disk graphs. Other variations of the
ve-domination problem have also been studied in literature [2, 4, 5, 10, 11, 20].

The main focus of this article is to study the polynomial solvability of the
ve-domination problem in subclasses of chordal and bipartite graphs. We have
proved that this problem can be solved in linear-time for interval graphs, an
important subclass of chordal graphs. We have also designed a linear-time algo-
rithm to solve the ve-domination problem for bipartite permutation graphs, an
important subclass of bipartite graphs.
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The rest of the paper is organized as follows. Section 2 deals with some
pertinent definitions and notations that are used in the subsequent sections. In
Section 3, we designed a linear-time algorithm based on greedy technique, to
solve the ve-domination problem for interval graphs. In Section 4, using dynamic
programming approach, we designed another linear-time algorithm to solve the
ve-domination problem for bipartite permutation graphs. Finally, Section 5 con-
cludes the paper.

2. Definitions and Notations

A graph G is a chordal graph if every cycle in G of length at least 4 has a chord i.e.,
an edge joining two non-consecutive vertices of the cycle. Let F be a nonempty
family of sets. A graph G = (V,E) is called an intersection graph for a finite
family F of a nonempty set if there is a one-to-one correspondence between F
and V such that two sets in F have nonempty intersection if and only if their
corresponding vertices in V are adjacent. We call F an intersection model of G.
For an intersection model F , we use G(F ) to denote the intersection graph for
F . If F is a family of intervals on a real line, then G(F ) is called an interval
graph for F and F is called an interval model of G(F ). An O(n + m) time
algorithm has been given in [1] for recognizing an interval graph and constructing
an interval model using PQ-trees.

We use the standard notations [k] = {1, 2, . . . , k} and [k, k′] = {k, k +
1, . . . , k′} for k < k′. Suppose G is an interval graph and I is its interval model.
For every vertex vi ∈ V , let Ii be the corresponding interval, and let ai and bi
denote the left endpoint and right endpoint of the interval Ii, respectively. We
order the vertices of G as σ = (v1, v2, . . . , vn) in increasing order of their right
endpoints. It is easy to see that if vivk ∈ E with i < k, then vjvk ∈ E for
every j ∈ [i + 1, k]. We call such an ordering of G as an interval ordering. The
interval ordering can be computed from the set of maximal cliques of a given
interval graph G = (V,E) in linear-time (see [18]). Let Vi = {vi, vi+1, . . . , vn}
and Gi = G[Vi] for i ∈ [n]. If G is a connected interval graph, then Gi is also
connected. For the sake of simplicity, if not specified, we consider only connected
interval graphs.

A vertex v of a graph G is called a simplicial vertex if NG[v] induces a
complete subgraph (a clique) of G. An ordering σ = (v1, v2, . . . , vn) of vertices of
a graph G is called a perfect elimination ordering, abbreviated PEO, of G if for
every i ∈ [n], vi is simplicial in G[Vi].

The following observation can immediately be deduced by the virtue of an
interval ordering of a connected interval graph.

Observation 1. If G is a connected interval graph with an interval ordering
σ = (v1, v2, . . . , vn), then the following are true.
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(a) If vivk ∈ E(G) with i < k, then vivj ∈ E(G) for every i < j < k.

(b) σ is a PEO of G i.e., for every i ∈ [n], vi is simplicial in Gi.

Observation 2. If σ = (v1, v2, . . . , vn) is an interval ordering of a connected
interval graph G, then the following are true.

(a) If k ≤ i, then NG[vk] ∩ V (Gi) ⊆ NGi [vi].

(b) If vk ∈ NGi [vi], then NGi [vi] ⊆ NGi [vk].

(c) For every i, j, and k with vj , vk ∈ NGi [vi], NGi [vj ] ⊆ NGi [vk].

Proof. (a) If k = i, then we are done. So assume that k < i and let vr ∈
NG[vk] ∩ V (Gi). By Observation 1(a), vrvi ∈ E(G). So vr ∈ NG[vi] and hence
vr ∈ NGi [vi], completing the proof of (a).

(b) If k = i, then we are done. So assume that k 6= i and let vr ∈ NGi [vi].
Since σ is an interval ordering of G, vi is a simplicial vertex in Gi. This implies
that vr ∈ NG[vk] and hence vr ∈ NGi [vk], consequently, NGi [vi] ⊆ NGi [vk]. This
completes the proof of (b).

