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Abstract

The graph grabbing game is played on a non-negatively weighted con-
nected graph by Alice and Bob who alternately claim a non-cut vertex from
the remaining graph, where Alice plays first, to maximize the weights on
their respective claimed vertices at the end of the game when all vertices
have been claimed. Seacrest and Seacrest conjectured that Alice can se-
cure at least half of the total weight of every weighted connected bipartite
even graph. Later, Egawa, Enomoto and Matsumoto partially confirmed
this conjecture by showing that Alice wins the game on a class of weighted
connected bipartite even graphs called Km,n-trees. We extend the result on
this class to include a number of graphs, e.g. even blow-ups of trees and
cycles.
Keywords: games on graphs, two-player games, graph grabbing games,
blow-ups of graphs.
2020 Mathematics Subject Classification: 05C57.

1. Introduction

A vertex v of a connected graph G is a cut vertex if G − v is disconnected.
A graph G is even (respectively, odd) if the number of vertices of G is even
(respectively, odd). A weighted graph G is a graph G with a weighted function
w : V (G)→ R+ ∪ {0}.

The graph grabbing game is played on a non-negatively weighted connected
graph by two players: Alice and Bob alternately claim a non-cut vertex from the
remaining graph and collect the weight on the vertex, where Alice plays first. The
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aim of each player is to maximize the weights on their respective claimed vertices
at the end of the game when all vertices have been claimed. Alice wins the game
if she gains at least half of the total weight of the graph.

The first version of the graph grabbing game appeared in the first problem in
Winkler’s puzzle book (2003) [12], where he gave a winning strategy for Alice on
every weighted even path and he observed that there is a weighted odd path on
which Alice cannot win. In 2009, Rosenfeld [10] proposed the game for trees and
call it the gold grabbing game. In 2011, Micek and Walczak [8] generalized the
game to general graphs and call it the graph grabbing game. They showed that
Alice can secure at least a quarter of the total weight of every weighted even tree
and they conjectured that Alice can in fact secure at least half of the total weight
of every weighted even tree. Later in 2012, Seacrest and Seacrest [11] solved this
conjecture by considering a vertex-rooted version of the game and they posed the
following conjecture.

Conjecture 1 [11]. Alice wins the game on every weighted connected bipartite
even graph.

In 2018, Egawa, Enomoto and Matsumoto [3] gave a supporting evidence for
this conjecture. They generalized the proof of Seacrest and Seacrest by considering
a set-rooted version of the game to prove that Alice wins the game on every
weighted even Km,n-tree, namely a bipartite graph obtained from a complete
bipartite graph Km,n on [m+n] and trees T1, . . . , Tm+n by identifying vertex i of
Km,n with exactly one vertex of Ti for each i ∈ [m+ n], where [k] means the set
of the natural numbers from one to k.

For a graph G with vertices v1, . . . , vk and non-empty sets V1, . . . , Vk, a blow-
up B(G) of G is a graph obtained from G by replacing v1, . . . , vk with V1, . . . , Vk,
respectively, where, for each i, j ∈ [k], vertices x ∈ Vi and y ∈ Vj are adjacent in
B(G) if and only if vi and vj are adjacent in G. For a graph G on [k] and trees
T1, . . . , Tk, a G-tree is a graph obtained from G by identifying vertex i of G with
exactly one vertex of Ti for each i ∈ [k]. For a tree T , we note that a B(T )-tree
and B(C2n) are connected bipartite graphs, and a B(T )-tree is a Km,n-tree when
T is the path on two vertices, (see Figure 1).

In this paper, we partially confirm Conjecture 1 as follows.

Theorem 2. Alice wins the game on every weighted even B(T )-tree, where T is
a tree.

Corollary 3. Alice wins the game on every weighted even B(Cn).

For a graph G and a set S ⊆ V (G), let NG(S) denote the neighborhood of S,
i.e., the set of vertices having a neighbor in S. The proof is based on the method
of Egawa, Enomoto and Matsumoto, where their main lemmas dealt with the
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score of the game on a Km,n-tree rooted at a partite class. We generalize their
method by considering instead the scores of the game on an H-tree rooted at Vi

and the game on the H-tree rooted at NH(Vi), where H is a blow-up of a tree.
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Figure 1. Examples of a tree T , a blow-up B(T ) and a B(T )-tree.

