
Discussiones Mathematicae
Graph Theory 43 (2023) 825–840
https://doi.org/10.7151/dmgt.2403

HOP DOMINATION IN CHORDAL BIPARTITE GRAPHS

Michael A. Henning 1

Department of Pure and Applied Mathematics
University of Johannesburg

Auckland Park, 2006 South Africa

e-mail: mahenning@uj.ac.za

Saikat Pal2

and

D. Pradhan

Department of Mathematics & Computing
Indian Institute of Technology (ISM), Dhanbad

e-mail: palsaikat67@gmail.com
dina@iitism.ac.in

Abstract

In a graph G, a vertex is said to 2-step dominate itself and all the vertices
which are at distance 2 from it in G. A set D of vertices in G is called a hop
dominating set of G if every vertex outside D is 2-step dominated by some
vertex of D. Given a graph G and a positive integer k, the hop domination
problem is to decide whether G has a hop dominating set of cardinality at
most k. The hop domination problem is known to be NP-complete for bipar-
tite graphs. In this paper, we design a linear time algorithm for computing
a minimum hop dominating set in chordal bipartite graphs.
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1. Introduction

A set D ⊆ V of a graph G = (V,E) is a dominating set of G if every vertex
in V \ D is adjacent to a vertex in D. The domination number, γ(G), is the
minimum cardinality of a dominating set of G. The notion of domination and its
variations in graphs has been studied a great deal; a rough estimate says that it
occurs in more than 6000 papers to date. We refer the reader to the two so-called
domination books by Haynes, Hedetniemi, and Slater [11, 12] for fundamental
concepts in domination in graphs. The distance between two vertices x and y
in a connected graph G, denoted dG(x, y), is the length of the shortest x, y-path
in G. For an integer k ≥ 1, a vertex in a graph G is said to k-step dominate
itself and all the vertices that are at distance exactly k apart from it. A set
D ⊆ V of a graph G = (V,E) is a k-step dominating set of G if every vertex
in V is k-step dominated by some vertex of D. The k-step domination number,
γkstep(G), of G, is the minimum cardinality of a k-step dominating set of G. In
1995 Chartrand et al. [6] initiated the concept of 2-step domination in graphs,
which was subsequently studied in [4, 9, 15].

The hop domination in graphs is closely related to the 2-step domination
number. The concept of hop domination in graphs was introduced by Ayyaswamy
and Natarajan [1]. A set D ⊆ V of a graph G = (V,E) is a hop dominating set of
G if every vertex of V \D is 2-step dominated by some vertex of D. The minimum
cardinality of a hop dominating set of a graph G is called the hop domination
number of G and is denoted by γh(G).

Natarajan and Ayyaswamy [19] studied when the hop domination number
is equal to other domination parameters. In [20], they also obtained an upper
bound on hop domination number of the subdivision graph of any connected
graph G. Ayyaswamy et al. [2] established upper and lower bounds on the
hop domination number of a tree together with the characterization of extremal
trees. Natarajan et al. [21] determined the hop domination number in some
special family of graphs. Pabilona and Rara [24] characterized the connected
hop dominating set in graphs under some binary operations and calculated the
connected hop domination number of those graphs. Rakim et al. [26] studied
the concept of perfect hop domination in graphs and determined the perfect
hop domination number in some graph classes. Henning and Rad [13] presented
probabilistic upper bounds for the hop domination number of a graph.

Given a graph G and a positive integer k, the hop domination problem is to
decide whether G has a hop dominating set of cardinality at most k. Henning
and Rad [13] proved that the hop domination problem is NP-complete for planar
bipartite graphs and planar chordal graphs. Later, Jalalvand and Rad [16] de-
termined the complexity results on k-step and k-hop dominating sets in graphs.
Henning et al. [14] presented some hardness results on the hop domination prob-
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lem and designed a linear time algorithm to compute a minimum hop dominating
set in bipartite permutation graphs. Chen and Wang [7] investigated the rela-
tionship between the total domination number and the hop domination number
in diamond-free graphs. Kundu and Majumder [17] gave a linear time algorithm
to compute an optimal k-hop dominating set of a tree for k ≥ 1.

A chord of a cycle is an edge joining two nonconsecutive vertices of the cycle.
A bipartite graph G is called a chordal bipartite graph if every cycle of length at
least 6 has a chord. Most domination problems and their variations are NP-hard
for chordal bipartite graphs, as illustrated in Table 1 where we consider fun-
damental domination type parameters including domination, total domination,
independent domination, connected domination, locating-domination, locating-
total domination, and paired-domination. In Table 1, we have taken the decision
versions of the variations of the domination problems.

Name of the problem Complexity Status

Domination NP-complete [18]

Total domination Polynomial [8, 23]

Locating-domination NP-complete [10]

Locating-total domination NP-complete [25]

Connected domination NP-complete [18]

Independent Domination NP-complete [8]

Paired-domination Polynomial [22]

Table 1. Complexities of variations of domination problems in chordal bipartite graphs.