(c) Let vr ∈ NGi [vj ]. If i = r, then by (b), it is clear that vi ∈ NGi [vi] ⊆
NGi [vk]. So assume that i < r. If r = j or r = k, then as i < j < k and by
Observation 1(a), vjvk ∈ E(G) and hence we are done. Next assume that r 6= j
and r 6= k. This implies that either r < k or k < r. If r < k, then i < r < k
and hence by Observation 1(a), vrvk ∈ E(G); thus vr ∈ NGi [vj ] ⊆ NGi [vk]. If
r > k, then j < k < r. So by Observation 1(a), vkvr ∈ E(G); thus vr ∈ NGi [vj ] ⊆
NGi [vk]. This completes the proof of (c).

A graph G = (V,E) is called a permutation graph if there exists a one-to-one
correspondence between V (G) and a set of line segments between two parallel
lines such that two vertices are adjacent if and only if their corresponding line
segments intersect. If G = (V,E) is both a bipartite graph and a permutation
graph, then it is called a bipartite permutation graph. Figure 1 illustrates the
correspondence between the vertices of a bipartite permutation graph and a set
of line segments between two parallel lines. The bipartite permutation graph was
studied by Spinrad et al. [19] and also by Lai and Wei [13].

Let β = (y1, y2, . . . , yn2) be some ordering of Y of a bipartite graph G =
(X,Y,E). A subset of Y is called a segment of Y if its elements are consecutive
in β. The ordering β has the convex property if, for each vertex x ∈ X, NG(x)
is a segment in β. An ordering of Y with the convex property is called a convex
ordering. A bipartite graph G = (X,Y,E) is said to be convex on Y if there
exists a convex ordering of Y . The term convex on X is defined similarly.

Let σ = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2) be an ordering of X ∪ Y of G =
(X,Y,E) such that α = (x1, x2, . . . , xn1) is an ordering of X and β = (y1, y2, . . . ,
yn2) is an ordering of Y . For any segment S = {sa, sa+1, . . . , sb} in X (or Y ),
define first(S) and last(S), respectively, to be the index of the first element in S



Vertex-Edge Domination in Interval and ... 951

and that of the last element in S with respect to the ordering induced on S. For
two segments A and B in the same vertex set, define A � B if first(A) ≤ first(B)
and last(A) ≤ last(B).

     

    

x1 x2

y1

x3 x4

y2 y3 y4 y5

 

x5

Figure 1. An example of a bipartite permutation graph.

An ordering σ = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2) of X ∪Y is called a forward-
convex ordering if (y1, y2, . . . , yn2) is a convex ordering of Y and for every pair
of vertices xi, xj ∈ X with i < j, NG(xi) � NG(xj). The graph G is said to be
forward-convex if there exists a forward-convex ordering of G. The graph shown
in Figure 1 is also a forward-convex graph as (x1, x2, x3, x4, x5, y1, y2, y3, y4, y5)
is a forward-convex ordering. A linear-time algorithm for computing forward-
convex ordering of a bipartite permutation graph is presented in [13].

The bipartite permutation graphs are same as the forward-convex graphs as
can be seen from the following theorem.

Theorem 1 [13]. The following statements are equivalent for a bipartite graph
G = (X,Y,E).

(a) G is a bipartite permutation graph.

(b) G is forward-convex.

By Theorem 1, it is clear that bipartite permutation graphs have forward-
convex orderings.

For notational convenience, for a given set X = {x1, x2, . . . , xn1}, we de-
note Xi as the set {xi, xi+1, . . . , xn1} for every i ∈ [n1]. Similarly given Y =
{y1, y2, . . . , yn2}, we denote Yi as the set {yi, yi+1, . . . , yn2} for every i ∈ [n2].

Let σ = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2) of the vertices of a bipartite graph
G = (X,Y,E). Let Nk(x) = NG(x) ∩ Yk, for a vertex x ∈ X. Similarly, assume
that Nk(y) = NG(y) ∩Xk, for a vertex y ∈ Y .

Lemma 1 [8]. If σ = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2) is a forward-convex ordering
of a connected bipartite permutation graph G = (X,Y,E), then the following are
true.
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(a) If yj , yk ∈ NG(xi) with j < k, then Ni(yj) ⊆ Ni(yk).

(b) If xj , xk ∈ NG(yi) with j < k, then Ni(xj) ⊆ Ni(xk).

Lemma 2. Let G = (X,Y,E) be a connected bipartite permutation graph with
forward-convex ordering σ = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2). If ` = last(NG(x1)),
k = last(NG(y`)), `

′ = first(NG(xk+1)), r = last(NG(y1)), s = last(NG(xr)), and
r′ = first(NG(ys+1)), then the following hold.

(a) x1y1 ∈ E and xn1yn2 ∈ E.

(b) The vertices of {yj : j ∈ [`+1, `′−1]} are isolated vertices in G[Xk+1∪Y`+1].

(c) The vertices of {xi : i ∈ [r+1, r′−1]} are isolated vertices in G[Xr+1∪Ys+1].

