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Abstract

DP-coloring is generalized via relaxed coloring and variable degeneracy
in [P. Sittitrai and K. Nakprasit, Sufficient conditions on planar graphs to

have a relaxed DP-3-coloring, Graphs Combin. 35 (2019) 837–845], [K.M.
Nakprasit and K. Nakprasit, A generalization of some results on list color-

ing and DP-coloring, Graphs Combin. 36 (2020) 1189–1201] and [P. Sittitrai
and K. Nakprasit, An analogue of DP-coloring for variable degeneracy and

its applications, Discuss. Math. Graph Theory]. In this work, we introduce
another concept that includes two previous generalizations. We demonstrate
its application on planar graphs without 4-cycles and 7-cycles. One implica-
tion is that the vertex set of every planar graph without 4-cycles and 7-cycles
can be partitioned into three sets in which each of them induces a linear for-
est and one of them is an independent set. Additionally, we show that every
planar graph without 4-cycles and 7-cycles is DP-(1, 1, 1)-colorable. This
generalizes a result of Lih et al. [A note on list improper coloring planar

graphs, Appl. Math. Lett. 14 (2001) 269–273] that every planar graph
without 4-cycles and 7-cycles is (3, 1)∗-choosable.
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1. Introduction

All considered graphs are finite, simple, undirected, and embedded in the plane.
For a graph G, let its vertex set, edge set, face set, and minimum degree be
denoted by V (G), E(G), F (G), and δ(G), respectively. Let d(x) denote the degree
of x where x ∈ V (G)∪F (G). A k-vertex (or k+-vertex ) is a vertex of degree k (or
at least k). Similar notation is applied to a cycle and a face. A face f is simple

if its boundary forms a cycle. A face f and a vertex v are incident if v is on the
boundary of f. We simply say two faces share an edge (or a vertex) instead of the
boundary of two faces share an edge (or a vertex). Two faces are adjacent if they
share at least one edge. If G is a graph and U ⊆ V (G), then G[U ] denote the
subgraph of G induced by U. A linear forest is a forest in which each component
is a path.

Vizing [11] in 1976, and independently Erdős, Rubin, and Taylor [5] in 1979,
introduced list coloring and choosability. An assignment L of a graph G assigns
a list L(v) (a set of colors) to each vertex v. A k-assignment L is an assignment
such that |L(v)| = k for each vertex v. If a graph G admits a proper coloring f
where f(v) ∈ L(v) for each vertex v, then we say G is L-colorable. A graph G is
k-choosable if it is L-colorable for each k-assignment L.

In 1999, Škrekovski [10] and Eaton and Hull [4] independently introduced
the concept of relaxed list coloring. A graph G with an assignment L is (L, d)∗

choosable if each vertex v of G can be colored with a color f(v) ∈ L(v) such that
at most d neighbors of v receive the color f(v). A graph G is (k, d)∗-choosable if
G is (L, d)∗-choosable for each k-assignment L.

Dvořák and Postle [3] introduced a generalization of list coloring which they
called correspondence coloring. Following Bernshteyn, Kostochka, and Pron [1],
we call it a DP-coloring. Let L be an assignment of a graph G. We call (H,L)
(or simply H) a cover of G if it satisfies the following conditions.

(i) The vertex set of H is
⋃

u∈V (G)({u}×L(u)) = {(u, c) : u ∈ V (G), c ∈ L(u)}.

(ii) For each uv ∈ E(G), the set EH({u} ×L(u), {v} ×L(v)) is a matching (the
matching may be empty).

(iii) If uv /∈ E(G), then no edges of H connect {u} × L(u) and {v} × L(v).

A transversal of (H,L) is a vertex set T ⊆ V (H) such that |T ∩ ({u}×L(u))| = 1
for each vertex u in G. A DP-coloring of (H,L) is a transversal T of (H,L) such
that T is independent. The DP-chromatic number of G is the least number k
such that every cover (H,L) of G with k-assignment L has a DP-coloring.