Chordal bipartite graphs are characterized in terms of weak elimination or-
derings [27] and strong T -elimination orderings [5]. Given a weak elimination
ordering of a chordal bipartite graph G, a strong T -elimination ordering of G can
be computed in linear time [23]. In this paper, given a weak elimination ordering
of a chordal bipartite graph, we present a linear time algorithm to compute a
minimum hop dominating set of the chordal bipartite graph.

2. Terminology and Notation

We use the standard notation [k] = {1, . . . , k}. Let G = (V,E) be a graph with
vertex set V = V (G) and edge set E = E(G). The order of G is n(G) = |V (G)|
and the size of G is m(G) = |E(G)|. Two vertices x and y in G are adjacent if
they are joined by an edge e, that is, if uv ∈ E(G). Two vertices in a graph G
are independent if they are not adjacent. A set of pairwise independent vertices
in G is an independent set of G. The open neighborhood of a vertex v in G
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is the set NG(v) = {u ∈ V | uv ∈ E(G)} and the closed neighborhood of v is
NG[v] = {v} ∪ NG(v). The degree of a vertex v is |NG(v)| and is denoted by
dG(v). We simply use N(v) and N [v] if the context of the graph is clear. A
vertex is isolated if the degree of the vertex is 0 and is pendant if the degree of
the vertex is 1. For a set A of vertices in G, the subgraph of G induced by A
is denoted by G[A]. The distance between two vertices x and y in a connected
graph G, denoted by dG(x, y), is the length of the shortest x, y- path in G. For a
vertex v in G, we define SN(v) as the set of vertices at distance exactly 2 from
v in G, i.e., SN(v) = {u | dG(u, v) = 2}, and SN [v] = SN(v) ∪ {v}. A vertex
u in a graph G is said to 2-step dominate itself and all the vertices that are at
distance exactly 2 from u.

A walk in a graph is a sequence of vertices in which consecutive vertices are
adjacent. A path is a walk in which all the vertices are different, while a cycle is
a walk whose first and last vertex are the same and all other vertices are distinct.
A chord in a cycle is an edge between two nonconsecutive vertices in the cycle. A
graph G is bipartite if V (G) can be partitioned into two independent sets X and
Y such that every edge joins a vertex in X to a vertex in Y . The partition (X,Y )
of V (G) is called a bipartition of G. A bipartite graph G with bipartition (X,Y )
and edge set E(G) is denoted by G = (X,Y,E). A bipartite graph G = (X,Y,E)
is a complete bipartite graph if every vertex of X is adjacent to every vertex of Y .
For a bipartite graph G = (X,Y,E), we use the notation nx = |X| and ny = |Y |.
A graph G is said to be a chordal bipartite graph if G is bipartite and every cycle
of length at least 6 has a chord. Chordal bipartite graphs form a subclass of
bipartite graphs and a superclass of bipartite permutation graphs [3].

A vertex v of a graph G is called a weak simplicial vertex if NG(v) is an
independent set of G and for every u1, u2 ∈ NG(v), either NG(u1) ⊆ NG(u2) or
NG(u2) ⊆ NG(u1). An ordering σ = (v1, v2, . . . , vn) of the vertices of G is called
a weak elimination ordering of G if for every i ∈ [n], vi is weak simplicial in
Gi = G[{vi, vi+1, . . . , vn}] and for every vj , vk ∈ NGi

(vi) with j < k, NGi
(vj) ⊆

NGi
(vk).

Let G = (X,Y,E) be a bipartite graph, and let α = (x1, x2 . . . , xnx) and
β = (y1, y2, . . . , yny) be some orderings of X and Y , respectively. The ordering
α and β is called a strong T -elimination ordering of G if for each i ∈ [ny] and
j, k ∈ [nx] with j < k, where xj , xk ∈ NG(yi), we have that NG′(xj) ⊆ NG′(xk),
where G′ = G

[

{yi, yi+1, . . . , yny} ∪ {x1, x2, . . . , xnx}
]

.

Chordal bipartite graphs are characterized in terms of a weak elimination or-
dering [27] and are also characterized in terms of a strong T -elimination ordering
[5]. Given a chordal bipartite graph G = (V,E), a weak elimination ordering of
G can be computed in O(min{m log n, n2}) time [27].

For notational convenience, for a given set X = {x1, x2 . . . , xnx}, we de-
note Xi as the set {xi, xi+1, . . . , xnx} for every i ∈ [nx]. Similarly given Y =
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{y1, y2, . . . , yny}, we denote Yi as the set {yi, yi+1, . . . , yny} for every i ∈ [ny].
The following relation between a weak elimination ordering and a strong T -
elimination ordering of a chordal bipartite graph G = (X,Y,E) is established
in [23].

Figure 1. A chordal bipartite graph G.

