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Abstract

In a graph G, a vertex is said to 2-step dominate itself and all the vertices
which are at distance 2 from it in G. A set D of vertices in G is called a hop
dominating set of G if every vertex outside D is 2-step dominated by some
vertex of D. Given a graph G and a positive integer k, the hop domination
problem is to decide whether G has a hop dominating set of cardinality at
most k. The hop domination problem is known to be NP-complete for bipar-
tite graphs. In this paper, we design a linear time algorithm for computing
a minimum hop dominating set in chordal bipartite graphs.
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1. INTRODUCTION

A set D C V of a graph G = (V, E) is a dominating set of G if every vertex
in V'\ D is adjacent to a vertex in D. The domination number, v(G), is the
minimum cardinality of a dominating set of G. The notion of domination and its
variations in graphs has been studied a great deal; a rough estimate says that it
occurs in more than 6000 papers to date. We refer the reader to the two so-called
domination books by Haynes, Hedetniemi, and Slater [11, 12] for fundamental
concepts in domination in graphs. The distance between two vertices x and y
in a connected graph G, denoted dg(x,y), is the length of the shortest x, y-path
in G. For an integer k > 1, a vertex in a graph G is said to k-step dominate
itself and all the vertices that are at distance exactly k apart from it. A set
D C V of a graph G = (V, E) is a k-step dominating set of G if every vertex
in V is k-step dominated by some vertex of D. The k-step domination number,
Yistep(G), of G, is the minimum cardinality of a k-step dominating set of G. In
1995 Chartrand et al. [6] initiated the concept of 2-step domination in graphs,
which was subsequently studied in [4, 9, 15].

The hop domination in graphs is closely related to the 2-step domination
number. The concept of hop domination in graphs was introduced by Ayyaswamy
and Natarajan [1]. A set D C V of a graph G = (V, E) is a hop dominating set of
G if every vertex of V'\ D is 2-step dominated by some vertex of D. The minimum
cardinality of a hop dominating set of a graph G is called the hop domination
number of G and is denoted by y,(G).

Natarajan and Ayyaswamy [19] studied when the hop domination number
is equal to other domination parameters. In [20], they also obtained an upper
bound on hop domination number of the subdivision graph of any connected
graph G. Ayyaswamy et al. [2] established upper and lower bounds on the
hop domination number of a tree together with the characterization of extremal
trees. Natarajan et al. [21] determined the hop domination number in some
special family of graphs. Pabilona and Rara [24] characterized the connected
hop dominating set in graphs under some binary operations and calculated the
connected hop domination number of those graphs. Rakim et al. [26] studied
the concept of perfect hop domination in graphs and determined the perfect
hop domination number in some graph classes. Henning and Rad [13] presented
probabilistic upper bounds for the hop domination number of a graph.

Given a graph G and a positive integer k, the hop domination problem is to
decide whether G has a hop dominating set of cardinality at most k. Henning
and Rad [13] proved that the hop domination problem is NP-complete for planar
bipartite graphs and planar chordal graphs. Later, Jalalvand and Rad [16] de-
termined the complexity results on k-step and k-hop dominating sets in graphs.
Henning et al. [14] presented some hardness results on the hop domination prob-
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lem and designed a linear time algorithm to compute a minimum hop dominating
set in bipartite permutation graphs. Chen and Wang [7] investigated the rela-
tionship between the total domination number and the hop domination number
in diamond-free graphs. Kundu and Majumder [17] gave a linear time algorithm
to compute an optimal k-hop dominating set of a tree for £ > 1.

A chord of a cycle is an edge joining two nonconsecutive vertices of the cycle.
A bipartite graph G is called a chordal bipartite graph if every cycle of length at
least 6 has a chord. Most domination problems and their variations are NP-hard
for chordal bipartite graphs, as illustrated in Table 1 where we consider fun-
damental domination type parameters including domination, total domination,
independent domination, connected domination, locating-domination, locating-
total domination, and paired-domination. In Table 1, we have taken the decision
versions of the variations of the domination problems.