The rest of this paper is organized as follows. In Section 2, we recall some
observations and a lemma on Km,n-trees given by Egawa, Enomoto and Mat-
sumoto. Section 3 is devoted to proving Theorem 2 and then applying it to prove
Corollary 3. In Section 4, we give some concluding remarks.

2. Preliminaries

In this section, we prepare some observations and a lemma on Km,n-trees which
will be useful for the proof of Theorem 2.

We first give definitions of a rooted version of the graph grabbing game
and some related terms introduced by Egawa, Enomoto and Matsumoto. For
a weighted graph G, a root set S of G is a set of vertices intersecting every com-
ponent of G and the game on G rooted at S is a graph grabbing game, where each
player does not have to claim a non-cut vertex, but instead they claim a vertex v
such that every component of G− v contains at least one vertex in S. Therefore,
a move v in the game on G is feasible if G− v is connected, and a move v in the
game on G rooted at S is feasible if every component of G − v contains at least
one vertex in S. A move v in the game on G (rooted at S) is optimal if there is
an optimal strategy in the game on G (rooted at S) having v as the first move.
The first (respectively, second) player is called Player 1 (respectively, Player 2).
The last (respectively, second from last) player is called Player −1 (respectively,
Player −2). For k ∈ {1, 2,−1,−2}, assuming that both players play optimally, let
N(G, k) denote the score of Player k in the game on G and let R(G,S, k) denote
the score of Player k in the game on G rooted at S and we write R(G, v, k) for
R(G, {v}, k). For a set S and an element x, we write S − x for S \ {x}.
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Egawa, Enomoto and Matsumoto observed some relationships between the
scores of both players in the normal version and the rooted version of the game.
Note that the equation/inequality in the brackets in each observation is an equiv-
alent form of the first one because of the fact that, assuming that both players
play optimally, the sum of their scores equals the total weight of the graph.

Observation 4 [3]. If x is a feasible move in the game on G, then

N(G, 2) ≤ N(G− x, 1) (⇔ N(G, 1) ≥ N(G− x, 2) + w(x)).

If x is an optimal move in the game on G, then

N(G, 2) = N(G− x, 1) (⇔ N(G, 1) = N(G− x, 2) + w(x)).

Observation 5 [3]. Let S be a root set of G. If x is a feasible move in the game
on G rooted at S, then

R(G,S, 2) ≤ R(G− x, S − x, 1) (⇔ R(G,S, 1) ≥ R(G− x, S − x, 2) + w(x)).

If x is an optimal move in the game on G rooted at S, then

R(G,S, 2) = R(G− x, S − x, 1) (⇔ R(G,S, 1) = R(G− x, S − x, 2) + w(x)).

Observation 6 [3]. If v is a root of G, then

R(G, v,−2) = R(G− v,NG(v),−1)
(⇔ R(G, v,−1) = R(G− v,NG(v),−2) + w(v)).

The next lemma is a part of their main results which will help us in the proof.

Lemma 7 [3]. Let G be a Km,n-tree with partite classes X,Y of size m,n ≥ 1,
respectively. Then

R(G, Y,−2) ≤ N(G,−2) (⇔ R(G, Y,−1) ≥ N(G,−1)).

3. Proofs

In this section, we start by proving Lemma 8 which will be used repeatedly in the
proof of our main lemmas, namely, Lemmas 9 and 10. We then prove Theorem 2
by applying the main lemmas and deduce Corollary 3 from Theorem 2.

The following lemma shows the relationship between the scores of both players
in the game on an even graph rooted at two different sets of some structure.

Lemma 8. Let G1 and G2 be subgraphs of an even graph G such that V (G1)
and V (G2) partition V (G). If U1 = V (G1) ∩ NG(V (G2)) and U2 = V (G2) ∩
NG(V (G1)) are root sets of G1 and G2, respectively, and every vertex in U1 is
joined to every vertex in U2, (see Figure 2), then
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8.1. R(G,U1, 1) ≥ R(G1, U1,−2) +R(G2, U2,−1),

8.2. R(G,U1, 1) ≥ R(G,U2, 2).

U1 U2G1 G2

Figure 2. The graph G in Lemma 8.