Theorem 1 [23]. Given a weak elimination ordering σ of a chordal bipartite
graph G = (X,Y,E), a strong T -elimination ordering σX = (x1, x2, . . . , xnx) and
σY = (y1, y2, . . . , yny) of G can be obtained in O(n) time such that

(a) for each i ∈ [nx], we have NG′(yj) ⊆ NG′(yk), where G′ = G[Xi ∪ Y ] and
yj , yk ∈ NG′(xi) with j < k;

(b) for each i ∈ [ny], we have NG′′(xj) ⊆ NG′′(xk), where G′′ = G[X ∪ Yi] and
xj , xk ∈ NG′′(yi) with j < k.

Let σX = (x1, x2, . . . , xnx) and σY = (y1, y2, . . . , yny) be a strong T -elimi-
nation ordering of G and let yj ∈ Y . Let i = max{k | yjxk ∈ E(G)}. Then it can
be observed that yj is a pendant vertex of the graph G′ = G[Xi ∪ Y ]. Therefore,
we have the following lemma.

Lemma 2. If σX = (x1, x2, . . . , xnx) and σY = (y1, y2, . . . , yny) is a strong T -
elimination ordering of G and yj ∈ Y , then there exists i ∈ [nx] such that yj is a
pendant vertex in G′ = G[Xi ∪ Y ].

3. Hop Domination in Chordal Bipartite Graphs

In this section, we present a polynomial time algorithm for computing a mini-
mum hop dominating set in chordal bipartite graphs. Given a weak elimination
ordering of a chordal bipartite graph G = (X,Y,E) of order n and size m, our
algorithm takes O(n + m) time to compute a minimum hop dominating set of
G. If G is a disconnected graph having components G1, G2, . . . , Gr where r ≥ 2,
then γh(G) =

∑r
i=1 γh(Gi). Hence it suffices for us to consider only connected

chordal bipartite graphs for the purpose of designing our algorithm.
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Let nx = |X| and ny = |Y |. For i ∈ [nx] and for a vertex xb ∈ X, we use the
notation SNi(xb) = Xi∩{xc ∈ X | dG(xc, xb) = 2} and SNi[xb] = SNi(xb)∪{xb}.
Similarly, for i ∈ [ny] and for a vertex ya ∈ Y , we use the notation SNi(ya) =
Yi ∩ {yc ∈ Y | dG(yc, ya) = 2} and SNi[ya] = SNi(ya) ∪ {ya}.

Lemma 3. Let σX = (x1, x2, . . . , xnx) and σY = (y1, y2, . . . , yny) be a strong
T -elimination ordering of a connected chordal bipartite graph G = (X,Y,E) and
xp, xi ∈ X such that dG(xp, xi) = 2. If a = max{k | xiyk ∈ E} and b = max{k |
yaxk ∈ E}, then SNi(xp) ⊆ SNi[xb].

Proof. Let xp′ ∈ SNi(xp) be arbitrary. By the definition of b, we have b ≥ i. If
p′ = i, then it is clear that xp′ = xi ∈ SNi[xb]. If p

′ = b, then xp′ = xb ∈ SNi[xb].
So assume that p′ 6= i and p′ 6= b. Since dG(xp, xi) = 2 and dG(xp, xp′) = 2,
there exist vertices yq and yq′ such that yq ∈ N(xp) ∩ N(xi) and yq′ ∈ N(xp) ∩
N(xp′), respectively. If q′ = a, then dG(xp′ , xb) = dG(xp′ , yq′) + dG(yq′ , xb) =
dG(xp′ , yq′) + dG(ya, xb) = 2. So xp′ ∈ SNi[xb] and thus we are done. Hence
we may assume that q′ 6= a. If q′ = q, then yq′ ∈ N(xi); thus q′ < a by the
definition of a. Since σX and σY form a strong T -elimination ordering of G, by
Theorem 1(a), xp′ ∈ NG′(yq′) ⊆ NG′(ya), where G

′ = G[Xi ∪Y ]. Now dG(xp′ , xb)
= dG(xp′ , ya)+ dG(ya, xb) = 2. So xp′ ∈ SNi[xb] and thus we are done. Hence we
may assume that q 6= q′. Let G′ = G[Xi ∪ Y ] and G′′ = G[Xp ∪ Y ].

Assume that p < i. We now prove that xp′ ∈ N(ya). If q < q′, then, since
yq, yq′ ∈ NG′′(xp), by Theorem 1(a), xi ∈ NG′′(yq) ⊆ NGp(yq′). Now yq′ , ya ∈
NG′(xi). By Theorem 1(a), xp′ ∈ NG′(yq′) ⊆ NG′(ya). If q′ < q, then by
Theorem 1(a), xp′ ∈ NG′′(yq′) ⊆ NG′′(yq). Since yq, ya ∈ N(xi), by Theorem
1(a), xp′ ∈ NG′(yq) ⊆ NG′(ya). Now dG(xp′ , xb) = dG(xp′ , ya) + dG(ya, xb) = 2.
This implies that xp′ ∈ SNi[xb].