(d) The graphs G′ = G[Xk+1∪Y`′ ] and G′′ = G[Xr′∪Ys+1] are connected bipartite
permutation graphs.

Proof. Let x1y1 /∈ E. Note that x1 and y1 are not isolated vertices as G is a
connected graph. Suppose that a = first(NG(x1)) and b = first(NG(y1)), that is,
x1ya, xby1 ∈ E(G). Since x1y1 /∈ E(G), we have a > 1 and b > 1. Moreover,
first(NG(x1)) ≤ first(NG(xb)), due to the forward-convex ordering σ of G, which
is not possible as first(NG(xb)) = 1 and first(NG(x1)) 6= 1. Thus we get a
contradiction. Hence x1y1 ∈ E. By a similar argument, we can deduce that
xn1yn2 ∈ E. Thus the property (a) is true.

Let A = {yj : j ∈ [` + 1, `′ − 1]} and B = {xi : i ∈ [r + 1, r′ − 1]}. Since
y`′ is the minimum indexed neighbour of xk+1, any vertex in the set A is not
adjacent to xk+1. Now, due to the forward-convex ordering σ, first(NG(xk+1)) ≤
first(NG(xa)) for every a ∈ [k + 2, n1]. It implies that for every vertex yj of A,
last(NG(yj)) ≤ k. Therefore, every vertex of A is an isolated vertex in the graph
G[Xk+1 ∪ Y`+1]. Hence (b) is true. Similarly, the property (c) can be proved.

Next, we prove the property (d). Let G′ = G[Xk+1 ∪ Y`′ ]. Since σ =
(x1, x2, . . . , xn1 , y1, y2, . . . , yn2) is a forward-convex ordering of G, σ′ = (xk+1,
xk+2, . . . , xn1 , y`′ , y`′+1, . . . , yn2) is a forward-convex ordering of the graph G′.
Therefore, G′ is a connected bipartite permutation graph as the graph G′ admits
a forward-convex ordering and y`′xk+1 ∈ E(G′). By a similar argument, we can
say that the graph G′′ = G[Xr′ ∪ Ys+1] is also a connected bipartite permutation
graph. Hence, the property (d) holds.

3. Interval Graphs

In this section, we design a linear-time algorithm for finding a minimum VED-set
of a given connected interval graphG. The algorithm is based on greedy technique
where at each iteration, we choose a vertex in the VED-set which ve-dominates
more number of edges.
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3.1. The algorithm

First we give a comprehensive description of the proposed algorithm. Given
a connected interval graph G = (V,E), let σ = (v1, v2, . . . , vn) be an interval
ordering of V . For i, j ∈ [n] with i < j, we define the following notations:
V[i,j] = {vi, vi+1, . . . , vj}, Vi = V[i,n], Gi = G[Vi] and i∗ = max{k : vk ∈ NGi [vi]}.

Algorithm 1: VEDS-Interval(G)

Input: A connected interval graph G = (V,E);
Output: A minimum VED-set D of G;

1 Obtain an interval ordering σ = (v1, v2, . . . , vn) of G;
2 S = ∅;
3 i = 1;
4 D[vi] = 0 for all i ∈ [n];
5 while (i ≤ n− 1) do
6 if (there is an edge incident on vi that is not ve-dominated) then
7 C(vi) = {v` : ` ∈ [i, i∗] and D[v`] = 0};
8 For every vj ∈ C(vi), let j+ = min{` : ` ∈ [j + 1, i∗], D[v`] = 0 and

v` ∈ NG[vj ]};
9 Let C+(vi) = {vj+ : vj ∈ C(vi)};

10 Let ρ(vi) = min{`∗ : v` ∈ C+(vi)};
11 S = S ∪ {vρ(vi)};
12 D[v] = 1 for every v ∈ NG[vρ(vi)];

13 i = ρ(vi) + 1;

14 else
15 i = i+ 1;

16 return S;

We process the vertices ofG according to the interval ordering σ = (v1, v2, . . . ,
vn) of G and construct a VED-set, say S, of G at the termination of our algo-
rithm. At any iteration, while processing a vertex vi, a new vertex is selected into
the set S if all the edges incident on vi are not ve-dominated. To track whether
the edges are ve-dominated or not, we use a label D on the vertices, rather than
edges, of G. Initially, D[v] = 0 for all v ∈ V (G). If a vertex x is selected into S,
then D[v] is made 1 for every v ∈ NG[x]. In other words, D[v] indicates whether
all the edges incident on v are ve-dominated by the so far constructed set S or
not. Note that, an edge xy is not ve-dominated by the so far constructed set
S if D[x] = D[y] = 0. At any iteration, while processing a vertex vi, we first
check whether all the edges incident on vi are ve-dominated or not by the so far
constructed set S. If all the edges incident on vi are ve-dominated, then we do
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not include any new vertex to the set S. Otherwise, we find a suitable vertex to
ve-dominate the incident edges on vi. In fact, we choose the maximum indexed
neighbour of the vertex vj+ , where vjvj+ is an edge which is not ve-dominated
by the so far constructed set S, j ∈ [i, i∗], and j+ is the minimum index over all
such edges. The details are provided in the algorithm.