Since names of colors for distinct vertices in DP-coloring are irrelevant, we
always assume in this paper that a k-assignment of a graph G has L(v) =
{1, . . . , k} for each v ∈ V (G). In [9], Sittitrai and Nakprasit combined DP -
coloring and relaxed list coloring as follows. Let (H,L) be a cover of a graph
G with a k-assignment L. A transversal T of (H,L) is a (t1, . . . , tk)-coloring if
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every (v, i) ∈ T has degree at most ti in H[T ]. If G with a k-assignment L has
a (t1, . . . , tk)-coloring for every cover (H,L), then we say G is DP-(t1, . . . , tk)-
colorable. One can show that the fact that G is DP-(t1, . . . , tk)-colorable where
ti = d (i ∈ {1, . . . , k}) implies G is (k, d)∗-choosable.

In this work, we obtain the following result.

Theorem 1. Every planar graph without 4-cycles or 7-cycles is DP-(1, 1, 1)-
colorable.

Theorem 1 generalizes the following result by Lih et al. [6].

Theorem 2. Every planar graph without 4-cycles or 7-cycles is (3, 1)∗-choosable.

Remark that the proof of (3, 1)∗-choosability by Lih et al. cannot be ap-
plied to Theorem 1. For example, Lih et al. use the fact that a 3-cycle abca
is (L, 1)∗-colorable if |L(a)| ≥ 2 and |L(b)|, |L(c)| ≥ 1. But this fact is not true
for DP-coloring. Let L(a) = {1, 2}, L(b) = {1}, L(c) = {2}, and let (a, 1)(b, 1),
(a, 2)(c, 2), and (b, 1)(c, 2) be edges of a cover H. One can see that (H,L) has no
DP-(1, 1, 1)-colorings.

Additionally, we show that every planar graph is DP-(0, 2, 2)-colorable. In
fact, we present this second main result in a stronger form by using a concept
similar to “variable degeneracy” but broader. One immediate consequence of the
second main result is that the vertex set of a planar graph without 4-cycles or
7-cycles can be partitioned into three sets such that one set is independent and
each of the two remaining sets induces a linear forest.

Some definitions are required to understand the second main result. The
concept of variable degeneracy was introduced by Borodin, Kostochka, and Toft
[2] as follows. Let f be a function from V (G) to the set of positive integers.
A graph G is strictly f -degenerate if every subgraph G′ has a vertex v with
dG′(v) < f(v). Let fi, where i ∈ {1, . . . , s}, be a function from V (G) to the set of
nonnegative integers. An (f1, . . . , fs)-partition of a graph G is a partition of V (G)
into V1, . . . , Vs such that the induced subgraph G[Vi] is strictly fi-degenerate for
each i ∈ {1, . . . , s}. Equivalently, the vertices of Vi can be ordered from left to
right such that each vertex in Vi has less than fi(v) neighbors in Vi on the left.

DP-coloring with variable degeneracy was introduced by Nakprasit and
Nakprasit [7] and Sittitrai and Nakprasit [8] as follows. Let F = (f1, . . . , fs)
and fi ∈ Z

+ ∪ {0}, where 1 ≤ i ≤ s. A DP-F -coloring T of a cover (H,L) of G
is a transversal T of (H,L) in which its vertices can be ordered from left to right
so that each element (v, i) in T has less than fi(v) neighbors on the left. We say
that G is DP-F -colorable if (G,H) has a DP-F -coloring for every cover H.

We observe that the restriction in the previous definition is about the number
of neighbors on the left of each element in a transversal. We may employ other
restrictions as needed to different applications. This observation inspires us to
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define the following concept. Let B be a condition imposed on ordered vertices.
A DP-B-coloring of (G,H) is a transversal T with ordered vertices from left to
right such that each (v, c) ∈ T satisfies condition B imposed on each element of
H. In this work, we demonstrate the use of this definition by the condition BA

defined as follows. Let T be a transversal of a cover (H,L) of G. We say that T
is a DP-BA-coloring if vertices in T can be ordered from left to right such that:

(1) For each (v, 1) ∈ T, (v, 1) has no neighbor on the left.

(2) For each (v, c) ∈ T where c 6= 1, (v, c) has at most one neighbor on the left
and that neighbor (if it exists) is adjacent to at most one vertex on the left
of (v, c).

We say that G is DP-BA-k-colorable if every cover (H,L) of a graph G with
k-assignment L has a DP-BA-coloring.