Name of the problem Complexity Status
Domination NP-complete [18]
Total domination Polynomial [8, 23]
Locating-domination NP-complete [10]

Locating-total domination | NP-complete [25]
Connected domination NP-complete [18]
Independent Domination | NP-complete [8]

Paired-domination Polynomial [22]

Table 1. Complexities of variations of domination problems in chordal bipartite graphs.

Chordal bipartite graphs are characterized in terms of weak elimination or-
derings [27] and strong 7T-elimination orderings [5]. Given a weak elimination
ordering of a chordal bipartite graph G, a strong T -elimination ordering of G can
be computed in linear time [23]. In this paper, given a weak elimination ordering
of a chordal bipartite graph, we present a linear time algorithm to compute a
minimum hop dominating set of the chordal bipartite graph.

2. TERMINOLOGY AND NOTATION

We use the standard notation [k] = {1,...,k}. Let G = (V, E) be a graph with
vertex set V = V(G) and edge set E = E(G). The order of G is n(G) = |V(G)]
and the size of G is m(G) = |E(G)|. Two vertices x and y in G are adjacent if
they are joined by an edge e, that is, if uv € E(G). Two vertices in a graph G
are independent if they are not adjacent. A set of pairwise independent vertices
in G is an independent set of G. The open neighborhood of a vertex v in G
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is the set Ng(v) = {u € V | wv € E(G)} and the closed neighborhood of v is
Nglv] = {v} U Ng(v). The degree of a vertex v is |Ng(v)| and is denoted by
dg(v). We simply use N(v) and N[v] if the context of the graph is clear. A
vertex is isolated if the degree of the vertex is 0 and is pendant if the degree of
the vertex is 1. For a set A of vertices in GG, the subgraph of GG induced by A
is denoted by G[A]. The distance between two vertices z and y in a connected
graph G, denoted by dg(z,y), is the length of the shortest x, y- path in G. For a
vertex v in G, we define SN (v) as the set of vertices at distance exactly 2 from
v in G, i.e., SN(v) = {u | dg(u,v) = 2}, and SN[v] = SN(v) U {v}. A vertex
u in a graph G is said to 2-step dominate itself and all the vertices that are at
distance exactly 2 from wu.

A walk in a graph is a sequence of vertices in which consecutive vertices are
adjacent. A path is a walk in which all the vertices are different, while a cycle is
a walk whose first and last vertex are the same and all other vertices are distinct.
A chord in a cycle is an edge between two nonconsecutive vertices in the cycle. A
graph G is bipartite if V(G) can be partitioned into two independent sets X and
Y such that every edge joins a vertex in X to a vertex in Y. The partition (X,Y)
of V(Q) is called a bipartition of G. A bipartite graph G with bipartition (X,Y")
and edge set E(G) is denoted by G = (X, Y, E). A bipartite graph G = (X,Y, E)
is a complete bipartite graph if every vertex of X is adjacent to every vertex of Y.
For a bipartite graph G = (X, Y, E), we use the notation n, = |X| and n, = |Y|.
A graph G is said to be a chordal bipartite graph if G is bipartite and every cycle
of length at least 6 has a chord. Chordal bipartite graphs form a subclass of
bipartite graphs and a superclass of bipartite permutation graphs [3].

A vertex v of a graph G is called a weak simplicial vertex if Ng(v) is an
independent set of G and for every uj,us € Ng(v), either Ng(ui) € Ng(us2) or
N¢g(uz) € Ng(u1). An ordering o = (v, ve,...,v,) of the vertices of G is called
a weak elimination ordering of G if for every i € [n], v; is weak simplicial in
Gi = G[{vi, Vi1, ..., v, }] and for every vj, v, € Ng,(v;) with j < k, Ng,(vj) C
Ne;, (vg).