3.2. Correctness of VEDS-INTERVAL(G)

Next, we show that VEDS-Interval(G) outputs a minimum VED-set of a given
connected interval graph. Suppose that VEDS-Interval(G) executes for k num-
ber of iterations. Then k ≤ n. Let Dr, r ∈ [k] be the set constructed by VEDS-
Interval(G) after the execution of the r-th iteration. Clearly D0 = ∅. First,
we show that, while processing a vertex vi, by selecting a new vertex into VED-
set, we are not only ve-dominating all the edges incident on vi but also we are
ve-dominating all the edges incident on many other vertices.

Lemma 3. Suppose vi is processed at the r-th iteration of the algorithm for some
r ∈ [k]. If vρ(vi) is chosen by the algorithm, then all the edges incident on the
vertices of V[i,ρ(vi)] are ve-dominated by Dr−1 ∪ {vρ(vi)}.

Proof. Let vd ∈ C+(vi) such that d∗ = ρ(vi) and vc ∈ C(vi) such that d = c+.
Clearly d ∈ [i, ρ(vi)] and ρ(vi) ≥ i∗. Let va ∈ V[i,ρ(vi)] be arbitrary. If a ≥ d, then
since σ is an interval ordering of G, by Observation 1(a), vavρ(vi) ∈ E(G). This
implies that every edge incident on va is ve-dominated by vρ(vi). Now assume
that a < d. If NG[va]∩Dr−1 6= ∅, then every edge incident on va is ve-dominated
by Dr−1 ∪ {vρ(vi)}. So we may assume that NG[va] ∩ Dr−1 = ∅. Let vavb be
an edge incident on va. If b ≥ d, then since σ is an interval ordering of G,
by Observation 1(a), vbvρ(vi) ∈ E(G). This implies that vavb is ve-dominated by
vρ(vi). If b ∈ [i, d−1], then by the choice of d, NG[vb]∩Dr−1 6= ∅. This implies that
vavb is ve-dominated by Dr−1. So all the edges incident on the vertices of V[i,ρ(vi)]
are ve-dominated by Dr−1 ∪ {vρ(vi)}, completing the proof of the lemma.

By Lemma 3, the following can be observed for the algorithm VEDS-Inter-
val(G).

Observation 3. For every r ∈ [k], at the beginning of the r-th iteration of the
algorithm, all the edges incident on the vertices of V[1,i−1] are ve-dominated by
Dr−1, where vi is the vertex considered at the i-th iteration of the algorithm.

Next lemma shows that at each iteration algorithm VEDS-Interval(G) adds
a new vertex into VED-set in such a way that the minimality is maintained.

Lemma 4. Suppose that vi is processed at the r-th iteration of the algorithm for
some r ∈ [k] and there is an edge incident on vi that is not ve-dominated by Dr−1.
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If Dr−1 is contained in some minimum VED-set of G, then there is a minimum
VED-set of G containing Dr−1 ∪ {vρ(vi)}.

Proof. Let D be a minimum VED-set of G such that Dr−1 ⊆ D. By Obser-
vation 3, all the edges incident on the vertices of V[1,r−1] are ve-dominated by
Dr−1. Since there is an edge incident on vi that is not ve-dominated by Dr−1,
we have C(vi) 6= ∅ and C+(vi) 6= ∅; thus ρ(vi) exists. Let vd ∈ C+(vi) such that
d∗ = ρ(vi) and vc ∈ C(vi) such that d = c+. Clearly ρ(vi) ≥ i∗ and c < d.

Let vs ∈ D such that vcvd is ve-dominated by vs. If vρ(vi) ∈ D, then we are
done. So we may assume that vρ(vi) /∈ D. So it is clear that s 6= ρ(vi). Notice
that vs ∈ NG[vc] ∪NG[vd]. To proceed further, we prove the following claims.

Claim 1. If s = c, then D can be modified to D′ such that Dr−1 ∪ {vρ(vi)} ⊆ D′.