Theorem 3. Every planar graph without 4-cycles or 7-cycles is DP-BA-3-
colorable.

Corollary 4. If G is a planar graph without 4-cycles or 7-cycles, then

(i) G is DP-(0, 2, 2)-colorable.

(ii) V (G) can be partitioned into three sets in which each of them induces a linear

forest and one of them is an independent set.

Proof. Suppose Theorem 3 holds. Then the first part of the corollary follows
immediately from definitions. To obtain the second part, we define edges on H
to match exactly the same colors in L(u) and L(v) for each uv ∈ E(G). One can
see that the set of vertices with color 1 is independent and the set of vertices with
color i induces a linear forest when i = 2 or 3.

2. Forbidden Configurations Due to Cycles

Lemma 5. Let G be a graph without 4-cycles and 7-cycles. Then the following

statements hold.

(1) There are no adjacent 3-faces.

(2) If a 3-face is adjacent to a 5-face, then they share exactly one edge and two

vertices.

(3) A 5-face is not adjacent to two 3-faces.

(4) If δ(G) ≥ 3, then each 6-face is not adjacent to a 3-face.

(5) If δ(G) ≥ 3, then a 3-vertex is not incident to a 3-face and two 5-faces
simultaneously.

Proof. (1) If two 3-faces are adjacent, then G has a 4-cycle, a contradiction.
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(2) If a 3-face and a 5-face share three vertices (so they share one or two
edges), then G has a 4-cycle, a contradiction.

(3) Suppose to the contrary that a 5-faces C is adjacent to two 3-faces. If
those two 3-faces share vertex outside V (C), then G has a 4-cycle, for otherwise
G has a 7-cycle, a contradiction. Thus a 5-face is not adjacent to two 3-faces.

(4) Suppose to the contrary that a 6-face f1 is adjacent to a 3-face f2. First
we suppose f1 is not a simple face. Then its boundary walk forms two 3-cycles
with a common vertex. Thus f1 adjacent to f2 yields a 4-cycle, a contradiction.
Now we suppose f1 is a simple face. Since δ(G) ≥ 3, f1 and f2 share exactly one
edge. If f1 and f2 share exactly two vertices, then G has a 4-cycle or a 7-cycle,
a contradiction. Altogether, f1 is not adjacent to f2.

(5) Suppose that δ(G) ≥ 3. Observe that if a 5-face is adjacent to a 3-face
or another 5-face, then they share exactly one edge and two vertices to avoid a
4-cycle or a 7-cycle. It follows that a 3-vertex incident to a 3-face and two 5-faces
yields a 7-cycle.

3. Proof of Theorem 1

3.1. Structure of a minimal counterexample

Lemma 6. Suppose G is a non-DP-(t1, . . . , tk)-colorable graph but all of its

proper induced subgraphs are DP-(t1, . . . , tk)-colorable. Then the following state-

ments hold.

(1) δ(G) ≥ k.

(2) If ti = d ≥ 1 for each i ∈ {1, . . . , k}, then every neighbor of a k-vertex has

degree at least k + d.

Proof. (1) Suppose to the contrary that G has a vertex v of degree at most
k − 1. Let L be a k-assignment of G and let (H,L) be a cover of G that does
not have a DP-(t1, . . . , tk)-coloring. By our assumption, G′ = G − v has a DP-
(t1, . . . , tk)-coloring T ′. Since d(v) ≤ k − 1, there exists (v, i) ∈ V (H) that does
not have a neighbor in T ′. So, we add (v, i) to T ′ to obtain a desired coloring, a
contradiction.

(2) Suppose to the contrary that u and v are adjacent vertices where d(u) = k
and d(v) ≤ k + d− 1. Let L be a k-assignment of G and let (H,L) be a cover of
G that does not have a DP-(t1, . . . , tk)-coloring. By assumption, G′ = G−{u, v}
has a DP-(t1, . . . , tk)-coloring T ′. Then there is (u, b) ∈ V (H) that does not have
a neighbor in T ′. Suppose (v, c) is adjacent to (u, b) in H. If (v, c) has at most d−1
neighbors in T ′, then we add (u, b) and (v, c) in T ′ to obtain a desired coloring,
a contradiction. Suppose (v, c) has at least d neighbors in T ′. Then there exists
(v, i) ∈ V (H) that does not have a neighbor in T ′. So, we add (u, b) and (v, i) to
T ′ to obtain a desired coloring, a contradiction. This completes the proof.