Now assume that p > i. If p = b, then dG(xp′ , xp) = 2 = dG(xp′ , xb) and
hence xp′ ∈ SNi[xb]. So assume that p 6= b. Recall that p′ 6= b and p′ 6= i.
We now prove that xp′ ∈ N(ya). If q < q′, then, since yq, ya ∈ N(xi), by
Theorem 1(a), xp ∈ NG′(yq) ⊆ NG′(ya). Now yq′ , ya ∈ N(xp), and so by Theorem
1(a), xp′ ∈ NG′′(yq′) ⊆ NG′′(ya). This implies that xp′ ∈ SNi(xb). If q

′ < q, then
q′ < q ≤ a, by definition of a. If q = a, then xp ∈ N(ya). If q < a, then since
yq, ya ∈ N(xi), by Theorem 1(a), xp ∈ NG′(yq) ⊆ NG′(ya). Now yq′ , ya ∈ N(xp)
with q′ < q ≤ a. Thus, by Theorem 1(a), xp′ ∈ NG′′(yq′) ⊆ NG′′(ya). Now
dG(xp′ , xb) = dG(xp′ , ya) + dG(ya, xb) = 2. This implies that xp′ ∈ SNi[xb].

Similar to Lemma 3, the following lemma can also be proved.

Lemma 4. Let σX = (x1, x2, . . . , xnx) and σY = (y1, y2, . . . , yny) be a strong
T -elimination ordering of a connected chordal bipartite graph G = (X,Y,E) and
yp, yi ∈ Y such that dG(yp, yi) = 2. If a = max{k | yixk ∈ E} and b = max{k |
xayk ∈ E}, then SNi(yp) ⊆ SNi[yb].
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Now we present our algorithm, namely HDS-CBG(G) to compute a mini-
mum hop dominating set in a given connected chordal bipartite graph G. The
algorithm processes the vertices x1, x2, . . . , xnx with respect to a strong T -elimi-
nation ordering σX = (x1, x2, . . . , xnx) and σY = (y1, y2, . . . , yny) of G and at
each iteration i ∈ [nx], our algorithm selects new vertices to add to the set HD if
xi is not 2-step dominated or there is a pendant vertex v ∈ N(xi) in G′, where
G′ = G[Xi∪Y ] such that v is not 2-step dominated by the set HD constructed so
far. To achieve this, at each iteration i ∈ [nx], our algorithm proceeds as follows.

• An array D is maintained on the vertices of G to track whether a vertex v of
G is 2-step dominated or not by the set HD constructed so far. In particular,
D[v] = 1 if v is 2-step dominated by HD; otherwise D[v] = 0. Initially,
D[v] = 0 for all v ∈ V (G).

• In the Lines 6–9, the algorithm checks whether the vertices of the set N [xi]
in G′ are 2-step dominated or not by the set HD constructed so far.

• In the Lines 10-18, the algorithm checks the two conditions (a) D[xi] = 0 or
not, and (b) NG′(xi) has a pendant vertex v such that D[v] = 0, and adds
new vertices to the set HD following some rules. All details are described in
the algorithm.

For every i ∈ [nx], we define ℓ(i) and ρ(i) as follows.

• ℓ(i) = max{k | xiyk ∈ E(G)} and ρ(i) = max{k | xkyℓ(i) ∈ E(G)}.

In Table 2, we explain the execution of the algorithm HDS-CBG(G) on the
chordal bipartite graph G shown in Figure 1. Note that in Table 2, we have
considered those iterations of the algorithm in which some vertices are selected.
In Table 2, we have a column, namely “The set HD”. Initially, HD = ∅. Then
the updated set HD is described for different iterations.

For each i ∈ [nx], let HDi be the set HD computed at the end of the i-
th iteration of the algorithm. The following lemmas can be observed from the
algorithm HDS-CBG(G).

Lemma 5. If xi is the considered vertex for i ∈ [nx] at some point of the algo-
rithm HDS-CBG(G), then the following are true.

(a) D[v] = 1 for all v ∈
⋃

s∈[i−1]N [xs].

(b) If xi /∈ HDi−1 and xi has a neighbor v such that N(v) ∩ HDi−1 6= ∅, then xi
is 2-step dominated by HDi−1.

(c) If N(xi) ∩HDi−1 6= ∅, then every v ∈ N(xi) is 2-step dominated by HDi−1.