Proof. To prove this, we show that all the edges ve-dominated by vc are also
ve-dominated by Dr−1 ∪ {vρ(vi)}. By Observation 3, all the edges having at least
one endpoint appearing before i with respect to σ are ve-dominated by Dr−1. So
we need to prove that all edges, whose both endpoints belong to V[i,n] and are
ve-dominated by vc, are also ve-dominated by Dr−1 ∪ {vρ(vi)}. By Lemma 3, all
the edges incident on vc are ve-dominated by Dr−1 ∪ {vρ(vi)}.

Claim 1.1. Every edge of Gi incident on some vertex of NGi(vc) is ve-dominated
by Dr−1 ∪ {vρ(vi)}.

Proof. Let va ∈ NGi(vc) be arbitrary and vavb be an edge of Gi incident on va.
If a ≤ ρ(vi), then by Lemma 3, all edges incident on va are ve-dominated by
Dr−1 ∪ {vρ(vi)}. So we may assume that a > ρ(vi). Then vd, va ∈ NGc [vc]. By
Observation 2(c), NGc [vd] ⊆ NGc [va] and thus vρ(vi) ∈ NGc [va]. This implies that
the edges incident on va are ve-dominated by vρ(vi). This completes the proof of
Claim 1.1.

Let D′ = (D \ {vc}) ∪ {vρ(vi)}. By Observation 3 and Claim 1.1, all edges
incident on some vertex of NG[vc] are ve-dominated by Dr−1 ∪ {vρ(vi)}. So D′

is a minimum VED-set of G such that Dr−1 ⊆ D′, completing the proof of
Claim 1.

Claim 2. If s < c, then D can be modified to D′ such that Dr−1 ∪ {vρ(vi)} ⊆ D′.

Proof. Let D′ = (D\{vs})∪{vρ(vi)}. By Observation 3 and Lemma 3, every edge
incident on vs is ve-dominated by Dr−1 ∪ {vρ(vi)}. Let va ∈ NG(vs) be arbitrary.
If a < i, then by Observation 3, every edge incident on va is ve-dominated by
Dr−1 and hence by Dr−1 ∪ {vρ(vi)}. If a ∈ [i, c], then by Lemma 3, every edge
incident on va is ve-dominated by Dr−1 ∪ {vρ(vi)}. If a > c, then Observation
2(a) implies that va ∈ NG[vs]∩ Vc ⊆ NGc [vc]. So by Claim 1.1, all edges incident
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on some vertex of NG(vs) ∩ Vc are ve-dominated by Dr−1 ∪ {vρ(vi)}. Hence D′ is
a minimum VED-set of G such that Dr−1 ∪ {vρ(vi)} ⊆ D′, completing the proof
of Claim 2.

Claim 3. If s > c, then D can be modified to D′ such that Di ⊆ D′.

Proof. Since vs ∈ NG[vc] ∪ N [vd] and s > c, we have vs ∈ NGc [vc] ∪ NGc [vd].
Moreover, by Observation 2(b), NGc [vc] ⊆ NGc [vd]. Thus vs ∈ NGc [vd].

Claim 3.1. Every edge incident on a vertex of NGi [vd] is ve-dominated by Dr−1∪
{vρ(vi)}.

Proof. Since d∗ = ρ(vi), every edge incident on vd is ve-dominated by vρ(vi).
Let va ∈ NGi(vd) be arbitrary. Then a ≤ ρ(vi). So by Lemma 3, every edge
incident on va is ve-dominated by Dr−1 ∪ {vρ(vi)}. This completes the proof of
Claim 3.1.

Claim 3.2. Every edge incident on a vertex of NGi [vs] is ve-dominated by Dr−1∪
{vρ(vi)}.

Proof. Recall that vs ∈ NGc [vd]. If s = d, then by Claim 3.1, every edge incident
on a vertex of NGi [vd] is ve-dominated by Dr−1∪{vρ(vi)}. If s 6= d, then s ≤ ρ(vi).
So by Lemma 3, every edge incident on vs is ve-dominated by Dr−1∪{vρ(vi)}. Let
va ∈ NGi(vs) be arbitrary. If a ∈ [i, ρ(vi)], then by Lemma 3, every edge incident
on va is ve-dominated by Dr−1 ∪{vρ(vi)}. If a > ρ(vi), then by Observation 1(a),
vavρ(vi) ∈ E(G). This implies that every edge incident on va is ve-dominated by
vρ(vi). This completes the proof of Claim 3.2.

Let D′ = (D \ {vs}) ∪ {vρ(vi)}. By Observation 3, Claim 1.1, and Claim 3.2,
every edge incident on a vertex of NG[vs] is ve-dominated by Dr−1 ∪ {vρ(vi)}.
Hence D′ is a minimum VED-set of G such that Dr−1∪{vρ(vi)} ⊆ D′, completing
the proof of Claim 3.