292 S. Sribunhung, K.M. Nakprasit, K. Nakprasit and P. Sittitrai

The next result immediately follows.

Corollary 7. Suppose G is a non-DP-(1, 1, 1)-colorable graph but all of its proper

induced subgraphs are DP-(1, 1, 1)-colorable. Then the following statements hold.

(1) δ(G) ≥ 3.

(2) There are no adjacent 3-vertices.

Lemma 8. Suppose G is a counterexample to Theorem 1 but all of its proper

induced subgraphs are DP-(1, 1, 1)-colorable. If f is a face of G, then the number

of its incident 3-vertices plus the number of its adjacent 3-faces is at most d(f).

Proof. Let f be a face with a boundary walk v1, v2, . . . , vk. Let fi be a face
sharing an edge vivi+1 with f where subscripts are taken modulo k. We claim
that if d(fi) = d(vi) = 3, then d(fi−1) ≥ 4 and d(vi−1) ≥ 4. Suppose that
d(fi) = d(vi) = 3. It follows from Corollary 7(2) that d(vi−1) ≥ 4. If d(fi−1) = 3,
then there are adjacent 3-cycles, a contradiction. So, the claim holds. It follows
from the claim that the average number of vi and fi with degree 3 for each i is
at most 1. This implies the lemma.

3.2. Discharging procedure

Suppose G is a counterexample to Theorem 1 but all of its proper induced sub-
graphs are DP-(1, 1, 1)-colorable. Let µ(x) = d(x) − 4 be the initial charge
of a vertex or a face x and let µ∗(x) denote the final charge of x after the
discharging process. By the Euler’s formula,

∑
v∈V (G) µ(v) +

∑
f∈F (G) µ(f) =∑

v∈V (G)(d(v) − 4) +
∑

f∈F (G)(d(f) − 4) = −8. We define discharging rules as
follows.

Discharging Rules.

(R1) Each 5+-face gives 1
3 to each adjacent 3-face.

(R2) Each 5-face gives 1
3 to each incident 3-vertex.

(R3) Each 6+-face gives 2
3 to each incident 3-vertex.

We aim to show that the final charge µ∗(x) for each x ∈ V (G) ∪ F (G) is
nonnegative. Since the total of charge is not changed by the rules, we obtain a
contradiction and prove the main result.

Proof. By Corollary 7(1), every vertex v is a 3+-vertex. If v is a 4+-vertex, then
it does not involve in a discharging process and thus µ∗(v) = µ(v) ≥ 0.

Consider a 3-vertex v. If v is not incident to a 3-face, then µ∗(v) ≥ µ(v) +
3 × 1

3 = 0 by (R2) and (R3). If v is incident to a 3-face, then it is incident
to two 5+-faces and one of which is a 6+-face by Lemmas 5(1) and 5(5). Thus
µ∗(v) ≥ µ(v) + 1

3 + 2
3 = 0 by (R2) and (R3).
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Consider a 3-face f. It follows from Lemma 5 that every face adjacent to f
is a 5+-face. Thus µ∗(f) = µ(f) + 3× 1

3 = 0 by (R1).
If f is a 4-face, then its charge is not affected by the discharging procedure

and thus µ∗(f) = µ(f) = 0.
Consider a 5-face f. Then f is incident to at most two 3-vertices by Corollary

7(2) and is adjacent to at most one 3-face by Lemma 5(3). Thus µ∗(f) ≥ µ(f)−
3× 1

3 = 0 by (R1) and (R2).
Consider a 6-face f. Then f is incident to at most three 3-vertices by Corollary

7(2) and is not adjacent to a 3-face by Lemma 5(4). Thus µ∗(f) ≥ µ(f)−3× 2
3 = 0

by (R3).
If a 7-face is a simple face, then G has a 7-cycle, for otherwise G has a 4-cycle.