Let G = (X,Y, E) be a bipartite graph, and let « = (x1,22...,2,,) and
B = (y1,Y2,---,Yn,) be some orderings of X and Y, respectively. The ordering
a and 3 is called a strong T -elimination ordering of G if for each i € [n,] and
J. k € [ng] with j < k, where z;, 2, € Ng(yi), we have that Ng/(x;) C N (zg),
where G’ = G [{¥i, Yit1,- - Un, } U{z1, 22, ..., Tn, }]-

Chordal bipartite graphs are characterized in terms of a weak elimination or-
dering [27] and are also characterized in terms of a strong 7 -elimination ordering
[5]. Given a chordal bipartite graph G = (V| E), a weak elimination ordering of
G can be computed in O(min{mlogn,n?}) time [27].

For notational convenience, for a given set X = {z1,x2...,2,,}, we de-
note X; as the set {x;,ziy1,...,2p,} for every i € [ng]. Similarly given ¥ =
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{y1,92,---,Yn, }, we denote Y; as the set {y;,yit1,...,yn,} for every i € [n,].
The following relation between a weak elimination ordering and a strong 7-
elimination ordering of a chordal bipartite graph G = (X,Y, E) is established
in [23].

n Y2 Y3 Ya Ys Ye Y7 Ys Yo Yo Y1 Y12

Figure 1. A chordal bipartite graph G.

Theorem 1 [23]. Given a weak elimination ordering o of a chordal bipartite
graph G = (X,Y, E), a strong T -elimination ordering ox = (x1,x2,...,Ty,) and
oy = (Y1,%2, -, Yn,) of G can be obtained in O(n) time such that

(a) for each i € [ng], we have N¢/(y;) € N (yx), where G' = G[X; UY] and
Yj> Yk € NG/(.TZ') with 7 < k;

(b) for each i € [ny], we have Ngn(xj) € Ngn(z), where G = GIX UY]] and
Tj, Tk € Ng//(yi) with j < k.

Let ox = (z1,22,...,2n,) and oy = (y1,%2,-.-,¥Yn,) be a strong T-elimi-
nation ordering of G and let y; € Y. Let ¢ = max{k | y;z, € E(G)}. Then it can
be observed that y; is a pendant vertex of the graph G’ = G[X; UY]. Therefore,
we have the following lemma.

Lemma 2. If ox = (v1,22,...,%p,) and oy = (y1,¥2,...,Yn,) is a strong T -
elimination ordering of G and y; € Y, then there exists i € [ny] such that y; is a
pendant verter in G' = G[X; UY].

3. Hor DOMINATION IN CHORDAL BIPARTITE GRAPHS

In this section, we present a polynomial time algorithm for computing a mini-
mum hop dominating set in chordal bipartite graphs. Given a weak elimination
ordering of a chordal bipartite graph G = (X, Y, E) of order n and size m, our
algorithm takes O(n + m) time to compute a minimum hop dominating set of
G. If G is a disconnected graph having components G1,Ga, ..., G, where r > 2,
then v,(G) = >;_; 7 (Gi). Hence it suffices for us to consider only connected
chordal bipartite graphs for the purpose of designing our algorithm.
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Let n, = |X| and n, = |Y|. For i € [n,] and for a vertex x;, € X, we use the
notation SN;(zp) = X;N{z. € X | dg(z¢, xp) = 2} and SN;[xp] = SN;(xp) U{xp}.
Similarly, for ¢ € [n,] and for a vertex y, € Y, we use the notation SN;(y,) =
Yin{ye €Y | d(Ye,ya) = 2} and SN;[ya] = SN;i(ya) U {ya}-

Lemma 3. Let ox = (21,%2,...,%n,) and oy = (y1,Y2,--.,Yn,) be a strong
T -elimination ordering of a connected chordal bipartite graph G = (X,Y, E) and
xp,x; € X such that dg(xp, x;) = 2. If a = max{k | z;yr, € E} and b = max{k |
yaTr € B}, then SNi(xp) C SNi[zp).