Notice that HD0 = ∅. At the termination of the algorithm HDS-CBG(G),
by Lemma 5, HDnx is a hop dominating set of G. Therefore, to prove that HDnx

is a minimum hop dominating set of G, it is sufficient to prove that there is a
minimum hop dominating set S∗ of G such that HDnx ⊆ S∗. To prove this, we
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Algorithm 1: HDS-CBG(G)

Input: A connected chordal bipartite graph G = (X,Y,E), where

|X| = nx with a weak elimination ordering of G;

Output: A hop dominating set HD of G;

1 Compute σX = (x1, x2, . . . , xnx) and σY = (y1, y2, . . . , yny), a strong

T -elimination ordering of G;

2 D[v] = 0 for all v ∈ X ∪ Y ;

3 Initialize HD = ∅;

4 for (i = 1 to nx) do

5 Let G′ = G[Xi ∪ Y ];

6 if (xi /∈ HD and xi has a neighbor v such that N(v) ∩HD 6= ∅) then

/* Case 1 */

7 D[xi] = 1;

8 if (N(xi) ∩HD 6= ∅) then /* Case 2 */

9 D[u] = 1 for all u ∈ N(xi);

10 if (D[xi] = 0 and NG′(xi) has a pendant vertex v such that D[v] = 0)

then /* Case 3 */

11 HD = HD ∪ {xρ(i), yℓ(i)};

12 D[u] = 1 for all u ∈ N [xi] and D[xρ(i)] = 1;

13 else if (D[xi] = 0 and NG′(xi) has no pendant vertex v such that

D[v] = 0) then /* Case 4 */

14 HD = HD ∪ {xρ(i)};

15 D[xi] = 1 and D[xρ(i)] = 1;

16 else if (D[xi] 6= 0 and NG′(xi) has a pendant vertex v such that

D[v] = 0) then /* Case 5 */

17 HD = HD ∪ {yℓ(i)};

18 D[u] = 1 for all u ∈ N(xi);

19 return HD;
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use induction on i, i ∈ [nx] ∪ {0}, and prove that each HDi, i ∈ [nx] ∪ {0}, is
contained in some minimum hop dominating set of G. Since HD0 = ∅, the base
case is true. Assume that i ≥ 1 and that the set HDi−1 is contained in some
minimum hop dominating set S′ of G. We now show that HDi is contained in
some minimum hop dominating set of G. For this purpose, we proceed with a
series of lemmas. In each lemma, we construct a minimum hop dominating set of
G containing HDi from the minimum hop dominating set S′ of G. We recall our
earlier notation ℓ(i) = max{k | xiyk ∈ E(G)} and ρ(i) = max{k | xkyℓ(i) ∈ E(G)}
which will be used in the following lemmas. In each of the lemma, we assume
that σX = (x1, x2, . . . , xnx) and σY = (y1, y2, . . . , yny) is a strong T -elimination
ordering of the graph G = (X,Y,E).

Lemma 6. Let S′ be a minimum hop dominating set of G such that HDi−1 ⊆ S′

and G′ = G[Xi ∪ Y ]. If D[xi] = 0 and G′ has a pendant vertex yj ∈ N(xi) such
that D[yj ] = 0, then there is a minimum hop dominating set of G containing
HDi−1 ∪ {xρ(i), yℓ(i)}.

Proof. Let xa ∈ S′ be the vertex that 2-step dominates xi and yb ∈ S′ be the
vertex that 2-step dominates yj . Since D[xi] = 0 and D[yj ] = 0, we note that
xa, yb /∈ HDi−1. We proceed further with proving the following claims.

Claim 7. If b 6= j, then there is a minimum hop dominating set containing
HDi−1 ∪ {xρ(i), yℓ(i)}.

Proof. Since b 6= j, we have dG(yj , yb) = 2. By Lemma 4, SNj(yb) ⊆ SNj [yℓ(i)].
By Lemma 5, the vertices from {x1, x2 . . . , xi−1} ∪ {y1, y2, . . . , yj−1} are 2-step
dominated by HDi−1.

If a = i and ρ(i) = i, then (S′\{yb})∪{yℓ(i)} is a minimum hop dominating set
of G containing HDi−1∪{xρ(i), yℓ(i)}. If a = i and ρ(i) 6= i, then dG(xi, xρ(i)) = 2
and by Lemma 3, SNi(xi) ⊆ SNi[xρ(i)]. Thus, (S′ \ {xa, yb}) ∪ {xρ(i), yℓ(i)} is a
minimum hop dominating set of G containing HDi−1 ∪ {xρ(i), yℓ(i)}.

If a 6= i, then dG(xi, xa) = 2. By Lemma 3, we have SNi(xa) ⊆ SNi[xρ(i)],
i.e., the vertices of the set {xi, xi+1, . . . , xnx} that are 2-step dominated by xa are
2-step dominated by xρ(i). If a < i, then by Lemma 5, xa is 2-step dominated
by HDi−1. If a > i, then let xiydxa be a shortest path between xi and xa. Then
yc, yℓ(i) ∈ NG′(xi) with c ≤ ℓ(i). By Theorem 1(a), xa ∈ NG′(yc) ⊆ NG′(yℓ(i)).
This implies that xa ∈ SNi[xρ(i)]. Hence, (S

′\{xa, yb})∪{xρ(i), yℓ(i)} is a minimum
hop dominating set ofG containing HDi−1∪{xρ(i), yℓ(i)}. This completes the proof
of Claim 7.