Thus G does not contain a 7-face.
Consider a k-face f where k ≥ 8. Suppose that f has r incident 3-vertices

and s adjacent 3-faces. We have that µ∗(f) = µ(f) − r × 1
3 − s × 2

3 by (R1)
and (R3). Since r + s ≤ k by Lemma 8 and r ≤ k/2 by Corollary 7(2), we have
r× 2

3 + s× 1
3 = (r+ s)× 1

3 + r× 1
3 ≤ k× 1

3 +
k
2 ×

1
3 = k

2 . Thus µ
∗(f) ≥ µ(f)− k

2 =
k
2 − 4 ≥ 0.

4. Proof of Theorem 3

4.1. Structure of a minimal counterexample

First, we introduce a concept used in the next two lemmas. Let G be a graph with
a vertex v and a coverH. Let T ′ be a DP-BA-coloring of G−v with an appropriate
order R. Adding (v, i) to the right of T ′ is the process to have the transversal
T ′∪{(v, i)} of G with an order such that vertices in T ′ are ordered first according
to the order R and then we put (v, i) at the farthest right. If (v, i) according to
such order satisfies the condition of DP-BA-coloring, then T ′ ∪ {(v, i)} is a DP-
BA-coloring of G since all remaining vertices in T satisfy the condition by the
order R already.

Lemma 9. If G is a non-DP-BA-3-colorable graph but all of its proper induced

subgraphs are DP-BA-3-colorable, then δ(G) ≥ 3.

Proof. Suppose to the contrary that G has a vertex v with degree at most 2.
Let L be a 3-assignment of G and let (H,L) be a cover of G that does not have
a DP-BA-coloring. By minimality, G′ = G − v has a DP-BA-coloring T ′. Since
d(v) ≤ 2, there exists (v, i) ∈ V (H) that does not have a neighbor in T ′. We add
(v, i) to the right of T ′. Since (v, i) does not have a neighbor in T ′, we obtain a
desired coloring. This contradiction completes the proof.

Lemma 10. Suppose G is a non-DP-BA-3-colorable graph but all of its proper

induced subgraphs are DP-BA-3-colorable. If a 3-vertex u in G is adjacent to a
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3-vertex, then u has two 5+-neighbors. Moreover, if x is a 5-neighbor of u, then
x has a 4+-neighbor.

Proof. Let a 3-vertex u be adjacent to x, y and a 3-vertex v. By minimality,
G − {u, v} has a DP-BA-coloring T. Choose (u, cu) ∈ V (H) such that (u, cu) is
not adjacent to vertices in T and choose (v, cv) similarly. If cu 6= 1, or cu = cv = 1
and (u, 1) is not adjacent to (v, 1), then we add (v, cv) and then (u, cu) to the
right of T. Since (v, cv) is not adjacent to any vertices in T and it is the only
vertex that may adjacent to (u, cu), it follows that T ∪{(u, cu), (v, cv)} is a desired
coloring.

By symmetry, it remains to consider the case that cu = cv = 1 and (u, 1)
and (v, 1) are adjacent, and we call this case unfavorable situation. Note that
(u, 2) has exactly one neighbor, say (x, x2) in T, otherwise we can choose 2 or
3 to be cu and we can avoid unfavorable situation. If (x, x2) has at most one
neighbor in T, then we add (u, 2) and subsequently (v, 1) to the right of T. By
assumption, (u, 2) satisfies the condition of a DP-BA-coloring. Moreover, (v, 1)
has no neighbors in T ∪{(u, 2), (v, 1)}, and thus we have a desired coloring. This
contradiction yields that (x, x2) has at least two neighbors in T.

We aim to show that x is a 5+-vertex. If we can add (x, x1) or (x, x3)
where {x1, x2, x3} = {1, 2, 3} to the right of T − {(x, x2)} to get a DP-BA-
coloring T ′ of G − {u, v}, then (u, 2) has no neighbors in T ′. Consequently, we
can avoid unfavorable situation by having cu = 2 and then obtain a desired
coloring which is a contradiction. Thus we cannot add (x, x1) or (x, x3) to the
right of T − {(x, x2)} to get a DP-BA-coloring of G− {u, v}. It follows that each
of (x, x1) and (x, x3) have neighbors in T. Recall that (x, x2) has at least two
neighbors in T. Altogether, x in G has at least five neighbors including u. By
symmetry, y is also a 5+-vertex.