Proof. Let x;y € SN;(x,) be arbitrary. By the definition of b, we have b > i. If
p’ =1, then it is clear that z,; = z; € SN;[xp]. If p’ = b, then z,y = xp, € SN;[xp).
So assume that p’ # i and p’ # b. Since dg(zp, ;) = 2 and dg(zp, zy) = 2,
there exist vertices y, and y, such that y, € N(xp) N N(z;) and yy € N(xp) N
N(z,), respectively. If ¢ = a, then dg(zy,2p) = da(zy,yy) + da(yy,zp) =
da(xp,yy) + dg(Ya,xp) = 2. So xy € SN;[zp) and thus we are done. Hence
we may assume that ¢’ # a. If ¢ = ¢, then yy € N(x;); thus ¢ < a by the
definition of a. Since ox and oy form a strong T-elimination ordering of GG, by
Theorem 1(a), ,y € N (yq) € N (ya), where G = G[X; UY]. Now dg(zy, xp)
=da(2p,Ya) + dc(Ya, xp) = 2. So x,y € SN;[xp] and thus we are done. Hence we
may assume that ¢ # ¢’. Let G’ = G[X; UY] and G” = G[X, UY].

Assume that p < i. We now prove that z,; € N(y,). If ¢ < ¢/, then, since
Yg»Yq € Ngr(xp), by Theorem 1(a), z; € Ngv(yq) € Na,(yg). Now yg,ya €
N¢i(z;). By Theorem 1(a), zy € Ng/(yy) € Ner(ya). If ¢ < g, then by
Theorem 1(a), z,; € Ngr(yy) € Nav(yq). Since yq,ya € N(z;), by Theorem
1(a), Ty € NG”(yq) C Ng'(ya). Now dG(xp”xb) = dG(xp’aya) + dg(Ya, Tp) = 2.
This implies that z,; € SN;[zp).

Now assume that p > i. If p = b, then dg(xy,z,) = 2 = dg(zy,xs) and
hence =,y € SN;[zp]. So assume that p # b. Recall that p’ # b and p’ # i.
We now prove that z,; € N(y,). If ¢ < ¢, then, since yq,y. € N(x;), by
Theorem 1(a), x, € Ng/(yq) € Na/(Ya). Now Yy, ya € N(xp), and so by Theorem
1(a), ¢y € Ngv(yy) € Ngr(ya). This implies that z,y € SNj(x3). If ¢’ < ¢, then
¢ < q < a, by definition of a. If ¢ = a, then z, € N(y,). If ¢ < a, then since
Yq,Ya € N(z;), by Theorem 1(a), z, € Ng/(yq) € Ner(Ya). Now yg,ya € N(xp)
with ¢ < ¢ < a. Thus, by Theorem 1(a), zy € Ngv(yy) € Ngv(ya). Now
da(xy, ) = da(zy, Ya) + dc(Ya, ©p) = 2. This implies that x,y € SN;[xp]. |

Similar to Lemma 3, the following lemma can also be proved.

Lemma 4. Let ox = (21,72,...,%n,) and oy = (y1,¥2,--.,Yn,) be a strong
T -elimination ordering of a connected chordal bipartite graph G = (X,Y, E) and
Yp,Yi € Y such that dg(yp,vi) = 2. If a = max{k | y;zr, € E} and b = max{k |
Talk € E}, then SNZ(yp) - SN,[yb]
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Now we present our algorithm, namely HDS-CBG(G) to compute a mini-
mum hop dominating set in a given connected chordal bipartite graph G. The
algorithm processes the vertices x1,xa, ..., x,, with respect to a strong 7 -elimi-
nation ordering ox = (r1,22,...,2n,) and oy = (y1,¥42,...,¥n,) of G and at
each iteration ¢ € [ny], our algorithm selects new vertices to add to the set HD if
x; is not 2-step dominated or there is a pendant vertex v € N(z;) in G, where
G’ = G[X;UY] such that v is not 2-step dominated by the set HD constructed so
far. To achieve this, at each iteration i € [ny], our algorithm proceeds as follows.