Claim 8. If b = j, then there is a minimum hop dominating set containing
HDi−1 ∪ {xρ(i), yℓ(i)}.
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Itera- Consider- Conditions xρ(i), yℓ(i) Applied The set HD Update

tion i ed vertex Case

1 x1 D[x1] = 0 and xρ(1) = x3 Case 3 HD = D[x1] = 1,
NG′ (x1) has a yℓ(1) = y3 HD ∪ {x3, y3} D[y1] = 1,
pendant vertex y1 D[x3] = 1,
with D[y1] = 0 D[y3] = 1

2 x2 (i) x2 /∈ HD and (i)Case 1 (i) HD = HD (i)D[x2] = 1
x2 has a neighbor
y3 with N(y3) ∩HD
= {x3}

(ii) N(x2) ∩HD = (ii)Case 2 (ii) HD = HD (ii)D[y2] = 1,
{y3} D[y4] = 1

3 x3 N(x3) ∩HD = {y3} Case 2 HD = HD D[y5] = 1,
D[y6] = 1

4 x4 x4 /∈ HD and x4 Case 1 HD = HD D[x4] = 1
has a neighbor y5
with N(y5) ∩HD
= {x3}

5 x5 (i) x5 /∈ HD and (i)Case 1 (i) HD = HD (i)D[x5] = 1
x5 has a neighbor
y6 with N(y6) ∩HD
= {x3}
(ii) D[x5] = 1 and (ii)yℓ(5) = y9 (ii)Case 5 (ii) HD = (ii)D[y7] = 1,
NG′ (x5) has a HD ∪ {y9} D[y8] = 1,
pendant vertex y7 D[y9] = 1
with D[y7] = 0

6 x6 D[x6] = 0 and xρ(6) = x7 Case 4 HD = D[x6] = 1,
NG′ (x6) has no HD ∪ {x7} D[x7] = 1
pendant vertex v
with D[v] = 0

7 x7 N(x7) ∩HD = {y9} Case 2 HD = HD D[y10] = 1

8 x8 x8 /∈ HD and x8 Case 1 HD = HD D[x8] = 1
has a neighbor y10
with N(y10) ∩HD =
{x7}

9 x9 D[x9] = 0 and xρ(9) = x9 Case 3 HD = D[x9] = 1,
NG′ (x9) has a pen- yℓ(9) = y12 HD ∪ {x9, y12} D[y11] = 1,
dant vertex y11 D[y12] = 1
with D[y11] = 0

Table 2. Illustration of the algorithm HDS-CBG(G) on the graph G shown in Figure 1.

Proof. If ℓ(i) 6= j, then by Lemma 4, SNj(yb) ⊆ SNj [yℓ(i)]. Thus, (S′ \ {yb}) ∪
{yℓ(i)} is a minimum hop dominating set of G containing HDi−1∪{yℓ(i)} in which
yj is 2-step dominated by yℓ(i). Hence, by Claim 7, we obtain a minimum hop
dominating set of G containing HDi−1 ∪ {xρ(i), yℓ(i)}. So we may assume that
ℓ(i) = j, implying that b = ℓ(i) = j. If a = i and ρ(i) = i, then S′ is the minimum
hop dominating set of G containing HDi−1 ∪ {xρ(i), yℓ(i)}. If a = i and ρ(i) 6= i,
then dG(xi, xρ(i)) = 2 and by Lemma 3, SNi(xi) ⊆ SNi[xρ(i)]. So (S′ \ {xa}) ∪
{xρ(i)} is a minimum hop dominating set of G containing HDi−1 ∪ {xρ(i), yℓ(i)}.
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If a 6= i, then dG(xi, xa) = 2. By Lemma 3, we have SNi(xa) ⊆ SNi[xρ(i)],
i.e., the vertices of the set {xi, xi+1, . . . , xnx} that are 2-step dominated by xa are
2-step dominated by xρ(i). If a < i, then by Lemma 5, xa is 2-step dominated by
HDi−1. If a > i, then let xiydxa be a shortest path between xi and xa. Then,
yc, yℓ(i) ∈ NG′(xi) with c ≤ ℓ(i). By Theorem 1(a), xa ∈ NG′(yc) ⊆ NG′(yℓ(i)).
This implies that xa ∈ SNi[xρ(i)]. Therefore, (S′ \ {xa}) ∪ {xρ(i)} is a minimum
hop dominating set of G containing HDi−1 ∪ {xρ(i), yℓ(i)}. This completes the
proof of Claim 8.

We now return to the proof of Lemma 6. If b 6= j, then by Claim 7, we obtain
a minimum hop dominating set of G containing HDi−1 ∪ {xρ(i), yℓ(i)}. If b = j,
then by Claim 8, we obtain a minimum hop dominating set S′′ of G containing
HDi−1 ∪ {xρ(i), yℓ(i)}. This completes the proof of Lemma 6.

Lemma 9. Let S′ be a minimum hop dominating set of G such that HDi−1 ⊆ S′

and G′ = G[Xi ∪ Y ]. If D[xi] = 0 and NG′(xi) has no pendant vertex v such
that D[v] = 0, then there is a minimum hop dominating set of G containing
HDi−1 ∪ {xρ(i)}.