Proof. First, we shall prove Lemma 8.1 by considering a strategy for Alice who
plays first in the game on G rooted at U1. She plays optimally as Player −2 in
the game on G1 rooted at U1 and plays optimally as Player −1 in the game on G2

rooted at U2. Since |V (G1)|+ |V (G2)| is even, she plays as Player 1 in one game
and as Player 2 in the other. Now, we check that Alice’s moves are feasible in the
game on G rooted at U1, and Bob’s moves are feasible in the game on G1 rooted
at U1 and the game on G2 rooted at U2. Indeed, after each move of Alice, every
remaining component of G1 and G2 contains a vertex in U1 and U2, respectively.
Together with the fact that every vertex in U2 is joined to the remaining subset
of U1, we can conclude that every remaining component of G contains a vertex
in U1. That is, her moves are feasible in the game on G rooted at U1. On the
other hand, after each move of Bob, every remaining component of G contains
a vertex of U1. Since the edges between G1 and G2 have endpoints only in U1

and U2, every remaining component of G1 or G2 contains a vertex in U1 or U2,
respectively. That is, his moves are feasible in the game on G1 rooted at U1 and
the game on G2 rooted at U2. Hence

R(G,U1, 1) ≥ R(G1, U1,−2) +R(G2, U2,−1),

which completes the proof of Lemma 8.1. By symmetry, we have

R(G,U2, 1) ≥ R(G1, U1,−1) +R(G2, U2,−2),

which is equivalent to

R(G,U2, 2) ≤ R(G1, U1,−2) +R(G2, U2,−1),

by considering the total weight of G,G1 and G2. Together with Lemma 8.1, we
have

R(G,U2, 2) ≤ R(G1, U1,−2) +R(G2, U2,−1) ≤ R(G,U1, 1),

which completes the proof of Lemma 8.2.
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We are now ready to prove the main lemmas which generalize the results on
Km,n-trees to B(T )-trees relating the scores of both players in the normal version
and the rooted version of the game.

Lemma 9. Let H be a blow-up graph of a tree with sets of vertices V1, . . . , Vk and
let G be an H-tree.

9.1. For a vertex v ∈ V (G), R(G, v,−2) ≤ N(G,−2)
(⇔ R(G, v,−1) ≥ N(G,−1)).

9.2. For each i ∈ [k], R(G,Vi,−2) ≤ N(G,−2)
(⇔ R(G,Vi,−1) ≥ N(G,−1)).

9.3. For each i ∈ [k], R(G,NH(Vi),−2) ≤ N(G,−2)
(⇔ R(G,NH(Vi),−1) ≥ N(G,−1)).

Lemma 10. Let H be a blow-up graph of a tree with sets of vertices V1, . . . , Vk

and let G be an even H-tree.

10.1. For a vertex v ∈ V (G), R(G, v, 1) ≥ N(G, 2)

(⇔ R(G, v, 2) ≤ N(G, 1)).

10.2. For each i ∈ [k], R(G,Vi, 1) ≥ N(G, 2)

(⇔ R(G,Vi, 2) ≤ N(G, 1)).

10.3. For each i ∈ [k], R(G,NH(Vi), 1) ≥ N(G, 2)

(⇔ R(G,NH(Vi), 2) ≤ N(G, 1)).

We prove Lemmas 9 and 10 simultaneously by induction on n = |V (G)|. It
is easy to check that Lemmas 9 and 10 hold for n ≤ 2. Now, we let n ≥ 3
and suppose that Lemmas 9 and 10 hold for |V (G)| < n. We remark that the
following fact will be used throughout the proofs. Let G be an H-tree, where H
is a blow-up of a tree and let v be a vertex in G. Then G− v is an H ′-tree, where
H ′ is a blow-up of some tree if and only if G− v is connected.

Proof of Lemma 9.1. Let v ∈ V (G).