We now return to the proof of Lemma 4. By Claims 1–3, we conclude that
there is a minimum VED-set of G containing Dr−1 ∪ {vρ(vi)}. This completes
the proof of Lemma 4.

By Observation 3, notice that at the end of the algorithm, Dk is a VED-set
of G. We next prove that Dk is a minimum VED-set of G. We use induction
on r (number of iterations) that for every r ∈ [k] ∪ {0}, Dr is contained in some
minimum VED-set of G. Note that D0 = ∅, for r = 0 and hence it is contained
in some minimum VED-set of G. Now assume that Dr−1 is contained in some
minimum VED-set, say D of G. Let σ = (v1, v2, . . . , vn) be an interval ordering
of G and vi be the vertex that is considered at the r-th iteration of the algorithm.
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If every edge incident on vi is ve-dominated by Dr−1 (i.e., D[vi] = 1 or D[v] = 1
for all v ∈ NG(vi)), then the algorithm does not select any vertex. So Dr = Dr−1
and hence Dr is contained in D. If there is an edge incident on vi that is not
ve-dominated by Dr−1 (i.e., D[vi] = 0 and D[v] = 0 for some v ∈ NG(vi)), then
the algorithm selects the vertex vρ(vi). So Dr = Dr−1 ∪ {vρ(vi)}. By Lemma 4,
there is a minimum VED-set containing Dr = Dr−1 ∪ {vρ(vi)}. So by induction,
we have the following lemma.

Lemma 5. Algorithm VEDS-Interval(G) outputs a minimum VED-set of a
given connected interval graph G.

3.3. Running time of VEDS-INTERVAL(G)

Let G be a connected interval graph having n vertices and m edges. The cor-
rectness of the algorithm VEDS-Interval(G) follows from Lemma 5. We now
discuss the running time of the algorithm VEDS-Interval(G). An interval
ordering of an interval graph can be constructed in O(n + m) time [18]. The
running time of the algorithm VEDS-Interval(G) depends on the execution
of the “while” loop. Assume that vi is considered at the r-th iteration of the
algorithm VEDS-Interval(G). We maintain an array D on the vertices. Ini-
tially, D[v] = 0 for every v ∈ V (G). Once a vertex u is selected by the algorithm,
D[v] is made 1 for every v ∈ NG[u]. The “while” loop depends on checking the
condition “there is an edge incident on vi that is not ve-dominated”, computing
the sets C(vi) and C+(vi), finding the index ρ(vi), and updating the label D on
the vertices of NG[vρ(vi)]. Notice if an edge xy is ve-dominated by the so far
constructed set S, then S∩ (NG[x]∪N [y]) 6= ∅; otherwise S∩ (NG[x]∪N [y]) = ∅.
So at the r-th iteration if D[vi] = 1 or D[v] = 1 for all v ∈ NG(vi), then we con-
clude that all the edges incident on vi are ve-dominated by the so far constructed
set S; otherwise there is an edge incident on vi that is not ve-dominated by the
so far constructed set S. This can be checked in at most O(dG(vi)) time. If
D[vi] = 1 or D[v] = 1 for all v ∈ NG(vi), then the algorithm moves to (r + 1)-th
iteration, concluding that the “while” loop can be executed in O(dG(vi)) time.
If D[vi] = 0 and D[v] = 0 for some v ∈ NG(vi) (in fact v ∈ NGi(vi)), then the
algorithm computes C(vi), C

+(vi) and ρ(vi). Notice that C(vi) can be computed
in at most O(dG(vi∗)) time. Once C(vi) is computed, vj+ can be computed in

at most dG(vj) time. So the set C+(vi) can be computed in O
(∑

v∈C(vi)
dG(v)

)
time. Then ρ(vi) can be computed in O(|C+(vi)|) time. The update of label D
for the vertices of NG[vρ(vi)] takes at most O(dG(vρ(vi))) time. So at the r-th
iteration, the “while” loop takes at most

O(dG(vi)) +O

 ∑
v∈C(vi)

dG(v)

+O(|C+(vi)|) +O(dG(vρ(vi))) time.
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Since |C+(vi)| ≤ |C(vi)| and |C(vi)| ≤ |V[i,i∗]|, the “while” loop takes at
most

O

 ∑
`∈[i,ρ(vi)]

dG(v`)

 time.

Notice that the next iteration of the algorithm is updated to ρ(vi) + 1. So in

total the algorithm takes at most O
(∑

v∈V (G) dG(v)
)

time, i.e., O(n+m) time.

Hence we have the following theorem.

Theorem 2. A minimum VED-set of a connected interval graph can be computed
in linear-time.