Proof. Let xa ∈ S′ be a vertex that 2-step dominates xi. Since D[xi] = 0, we
have xa /∈ HDi−1. Clearly, by definition of ρ(i), we have ρ(i) ≥ i.

First assume that a = i. If ρ(i) = i, then a = i = ρ(i) and hence S′ is a
minimum hop dominating set of G containing HDi−1 ∪ {xρ(i)}. If ρ(i) 6= i, then
dG(xi, xρ(i)) = 2 and by Lemma 3, SNi(xa) ⊆ SNi[xρ(i)]. Since by Lemma 5,
every vertex of the set {x1, x2, . . . , xi−1} ∪ {y1, y2, . . . , yj−1} is 2-step dominated
by HDi−1, (S

′ \ {xa})∪{xρ(i)} is a minimum hop dominating set of G containing
HDi−1 ∪ {xρ(i)}.

Now assume a 6= i. Then, dG(xi, xa) = 2 and by Lemma 3, SNi(xa) ⊆
SNi[xρ(i)], i.e., the vertices of the set {xi, xi+1, . . . , xnx} that are 2-step dom-
inated by xa are 2-step dominated by xρ(i). Also by Lemma 5, the vertices
from {x1, x2 . . . , xi−1}∪{y1, y2, . . . , yk−1} are 2-step dominated by HDi−1, where
k = min{d | yd ∈ N(xi) and D[yd] = 0}. If a < i, then by Lemma 5,
xa is 2-step dominated by HDi−1. If a > i, then let xiydxa be a shortest
path between xi and xa. Then yc, yℓ(i) ∈ NG′(xi) with c ≤ ℓ(i). By Theo-
rem 1(a), xa ∈ NG′(yc) ⊆ NG′(yℓ(i)). This implies that xa ∈ SNi[xρ(i)]. Hence,
(S′ \ {xa}) ∪ {xρ(i)} is a hop dominating set of G containing HDi−1 ∪ {xρ(i)}.

Lemma 10. Let S′ be a minimum hop dominating set of G such that HDi−1 ⊆ S′

and G′ = G[Xi ∪ Y ]. If D[xi] 6= 0 and G′ has a pendant vertex yj ∈ N(xi) such
that D[yj ] = 0, then there is a minimum hop dominating set of G containing
HDi−1 ∪ {yℓ(i)}.
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Proof. Let yb ∈ S′ be a vertex that 2-step dominates yj . Since D[yj ] = 0, we
have yb /∈ HDi−1. If b = j, then by Claim 8 of Lemma 6, we get a minimum
hop dominating set of G containing HDi−1 ∪ {yℓ(i)}. Hence we may assume that
b 6= j. Thus, dG(yj , yb) = 2. By Lemma 4, we have SNj(yb) ⊆ SNj [yℓ(i)], i.e.,
the vertices of the set {yj , yj+1, . . . , yny} that are 2-step dominated by yb are now
2-step dominated by yℓ(i). By Lemma 5, all the vertices from {x1, x2 . . . , xi−1} ∪
{y1, y2, . . . , yj−1} are 2-step dominated by HDi−1. If b < j, then by Lemma 5, yb
is 2-step dominated by HDi−1. If b > j, then, since yj is a pendant neighbor of xi,
the path yjxiyb is a shortest path between yj and yb. Then yb, yℓ(i) ∈ NG′(xi) with
b ≤ ℓ(i). This implies that yb ∈ SNj [yℓ(i)]. Again since D[xi] 6= 0, xi ∈ HDi−1

or xi is also 2-step dominated by HDi−1. Hence, (S′ \ {yb}) ∪ {yℓ(i)} is a hop
dominating set of G containing HDi−1 ∪ {yℓ(i)}.

We now return to the proof of the statement that HDnx is a minimum hop
dominating set of the chordal bipartite graph G. Recall that by the induction
hypothesis, for i ≥ 1, HDi−1 is contained in a minimum hop dominating set S′

of G. Notice that the algorithm considers the vertex xi and its neighbors at the
i-th iteration of the algorithm. Further, the algorithm first updates whether any
vertex N(xi) can be 2-step dominated or not. For this, it checks two conditions.
The first condition is whether N(xi) ∩ HDi−1 6= ∅, and the second condition is
whether xi has a neighbor v such that N(v)∩HDi−1 6= ∅. If N(xi)∩HDi−1 6= ∅,
say v ∈ N(xi) ∩ HDi−1, then every vertex of N(xi) \ {v} is 2-step dominated by
v. So in this case, HDi = HDi−1, and hence HDi is contained in S′. Similarly
if xi has a neighbor v such that N(v) ∩ HDi−1 6= ∅, then the vertex xi is 2-step
dominated by v. Thus in this case HDi = HDi−1, and hence HDi is contained in
S′.