Case 1. G is even. Let a be an optimal move in the game on G rooted at v.
Therefore, a 6= v and a is feasible in the game on G. So G−a is connected. Then

R(G, v,−1 = 2) = R(G− a, v, 1 = −1) (Observation 5)
≥ N(G− a,−1 = 1) (Lemma 9.1 by induction)
≥ N(G, 2 = −1) (Observation 4).
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Case 2. G is odd. Let b be an optimal move in the game on G. So G − b is
connected.

Case 2.1. b 6= v. Now, b is a feasible move in the game on G rooted at v.
Then

R(G, v,−2 = 2) ≤ R(G− b, v, 1 = −2) (Observation 5)
≤ N(G− b,−2 = 1) (Lemma 9.1 by induction)
= N(G, 2 = −2) (Observation 4).

Case 2.2. b = v and v is a leaf. Let u be the unique neighbor of v. Then

R(G, v,−2) = R(G− v, u,−1 = 2) (Observation 6)
≤ N(G− v, 1) (Lemma 10.1 by induction)
= N(G, 2 = −2) (Observation 4 and b = v).

Case 2.3. b = v and v is not a leaf. Therefore, v ∈ Vi for some i ∈ [k] and
NG(v) = NH(Vi). Then

R(G, v,−2) = R(G− v,NG(v) = NH(Vi),−1 = 2) (Observation 6)
≤ N(G− v, 1) (Lemma 10.3 by induction)
= N(G, 2 = −2) (Observation 4 and b = v).

Proof of Lemma 9.2. Let i ∈ [k]. If |Vi| = 1, then we are done by Lemma 9.1.
Now, suppose that |Vi| ≥ 2.

Case 1. G is odd. Let b be an optimal move in the game on G. So G − b is
connected. Since |Vi| ≥ 2, we have Vi − b 6= ∅. Therefore, b is a feasible move in
the game on G rooted at Vi. Then

N(G,−2 = 2) = N(G− b, 1 = −2) (Observation 4)
≥ R(G− b, Vi − b,−2 = 1) (Lemma 9.2 by induction)
≥ R(G,Vi, 2 = −2) (Observation 5).

Case 2. G is even. Let a be an optimal move in the game on G rooted at Vi.

Case 2.1. a is a feasible move in the game on G. So G−a is connected. Then

R(G,Vi,−1 = 2) = R(G− a, Vi − a, 1 = −1) (Observation 5)
≥ N(G− a,−1 = 1) (Lemma 9.2 by induction)
≥ N(G, 2 = −1) (Observation 4).

Case 2.2. a is not a feasible move in the game on G.
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a
Vj

Vi

Figure 3. The graph G in Case 2.2 of Lemma 9.2.

So G− a is disconnected. Since a is a feasible move in the game on G rooted
at Vi, we have a ∈ Vj for some j ∈ [k] and NG(Vj) = NH(Vj). Since G − a is
disconnected, Vj = {a} and a is not a leaf. Suppose that i = j. Then every
component of G−a does not contain a vertex in Vi, a contradiction. Hence i 6= j.
Suppose that there is a vertex set V`, where ` /∈ {i, j}. Then either G − a is
connected or there is a component of G−a which does not contain a vertex in Vi,
a contradiction. Hence Vj = {a} for some j 6= i, NH(Vj) = Vi and NH(Vi) = Vj ,
(see Figure 3). Therefore, G is a Km,n-tree with partite classes Vi and Vj . Then,
by Lemma 7,

N(G,−1) ≤ R(G,Vi,−1).

Proof of Lemma 9.3. We remark that the proofs of Lemmas 9.1 and 9.2 do not
use Lemma 9.3. Let i ∈ [k]. If |NH(Vi)| = 1 or NH(Vi) = Vj for some j ∈ [k], then
we are done by Lemmas 9.1 or 9.2, respectively. Now, suppose that |NH(Vi)| ≥ 2
and Vi is joined to at least two sets in V1, . . . , Vk.

Case 1. G is odd. Let b be an optimal move in the game on G. So G − b
is connected. Since |NH(Vi)| ≥ 2, we have NH(Vi) − b 6= ∅. Then b is a feasible
move in the game on G rooted at NH(Vi). Then

N(G,−2 = 2) = N(G− b, 1 = −2) (Observation 4)
≥ R(G− b,NH(Vi)− b,−2 = 1) (Lemma 9.3 by induction)
≥ R(G,NH(Vi), 2 = −2) (Observation 5).