Next we show that a 5-vertex x has a 4+-neighbor. Suppose x is a 5-vertex.
By the above argument, (x, x2) has exactly two neighbors, (x, x1) has exactly
one neighbor, and (x, x3) has exactly one neighbor in T. By symmetry, assume
x3 6= 1 and (x, x3) is adjacent to only (z, cz) in T. If we can add (z, c′z) to the
right of T − {(x, x2), (z, cz)} where c′z 6= cz to obtain a DP-BA-coloring T ′′ of
G−{x, u, v}, then we can add (x, x3) that has no neighbors in T ′′ to the right of
T ′′ to obtain a DP-BA-coloring of G−{u, v}. Recall that (u, 2) is adjacent to only
(x, x2) in T. Consequently, (u, 2) has no neighbors in T ′′∪{(x, x3)}. It follows that
we can avoid unfavorable situation by having T ′′ ∪ {(x, 3)} as a DP-BA-coloring
of G − {u, v} and choosing cu = 2. Thus we assume that we cannot add (z, c′z)
to the right of T − {(x, x2), (z, cz)} to obtain a DP-BA-coloring of G− {x, u, v}.
One can use a similar argument for the vertex x to prove that z is a 4+-vertex.
Thus x is a 5-vertex with a 4+-neighbor or a 6+-vertex, and so is y by symmetry.
This completes the proof.
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4.2. Discharging procedure

Suppose G is a counterexample to Theorem 3 but all of its proper induced
subgraphs are DP-BA-3-colorable. Let µ(x) = d(x) − 4 be the initial charge
of a vertex or a face x and let µ∗(x) denote the final charge of x after the
discharging process. By the Euler’s formula,

∑
v∈V (G) µ(v) +

∑
f∈F (G) µ(f) =∑

v∈V (G)(d(v) − 4) +
∑

f∈F (G)(d(f) − 4) = −8. We call a 3-vertex v a bad 3-
vertex if v is adjacent to another 3-vertex, otherwise we call it a good 3-vertex.
We define discharging rules as follows.

Discharging Rules.

(R0) Each 5+-vertex gives 1
4 to each adjacent bad 3-vertex.

(R1) Each 5+-face gives 1
3 to each adjacent 3-face.

(R2) Each 5-face gives 1
6 to each incident bad 3-vertex and 1

3 to each incident
good 3-vertex.

(R3) Each 6+-face gives 1
3 to each incident bad 3-vertex and 2

3 to each incident
good 3-vertex.

We aim to show that the final charge µ∗(x) for each x ∈ V (G) ∪ F (G) is
nonnegative. Since the total of charge is not changed by the rules, we obtain a
contradiction and prove the main result.

Proof. By Lemma 9, every vertex v is a 3+-vertex.
Consider a good 3-vertex v. If v is not incident to a 3-face, then µ∗(v) ≥

µ(v)+ 3× 1
3 = 0 by (R2) and (R3). If v is incident to a 3-face, then it is incident

to two 5+-faces and one of which is a 6+-face by Lemmas 5(1) and 5(5). Thus
µ∗(v) ≥ µ(v) + 1

3 + 2
3 = 0 by (R2) and (R3).

Consider a bad 3-vertex v. By Lemma 10, v is adjacent to two 5+-vertices. If v
is not incident to a 3-face, then µ∗(v) ≥ µ(v)+2× 1

4+3× 1
6 = 0 by (R0), (R2), and

(R3). If v is incident to a 3-face, then it is incident to two 5+-faces one of which
is a 6+-face by Lemmas 5(1) and 5(1)(5). Thus µ∗(v) ≥ µ(v)+ 2× 1

4 +
1
6 +

1
3 = 0

by (R0), (R2), and (R3).
If v is a 4-vertex, then it does not involve in a discharging process and thus

µ∗(v) = µ(v) = 0.
Consider a 5-vertex v. If v is adjacent to a bad 3-vertex, say u, then v has

a 4+-neighbor by Lemma 10. Consequently, v is adjacent to at most four bad
3-vertices. Thus µ∗(v) ≥ µ(v)− 4× 1

4 = 0 by (R0).
Consider a k-vertex v where k ≥ 6. Then µ∗(v) ≥ µ(v) − k × 1

4 = (k − 4) −
k × 1

4 > 0 by (R0).
Consider a 3-face f. It follows from Lemma 5(1) that every face adjacent to

f is a 5+-face. Thus µ∗(f) = µ(f) + 3× 1
3 = 0 by (R1).