4. Bipartite Permutation Graphs

In this section, we design a linear-time algorithm for finding a minimum VED-set
of a given bipartite permutation graph G. For this algorithm we use dynamic
programming paradigm. First, we show an important property of a minimum
VED-set of a bipartite permutation graph.

Lemma 6. Let G be a bipartite permutation graph with a forward-convex ordering
σ = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2), ` = last(NG(x1)), and r = last(NG(y1)).
Then there exists a minimum VED-set D of G such that either y` ∈ D or xr ∈ D.

Proof. We assume that the graph G is connected and D is a minimum VED-set
of G. We have x1y1 ∈ E(G), by Lemma 2(a). If y` ∈ D or xr ∈ D, then we are
done. Next, we assume that y` /∈ D and xr /∈ D. Now to ve-dominate the edge
x1y1, we must have D ∩ (NG[x1] ∪NG[y1]) 6= ∅. So, we consider four cases.

Case 1. x1 ∈ D. Note that all the edges incident on any vertex u ∈ NG[x1]
are ve-dominated by the vertex x1 in D. Now let D′ = (D \ {x1}) ∪ {xr}.
Observe that all the edges incident on the vertices of X[1,r] and Y[1,last(NG(xr)]

are ve-dominated by the vertex xr. Moreover, N1(x1) ⊆ N1(xr) by Lemma 1(b),
that is, NG(x1) ⊆ NG(xr). It implies that all the edges incident on NG[x1] are
ve-dominated by the vertex xr. So D′ is a minimum VED-set of G such that
xr ∈ D′.

Case 2. y1 ∈ D. Note that all the edges incident on the vertices of NG[y1]
are ve-dominated by the vertex y1 in D. Let D′ = (D \ {y1}) ∪ {y`}. Observe
that the vertex y` dominates all the edges incident on the vertices of Y[1,`] and
X[1,last(NG(y`))]. Moreover, N1(y1) ⊆ N1(y`) by Lemma 1(a), that is, NG(y1) ⊆
NG(y`). It implies that all the edges incident on NG[y1] are ve-dominated by the
vertex y`. So D′ is a minimum VED-set of G such that y` ∈ D′.
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Case 3. There exists xi ∈ NG(y1) such that xi ∈ D. Let D′ = (D \ {xi}) ∪
{xr}. Observe that for any vertex xi ∈ NG(y1), N1(xi) ⊆ N1(xr) by Lemma 1(b),
that is, NG(xi) ⊆ NG(xr) for i < r. It implies that all the edges ve-dominated by
xi are ve-dominated by xr. So D′ is a minimum VED-set of G such that xr ∈ D′.

Case 4. There exists yj ∈ N(x1) such that yj ∈ D. Let D′ = (D\{yj})∪{y`}.
Note that for any vertex yj ∈ NG(x1), N1(yj) ⊆ N1(y`) by Lemma 1(a), that is,
NG(yj) ⊆ NG(y`), for j < `. It implies that all the edges ve-dominated by yj are
ve-dominated by y`. So D′ is a minimum VED-set of G such that y` ∈ D′.

Thus in each case, we get a minimum VED-set D′ such that either y` ∈ D′
or xr ∈ D′. This completes the proof of the lemma.

Based on the property described in Lemma 6, we have the following lemma
which shows a recursive way of computing a minimum VED-set of a bipartite
permutation graph.

Lemma 7. Let G be a bipartite permutation graph with a forward-convex ordering
σ = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2), ` = last(NG(x1)), k = last(NG(y`)), r =
last(NG(y1)), s = last(NG(xr)), `

′ = first(NG(xk+1)), and r′ = first(NG(ys+1)).
Then one of the following holds.

(a) γve(G) = γve(G
′) + 1, where G′ = G[Xk+1 ∪ Y`′ ].

(b) γve(G) = γve(G
′′) + 1, where G′′ = G[Xr′ ∪ Ys+1].

Proof. If D′ is a minimum VED-set of G′, then it is clear that D′ ∪ {y`} is a
VED-set of G. So we have

(1) γve(G) ≤ γve(G′) + 1.

Similarly if D′′ is a minimum VED-set of G′′, then it is clear that D′′ ∪{xr}
is a VED-set of G. So we have

(2) γve(G) ≤ γve(G′′) + 1.

By Lemma 6, there exists a minimum VED-set D of G such that either
y` ∈ D or xr ∈ D. So we consider the following two cases.