After this, the algorithm checks whether any vertex of N [xi] is not 2-step
dominated by HDi−1. If xi is not 2-step dominated by HDi−1 (i.e., if D[xi] = 0)
and NG′(x) has a pendant neighbor v that is not 2-step dominated by HDi−1,
then the algorithm selects xρ(i) and yℓ(i). Thus, HDi = HDi−1 ∪ {xρ(i), yℓ(i)}.
By Lemma 6, there is a minimum hop dominating set of G containing HDi =
HDi−1 ∪ {xρ(i), yℓ(i)}. If xi is not 2-step dominated by HDi−1 (i.e., if D[xi] = 0)
and NG′(x) has no pendant neighbor v that is not 2-step dominated by HDi−1,
then the algorithm selects xρ(i). Thus, HDi = HDi−1 ∪ {xρ(i)}. By Lemma 9,
there is a minimum hop dominating set of G containing HDi = HDi−1 ∪ {xρ(i)}.
If xi is 2-step dominated by HDi−1 (i.e., if D[xi] 6= 0) and NG′(x) has a pendant
neighbor v that is not 2-step dominated by HDi−1, then the algorithm selects
yℓ(i). Hence, HDi = HDi−1 ∪ {yℓ(i)}. By Lemma 10, there is a minimum hop
dominating set of G containing HDi = HDi−1 ∪ {yℓ(i)}. Therefore, by induction
HDnx is a minimum hop dominating set of G. We record this formally in the
following lemma.
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Lemma 11. HDnx is a minimum hop dominating set of the given chordal bipar-
tite graph G.

We now discuss how the algorithm HDS-CBG(G) can be implemented in
O(n + m) time for a given chordal bipartite graph G having n vertices and m
edges. Given a chordal bipartite graph with a weak elimination ordering, by
Theorem 1, a strong T -elimination ordering of G can be computed in O(n) time.
We maintain an array D to track whether a vertex is 2-step dominated or not by
the hop dominating set constructed thus far. Initially, D[v] = 0 for all v ∈ V (G).
At the i-th iteration, the algorithm checks the set {v ∈ N(xi) | D[v] = 0}
and the D-label of the vertex xi which can be done in O(|N [xi]|) time, i.e., in
O(dG(xi)+1) = O(dG(xi)) time. Once new vertices are selected by the algorithm,
the vertices in N(xi) are updated to be 2-step dominated, i.e., the D-label is
made 1 for the selected vertices and the 2-step dominated vertices of N [xi].

To select new vertices, the algorithm checks the conditions as mentioned
in Case 1–5 of the algorithm. In Case 1 of the algorithm at the i-iteration it
checks the condition “xi /∈ HD and xi has neighbor v such that N(v)∩HD 6= ∅”.
To do this, we maintain two arrays L and A on the vertices of G. Initially,
L[v] = A[v] = 0 for every v ∈ V (G). Once a vertex v is selected to the set HD,
L[v] is made 1 and A[u] is made 1 for every u ∈ N(v). Hence we can conclude
that if L[v] = 1 at any iteration of the algorithm, then v belongs to HD and
if A[u] = 1, then a neighbor of u is already present in HD. Throughout the
algorithm, the arrays L and A can be maintained in at most

∑

v∈V (G)

O(dG(v)) = O(n+m)

time. In other cases, the algorithm looks for a pendant neighbor of xi in G′ =
G[Xi ∪ Y ]. For this, we maintain an array B on the vertices of Y . Initially,
B[y] = dG(y) for every y ∈ Y . For every i ∈ [nx], after the end of the i-th
iteration B[y] is decremented by 1 for every y ∈ N(xi). Hence, at the beginning
of the i-th iteration if B[y′] = 1 for some y′ ∈ N(xi), then y′ is a pendant neighbor
of xi in G′. Throughout the algorithm, the array B can therefore be maintained in
at most

∑

v∈V (G)O(dG(v)) = O(n+m) time. Moreover, at the i-th iteration, the
arrays D, L, A, and B can be maintained in at most O(dG(xi)) time. As before,
all other conditions at the i-th iteration can be checked in at most O(dG(xi)).
Thus the degrees of the vertices of the graph are scanned a constant number of
times throughout the algorithm. Therefore, the algorithm in total takes at most
O(n+m) time.

Due to the above discussion and Lemma 11, we have the following theorem.

Theorem 12. Given a weak elimination ordering of a chordal bipartite graph
G having n vertices and m edges, a minimum hop dominating set of G can be
computed in O(n+m) time.
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4. Conclusion

The hop domination problem is known to be NP-complete for planar bipartite
graphs, planar chordal graphs, and perfect elimination bipartite graphs. In this
paper, we present a linear time algorithm for computing a minimum hop domi-
nating set in chordal bipartite graphs if a weak elimination ordering of the graph
is given. Since the hop domination problem is NP-complete for chordal graphs,
it would be very interesting to decide the complexity of the minimum hop domi-
nation problem in subclasses of chordal graphs such as block graphs and interval
graphs.
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