Case 2. G is even. Let a be an optimal move in the game on G rooted at
NH(Vi).

Case 2.1. a is a feasible move in the game on G. So G−a is connected. Then

R(G,NH(Vi),−1 = 2)

= R(G− a,NH(Vi)− a, 1 = −1) (Observation 5)
≥ N(G− a,−1 = 1) (Lemma 9.3 by induction)
≥ N(G, 2 = −1) (Observation 4).
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Case 2.2. a is not a feasible move in the game on G.

Vj

NH(Vi) \ Vj

G1 = H1 G2 H2
a

Vi

Figure 4. The graph G in Case 2.2 of Lemma 9.3.

So G− a is disconnected. Since a is a feasible move in the game on G rooted
at NH(Vi), we have a ∈ V` for some ` ∈ [k] and NG(V`) = NH(V`). Since G− a is
disconnected, V` = {a} and a is not a leaf. Suppose that i 6= `. Since Vi is joined
to at least two sets, Vi and NH(Vi) lie in the same component of G− a, but other
components of G−a do not contain a vertex in NH(Vi), which is a contradiction.
Hence Vi = {a}. Let Vj ⊆ NH(Vi) and let G1 be the union of components in
G − a containing some vertices of Vj and let G2 = G − a − G1. By assumption,
G2 is not empty.

First, we shall show that

R(G,NH(Vi),−1) ≥ R(G1, Vj ,−1) +R(G2, NH(Vi) \ Vj ,−1),

by considering a strategy for Bob who plays second in the game on G rooted at
NH(Vi) after Alice grabs a. He plays optimally as Player −1 in the game on
G1 rooted at Vj and plays optimally as Player −1 in the game on G2 rooted at
NH(Vi)\Vj . Since |V (G1)|+ |V (G2)| is odd, he plays as Player 1 in one game and
as Player 2 in the other. Now, we check that Bob’s moves are feasible in the game
on G rooted at NH(Vi) and Alice’s moves are feasible in the game on G1 rooted
at Vj and the game on G2 rooted at NH(Vi)\Vj . Indeed, after each move of Bob,
every remaining component in G1 or G2 contains a vertex in Vj or NH(Vi) \ Vj ,
respectively. Then every remaining component of G contains a vertex in NH(Vi).
That is, his moves are feasible in the game on G rooted at NH(Vi). On the other
hand, after each move of Alice, every remaining component of G contains a vertex
in NH(Vi). Then every remaining component of G1 or G2 contains a vertex in Vj

or NH(Vi) \ Vj , respectively. That is, her moves are feasible in the game on G1

rooted at Vj and the game on G2 rooted at NH(Vi) \ Vj . Hence

(1) R(G,NH(Vi),−1) ≥ R(G1, Vj ,−1) +R(G2, NH(Vi) \ Vj ,−1).

Next, we let H1 = G1 and H2 = G − G1. We observe that Vj = V (H1) ∩
NG(V (H2)) and {a} = V (H2) ∩NG(V (H1)) are root sets of H1 and H2, respec-
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tively, and a is adjacent to all vertices in Vj , (see Figure 4). Hence

R(G,Vj ,−2 = 1)

≥ R(G1, Vj ,−2) +R(G−G1, a,−1) (Lemma 8.1)
= R(G1, Vj ,−2) +R(G2, NH(Vi) \ Vj ,−2) + w(a) (Observation 6),

which is equivalent to

(2) R(G,Vj ,−1) ≤ R(G1, Vj ,−1) +R(G2, NH(Vi) \ Vj ,−1),

by considering the total weight of G,G1 and G2. Then

N(G,−1) ≤ R(G,Vj ,−1) (Lemma 9.2)
≤ R(G1, Vj ,−1) +R(G2, NH(Vi) \ Vj ,−1) (Inequality (2))
≤ R(G,NH(Vi),−1) (Inequality (1)).