If f is a 4-face, then its charge is not affected by the discharging procedure
and thus µ∗(f) = µ(f) = 0.
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Consider a 5-face f. From Lemma 5(3), f is adjacent to at most one 3-face.
If f is incident to at most two 3-vertices, then µ∗(f) ≥ µ(f)− 1

3 − 2× 1
3 = 0 by

(R1) and (R2). If f is incident to at least three 3-vertices, then f is incident to
exactly three 3-vertices in which two of them are bad 3-vertices by Lemma 10. It
follows that µ∗(f) ≥ µ(f)− 1

3 − 2× 1
6 − 1

3 = 0 by (R1) and (R2).

Consider a 6-face f. From Lemma 5(4), f is not adjacent to a 3-face. If f
is incident to at most three 3-vertices, then µ∗(f) ≥ µ(f) − 3 × 2

3 = 0 by (R3).
If f is incident to at least four 3-vertices, then f is incident to exactly four 3-
vertices in which all of them are bad 3-vertices by Lemma 10. It follows that
µ∗(f) = µ(f)− 4× 1

3 > 0 by (R3).

If a 7-face is a simple face, then G has a 7-cycle, otherwise G has a 4-cycle.
Thus G does not contain a 7-face.

Finally, consider a k-face f where k ≥ 8. Assume that all subscripts are taken
modulo k. Let v1, v2, . . . , vk be the vertices on the boundary of f, and let fi be
a face sharing an edge vivi+1 with f. We construct a new discharging rule for f
such that each of its incident 3-vertices and adjacent 3-faces gains charge by the
new rule not less than it gains by the original rules.

First, let f send 1
2 to each vi. If fi is a 3-face, then let α(i) = 1, otherwise

α(i) = 0. If vi is a 3-vertex, then let β(i) = 1, otherwise β(i) = 0. Let vi send

charge α(i)
6 to fi and β(i+1)(14 −

α(i)
6 ) to vi+1. Similarly, let vi send charge α(i−1)

6

to fi−1 and β(i− 1)(14 −
α(i−1)

6 ) to vi−1. Then each 3-face fi gains 2×
1
6 from vi

and vi+1, and each 4+-vertex gains a nonnegative charge by the new rule.

Consider a good 3-vertex vi. Note that at most one of fi−1 and fi is a 3-face
to avoid a 4-cycle. By symmetry, assume fi−1 is not a 3-face. Then vi receives

1
2

from f, receives 1
4 from vi−1, receives at least

1
4 −

1
6 = 1

12 from vi+1, and sends at
most 1

6 to fi. Thus vi gains charge at least 1
2 + 1

4 + 1
12 − 1

6 = 2
3 by the new rule.

Consider bad 3-vertices vi and vi+1. By Lemma 10, vi−1 and vi+2 are 5+-
vertices. Since charge sent from vi to vi+1 and charge sent from vi+1 to vi are the
same, we ignore this distribution in the calculation. Note that if fi is a 3-face,
then none of fi−1 and fi+1 are 3-faces. Assume fi is a 3-face. Then vi receives

1
2

from f, receives 1
4 from vi−1, and sends 1

6 to fi. Thus vi gains
1
2 +

1
4 −

1
6 = 7

12 > 1
3

by the new rule. Assume fi is not a 3-face. Then vi receives
1
2 from f, receives

at least 1
4 −

1
6 = 1

12 from vi−1, and sends at most 1
6 to fi−1. Thus vi gains at least

1
2 + 1

12 − 1
6 = 5

12 > 1
3 by the new rule.

Altogether, let f send charge at most k
2 with a distribution to its incident

3-faces and adjacent 3-faces that satisfies the original rules. Thus µ∗(f) ≥ µ(f)−
k
2 = k

2 − 4 ≥ 0.

This completes the proof.
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