e An array D is maintained on the vertices of G to track whether a vertex v of
G is 2-step dominated or not by the set HD constructed so far. In particular,
D[v] = 1 if v is 2-step dominated by HD; otherwise D[v] = 0. Initially,
Dlv] =0 for all v € V(G).

e In the Lines 6-9, the algorithm checks whether the vertices of the set N|[x;]
in G’ are 2-step dominated or not by the set HD constructed so far.

e In the Lines 10-18, the algorithm checks the two conditions (a) D[x;] = 0 or
not, and (b) Ng/(z;) has a pendant vertex v such that D[v] = 0, and adds
new vertices to the set HD following some rules. All details are described in
the algorithm.

For every i € [n,], we define ¢(i) and p(i) as follows.

o ((i) = max{k | xiyx € E(G)} and p(i) = max{k | 21y, € E(G)}.

In Table 2, we explain the execution of the algorithm HDS-CBG(G) on the
chordal bipartite graph G shown in Figure 1. Note that in Table 2, we have
considered those iterations of the algorithm in which some vertices are selected.
In Table 2, we have a column, namely “The set HD”. Initially, HD = (). Then
the updated set HD is described for different iterations.

For each i € [ng], let HD; be the set HD computed at the end of the i-

th iteration of the algorithm. The following lemmas can be observed from the
algorithm HDS-CBG(G).

Lemma 5. If x; is the considered vertex for i € [ng| at some point of the algo-

rithm HDS-CBG(G), then the following are true.

(a) Dlv] =1 for allv € U,e;—q) Nlws]-

(b) If z; ¢ HD;_1 and x; has a neighbor v such that N(v) "HD;_; # 0, then x;
18 2-step dominated by HD;_1.

(¢) If N(z;) "HD;_1 # 0, then every v € N(x;) is 2-step dominated by HD;_1.
Notice that HDy = ). At the termination of the algorithm HDS-CBG(G),

by Lemma 5, HD,,, is a hop dominating set of G. Therefore, to prove that HD,,,

is a minimum hop dominating set of G, it is sufficient to prove that there is a
minimum hop dominating set S* of G such that HD, C S*. To prove this, we
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Algorithm 1: HDS-CBG(G)
Input: A connected chordal bipartite graph G = (X, Y, E), where

| X| = n, with a weak elimination ordering of G;

Output: A hop dominating set HD of G;

=

Compute ox = (v1,Z2,...,%y,) and oy = (y1,¥2, - .-, ¥Yn,), & strong
T-elimination ordering of G;

Dv]=0forallve XUY,

3 Initialize HD = 0;

for (i=1 to n,) do

5 Let G' = G[X; UY;

6 if (z; ¢ HD and z; has a neighbor v such that N(v) NHD # ()) then

/* Case 1 */

7| | Dli=1

8 if (N(xz;) NHD # () then /* Case 2 */

9 t Diu] =1 for all u € N(z;);

N

'y

10 if (D[x;] =0 and Ng/(x;) has a pendant vertex v such that D]v] = 0)
then /* Case 3 */
HD = HD U {0, yei)
Dlu] =1 for all u € N[z;] and D[%(i)] =1

11

12
13 else if (D[z;] =0 and N¢/(x;) has no pendant vertex v such that
Dv] = 0) then /* Case 4 */
HD = HD U {z,;)};
Dlz;] =1 and Dlx,;)] = 1;

14

15
16 else if (D[xz;] # 0 and N¢/(x;) has a pendant vertez v such that

Div] =0) then /* Case 5 x/
17 L HD = HD U {yy» }:

18 Dlu] =1 for all uw € N(z;);

19 return HD;
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use induction on 4, ¢ € [ng] U {0}, and prove that each HD;, i € [ng] U {0}, is
contained in some minimum hop dominating set of G. Since HDg = (), the base
case is true. Assume that ¢ > 1 and that the set HD;_; is contained in some
minimum hop dominating set S’ of G. We now show that HD; is contained in
some minimum hop dominating set of G. For this purpose, we proceed with a
series of lemmas. In each lemma, we construct a minimum hop dominating set of
G containing HD; from the minimum hop dominating set S’ of G. We recall our
earlier notation £(i) = max{k | z;yx, € E(G)} and p(i) = max{k | mxy.;) € E(G)}
which will be used in the following lemmas. In each of the lemma, we assume
that ox = (21,72,...,%,) and oy = (y1,¥2,...,¥n,) is a strong T-elimination
ordering of the graph G = (X,Y, E).

Lemma 6. Let S’ be a minimum hop dominating set of G such that HD;_1 C S’
and G' = G[X; UY]. If D{z;] =0 and G’ has a pendant vertex y; € N(z;) such
that Dly;] = 0, then there is a minimum hop dominating set of G containing
HD;—1 U {43, e }-

Proof. Let x, € S’ be the vertex that 2-step dominates x; and vy, € S’ be the
vertex that 2-step dominates y;. Since D[z;] = 0 and D[y;] = 0, we note that
Za,yYp & HD;—1. We proceed further with proving the following claims.

Claim 7. If b # j, then there is a minimum hop dominating set containing

HD; 1 U {pr(z (’L)}

Proof. Since b # j, we have dg(y;,ys) = 2. By Lemma 4, SN;(ys) € SN;[yy(s))-
By Lemma 5, the vertices from {z1,z2...,2;-1} U {y1,y2,...,yj—1} are 2-step
dominated by HD;_1.

If a =i and p(i) = 4, then (S"\{yp})U{ye() } is a minimum hop dominating set
of G containing HD; 1 U{z,;), Y} If a =i and p(i) # i, then da(xi, 7)) = 2
and by Lemma 3, SN;(x;) € SNi[x ] Thus, (S \ {Za, ys}) U{2pa); o)} is a
minimum hop dominating set of G' containing HD; 1 U {x (), Ye(s) }-

If a # 4, then dg(x;,z,) = 2. By Lemma 3, we have SN (Ta) C© SNi[z )],
i.e., the vertices of the set {x;, zj+1,...,xy, } that are 2-step dominated by x, are
2-step dominated by z,;). If a < i, then by Lemma 5, z, is 2-step dominated
by HD;_1. If a > i, then let z;y4x, be a shortest path between x; and x,. Then
Yoo Ye(i) € Ng/(.m) with ¢ < f() By Theorem 1( ), Ty € Ngl(yc) - Ngl(yg( ))
This implies that x, € SN;[z,;]. Hence, (S"\{xa, yp})U{T,0), Yei)} is @ minimum
hop dominating set of G containing HD;_1U{x 53y, ye(i) }- ThlS completes the proof
of Claim 7. 0

Claim 8. If b = j, then there is a minimum hop dominating set containing
HD; 1 U {xp(z z)}
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Itera- | Consider-| Conditions Tp(i)> Yei) |Applied |The set HD Update
tion i |ed vertex Case

1 x1 Dilz1] =0 and Ty1) =3 |Case 3 HD = Dlz1] =1,
Ng/(z1) has a Ye(1) = Y3 HDU {:Dg,yg} D[yl] =1,
pendant vertex yi Dilz3] =1,
with D[y1] =0 Dlys] =

2 Z2 (i) 2 ¢ HD and (i)Case 1 [(i) HD=HD |[(i)D[z2] =1
z9 has a neighbor
ys with N(y3) N HD
= {z3}

(ii) N(z2) NHD = (ii)Case 2| (ii) HD = HD |(ii)D[yz2] =1,
{ys} Dlya] =1
3 x3 N(ch) NHD = {ys} Case 2 HD = HD D[ys] =1,
Dlys] =