Vi

NH(Vi)

G2 G1

Figure 5. The graph G in Lemma 10.3.

Proof of Lemma 10.3. For i ∈ [k], let G1 be the union of components of
G−Vi containing some vertices of NH(Vi) and let G2 = G−G1. We observe that
NH(Vi) = V (G1)∩NG(V (G2)) and Vi = V (G2)∩NG(V (G1)) are root sets of G1

and G2, respectively, and every vertex in NH(Vi) is joined to every vertex in Vi,
(see Figure 5). Then

N(G, 2 = −1) ≤ R(G,Vi,−1 = 2) (Lemma 9.2)
≤ R(G,NH(Vi), 1) (Lemma 8.2).

Proof of Lemma 10.2. For i ∈ [k], let G1 be the union of components of
G−NH(Vi) containing some vertices of Vi and let G2 = G−G1. We observe that
Vi = V (G1)∩NG(V (G2)) and NH(Vi) = V (G2)∩NG(V (G1)) are root sets of G1

and G2, respectively, and every vertex in Vi is joined to every vertex in NH(Vi).
Then

N(G, 2 = −1) ≤ R(G,NH(Vi),−1 = 2) (Lemma 9.3)
≤ R(G,Vi, 1) (Lemma 8.2).
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Proof of Lemma 10.1. Let v ∈ V (G).

Case 1. There is a cut edge uv incident to v.

G1 G2v u

Figure 6. The graph G in Case 1 of Lemma 10.1.

Let G1 be the component of G− uv containing v and let G2 = G−G1. We
observe that {v} = V (G1)∩NG(V (G2)) and {u} = V (G2)∩NG(V (G1)) are root
sets of G1 and G2, respectively, and v is adjacent to u, (see Figure 6). Then

R(G, v, 1) ≥ R(G, u, 2 = −1) (Lemma 8.2)
≥ N(G,−1 = 2) (Lemma 9.1).

Case 2. There is no cut edge incident to v. Then v ∈ Vj for some j ∈ [k] and
NG(v) = NH(Vj).

Case 2.1. |Vj | ≥ 2. Therefore, v is a feasible move in the game on G. So
G− v is connected. Then

R(G, v, 1 = −2) = R(G− v,NG(v) = NH(Vj),−1) (Observation 6)
≥ N(G− v,−1 = 1) (Lemma 9.3 by induction)
≥ N(G, 2) (Observation 4).

Case 2.2. |Vj | = 1. Then, by Lemma 10.2,

R(G, v, 1) = R(G,Vj , 1) ≥ N(G, 2).

We proceed to prove our main theorem.

Proof of Theorem 2. Let G be an even B(T )-tree, where T is a tree and let
v ∈ V (G). Then, by Lemmas 9.1 and 10.1, it follows that

N(G, 2 = −1) ≤ R(G, v,−1 = 2) ≤ N(G, 1).

Therefore, Alice wins the game on G.

We now deduce Corollary 3 from Theorem 2.

Proof of Corollary 3. We give a proof by induction on the number of vertices.
Let G be an even blow-up of a cycle. We note that every vertex of G is a non-cut
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vertex. Alice claims a maximum weighted vertex of G in her first move, say a
vertex a. Let b be the vertex claimed by Bob in his first move. Then G − {a, b}
is an even blow-up of either a path or a cycle. If G− {a, b} is an even blow-up of
a path, then Alice wins the game on G− {a, b} by Theorem 2. Otherwise, Alice
wins the game on G − {a, b} by the induction hypothesis. In both cases, since
w(a) ≥ w(b), Alice wins the game on G.

4. Concluding Remarks

We provide two new classes, namely B(T )-trees and B(C2n), of bipartite even
graphs which satisfy Conjecture 1. However, this conjecture is still open. It was
shown in [3] that Lemmas 9.1 and 10.1 are not true for general bipartite graphs,
therefore this method cannot be directly used to solve the full conjecture. There
are several variants of the graph grabbing game, for example, the graph sharing
game (see [1, 2, 5, 6, 9]), the graph grabbing game on {0, 1}-weighted graphs
(see [4]), and the convex grabbing game (see [7]), where a few problems are left
open.
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