Case 1. y` ∈ D. Since y` ∈ D, all the edges incident on NG[y`] are ve-
dominated by the vertex y`. It follows that all the edges incident on vertices X[1,k]

are ve-dominated by the vertex y`. By Lemma 1(a), for all j < `, N1(yj) ⊆ N1(y`),
that is, NG(yj) ⊆ NG(y`). Since NG(yj) ⊆ NG(y`) for any j < `, all the edges
incident on the vertices Y[1,`] are ve-dominated by y`. Moreover, the edges incident
on xk are also ve-dominated by y`. Let D′ = D \ {y`}. By Lemma 2(b) and (d),
the set of vertices {yj : j ∈ [` + 1, `′ − 1]} are isolated vertices and the graph
G′ = G[Xk+1∪Y`′ ] is a connected bipartite permutation graph. So it is clear that
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D′ is a VED-set of G′. Thus we have γve(G
′) ≤ |D|−1 = γve(G)−1. Combining

with Equation (1), we have γve(G) = γve(G
′) + 1.

Case 2. xr ∈ D. Since xr ∈ D, all the edges incident on the vertices of
NG[xr] are ve-dominated by the vertex xr. It follows that all the edges incident
on vertices Y[1,s] are ve-dominated by the vertex xr. By Lemma 1(b), for all
i < r, N1(xi) ⊆ N1(xr), that is, NG(xi) ⊆ NG(xr). Since NG(xi) ⊆ NG(xr)
for any i < r, all the edges incident on the vertices X[1,r] are ve-dominated
by xr. Moreover, the edges incident on ys are also ve-dominated by xr. Let
D′′ = D \{xr}. By Lemma 2(c) and (d), the set of vertices {xi : i ∈ [r+1, r′−1]}
are isolated vertices and the graph G′′ = G[Xr′ ∪ Ys+1] is a connected bipartite
permutation graph. So it is clear that D′′ is a VED-set of G′′. Thus we have
γve(G

′′) ≤ |D|−1 = γve(G)−1. Combining with Equation (2), we have γve(G) =
γve(G

′′) + 1, completing the proof of the lemma.

Algorithm 2: VEDS-BPG(G)

Input: A bipartite permutation graph G = (X,Y,E) such that |X| = n1
and |Y | = n2;

Output: A minimum VED-set of G;
1 Initialize D(n1 + 1, n2 + 1) = ∅;
2 for (i = n1 down to 1) do
3 for (j = last(NG(xi)) down to first(NG(xi))) do
4 Let ` = last(NG(xi)), k = last(NG(y`)), r = last(NG(yj)) and

s = last(NG(xr)) and `′ = first(NG(xk+1)), and
r′ = first(NG(ys+1));

5 Compute D(k + 1, `′) and D(r′, s+ 1);
6 if (|D(k + 1, `′) ∪ {y`}| ≤ |D(r′, s+ 1) ∪ {xr}|) then
7 D(i, j) = D(k + 1, `′) ∪ {y`};
8 else
9 D(i, j) = D(r′, s+ 1) ∪ {xr};

10 end

11 end

12 end
13 return D(1, 1);

Based on Lemma 7, we now present a dynamic programming based algorithm
to compute a minimum VED-set of a bipartite permutation graph G. For every
i ∈ [n1] and j ∈ [n2], we use the notation D(i, j) to denote the minimum VED-set
of G[Xi ∪ Yj ]. We follow bottom-up approach for computing D(i, j). To apply
Lemma 7, we need xi and yj to be adjacent. Hence, we process the vertices of
X in reverse order of the forward-convex ordering and also for a fixed vertex
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in X, we process all its neighbours in reverse order of forward-convex ordering.
At each step, we compute D(i, j) according to Lemma 7. At the initial step,
with slight abuse of notation, G[Xn1+1 ∪ Yn2+1] denote the empty graph and the
corresponding D(n1 + 1, n2 + 1) = ∅ for obvious reason. Finally, at the end of
Algorithm VEDS-BPG(G), D(1, 1) would return the minimum VED-set of the
bipartite permutation graph G. The details are provided below in Algorithm
VEDS-BPG(G).

Next, we analyse the running time of Algorithm VEDS-BPG(G). Note that
the outer for-loop runs over all vertices of X and for a fixed vertex in X, the
inner for-loop runs over all its neighbours. Hence, there are O(n+m) iterations
overall. In each iteration, we compute D(k + 1, `′) and D(r′, s+ 1) in O(1) time
and therefore, we compute D(i, j) in O(1) time. So, Algorithm VEDS-BPG(G)
runs in O(n+m) time. Hence, we have the following theorem.

Theorem 3. A minimum VED-set of a bipartite permutation graph can be com-
puted in linear-time.

5. Conclusion

We proposed two linear-time algorithms for solving the ve-domination problem
in interval graphs and bipartite permutation graphs. It would be interesting to
investigate this problem in subclasses of chordal graphs such as strongly chordal
graphs and directed path graphs. Also, studying the parameterized complexity
of the ve-domination problem is another interesting direction of research.
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