4 T4 z4 ¢ HD and x4 Case 1 HD = HD Dlz4] =
has a neighbor ys
with N(ys) NHD
= {3}

5 T5 (i) 5 ¢ HD and (i)Case 1 |(i) HD =HD |(i)Dzs] =1
5 has a neighbor
ye with N(ys) N HD
= {z3}

(ii) Dlzs] =1 and | (ii)ye(s) = yo | (ii)Case 5| (ii) HD = (ii)Dly7] = 1,
NG/(335) has a HD U {yg} D[yg} =1,
pendant vertex y7 Dlyg] =1

with D[y7z] =0

6 z6 Dlzg] =0 and zpe) =27 |Case4 |[HD = Dlzg¢] =1,
NG/(JIG) has no HDuU {337} D[:vﬂ =1
pendant vertex v
with D[v] =0

7 z7 N(z7) "HD = {yo} Case 2 |HD = HD Dlyio] =1

8 T8 zg ¢ HD and zg Case 1 HD = HD Dilzg] =1
has a neighbor y19
with N(y10) NHD =
{ar}

9 Z9 Dlzg] =0 and Tp9) =29 |Case 3 HD = Dlzg] =1,
Ng/(x9) has a pen- Ye(9) = Y12 HD U {zg,y12} | D[y11] =1,
dant vertex yi1 Dlyi2] =1
with D[y11] =0

Table 2. Ilustration of the algorithm HDS-CBG(G) on the graph G shown in Figure 1.

Proof. 1f £(i) # j, then by Lemma 4, SN;(ys) € SN;[yys]. Thus, (S \ {y}) U
{¥e@)} is a minimum hop dominating set of G' containing HD; 1 U{yj;)} in which
y; is 2-step dominated by y;). Hence, by Claim 7, we obtain a minimum hop
dominating set of G' containing HD; 1 U {3y, ey }. So we may assume that
£(i) = j, implying that b = £(i) = j. If a = i and p(i) = 7, then S’ is the minimum
hop dominating set of G containing HD;—1 U {x (), Ye(s) }- If a =i and p(i) # i,
then dg(zi, z,;)) = 2 and by Lemma 3, SN;(z;) € SNi[z,;]. So (5" \ {za}) U
{7,()} is a minimum hop dominating set of G' containing HD; 1 U {7 ), Ye(s) }-



Hor DOMINATION IN CHORDAL BIPARTITE GRAPHS 835

If a # i, then dg(v;,7,) = 2. By Lemma 3, we have SN;(x,) C SN;[z,3;)],
i.e., the vertices of the set {z;, x;y1,...,zn, } that are 2-step dominated by z, are
2-step dominated by z,;). If a <, then by Lemma 5, z, is 2-step dominated by
HD; 1. If a > 4, then let x;y4x, be a shortest path between z; and x,. Then,
Yo, Yei) € Ner(wi) with ¢ < £(7). By Theorem 1(a), 4 € Ngr(ye) S Nar(Yes))-
This implies that z, € SN;[x,;]. Therefore, (S’ \ {z4}) U {zy; } is a minimum
hop dominating set of G containing HD; 1 U {xp(i),y@(i)}. This completes the
proof of Claim 8. 0

We now return to the proof of Lemma 6. If b # j, then by Claim 7, we obtain
a minimum hop dominating set of G containing HD; 1 U {x (), yeiy}- If b = 7,
then by Claim 8, we obtain a minimum hop dominating set S” of G containing
HD;—1 U {23y, Ye(iy }- This completes the proof of Lemma 6. ]

Lemma 9. Let S’ be a minimum hop dominating set of G such that HD;_; C S’
and G' = G[X; UY]. If Dlz;] = 0 and N¢/(x;) has no pendant vertex v such
that Dv] = 0, then there is a minimum hop dominating set of G containing
HDi_l U {wp(l)}

Proof. Let z, € S’ be a vertex that 2-step dominates x;. Since D[x;] = 0, we
have z, ¢ HD;_;. Clearly, by definition of p(i), we have p(i) > i.

First assume that a = i. If p(i) = 4, then a = ¢ = p(i) and hence S’ is a
minimum hop dominating set of G containing HD; 1 U {z ;) }. If p(i) # i, then
da(wi, 7)) = 2 and by Lemma 3, SN;(z,) € SNj[z,;)]. Since by Lemma 5,
every vertex of the set {x1,22,..., i1} U{y1,¥2,...,yj-1} is 2-step dominated
by HD; 1, (S"\ {za}) U{x,@;)} is a minimum hop dominating set of G containing
HD, ;U {l'p(i)}-

Now assume a # i. Then, dg(z;,z,) = 2 and by Lemma 3, SN;(z,) C
SNi[z ], ie., the vertices of the set {w;, i41,...,2p,} that are 2-step dom-
inated by z, are 2-step dominated by z,;. Also by Lemma 5, the vertices
from {z1,29...,2;-1}U{y1,92,...,yk—1} are 2-step dominated by HD;_;, where
k= min{d | yg € N(z;) and D[yq] = 0}. If a < 4, then by Lemma 5,
Ty is 2-step dominated by HD,;_ ;. If a > 4, then let x;yqx, be a shortest
path between z; and z,. Then y,y,; € Ner(z;) with ¢ < £(7). By Theo-
rem 1(a), 24 € Ner(ye) € Nar(ye))- This implies that z, € SN;[z,;)]. Hence,
(8" \{za}) U{m,z)} is a hop dominating set of G' containing HD;—1 U {z,;)}. =

Lemma 10. Let S’ be a minimum hop dominating set of G such that HD; 1 C S’
and G' = GIX; UY]. If D]z;] # 0 and G’ has a pendant vertex y; € N(x;) such
that Dly;] = 0, then there is a minimum hop dominating set of G containing
HD; 1 U {ye(i) }-
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Proof. Let y, € S” be a vertex that 2-step dominates y;. Since D[y;] = 0, we
have y, ¢ HD;_1. If b = j, then by Claim 8 of Lemma 6, we get a minimum
hop dominating set of G containing HD;_; U {yg(i)}. Hence we may assume that
b # j. Thus, dg(yj, yp) = 2. By Lemma 4, we have SN;(ys) € SN;lyesl, i-e.,
the vertices of the set {y;,y;j+1,...,¥n,} that are 2-step dominated by y; are now
2-step dominated by y,(;). By Lemma 5, all the vertices from {z1,22...,2;-1} U
{y1,92,...,yj—1} are 2-step dominated by HD;_;. If b < j, then by Lemma 5, y,
is 2-step dominated by HD; ;. If b > j, then, since y; is a pendant neighbor of z;,
the path y;z;yp is a shortest path between y; and yp. Then yp, yo(;) € Nev (x;) with
b < £(i). This implies that y, € SN;[yes)].- Again since D[z;] # 0, z; € HD;
or x; is also 2-step dominated by HD; 1. Hence, (S"\ {y}) U {yeq)} is a hop
dominating set of G containing HD;—1 U {yy(;)}- ]

We now return to the proof of the statement that HD,, is a minimum hop
dominating set of the chordal bipartite graph G. Recall that by the induction
hypothesis, for 7 > 1, HD;_; is contained in a minimum hop dominating set S’
of G. Notice that the algorithm considers the vertex x; and its neighbors at the
i-th iteration of the algorithm. Further, the algorithm first updates whether any
vertex N (z;) can be 2-step dominated or not. For this, it checks two conditions.
The first condition is whether N(x;) N HD;_; # 0, and the second condition is
whether z; has a neighbor v such that N(v) NHD;_; # 0. If N(x;) "HD;—1 # 0,
say v € N(z;) "HD,;_1, then every vertex of N(z;) \ {v} is 2-step dominated by
v. So in this case, HD; = HD;_1, and hence HD; is contained in S’. Similarly
if 2; has a neighbor v such that N(v) "HD;_; # ), then the vertex x; is 2-step
dominated by v. Thus in this case HD; = HD;_;, and hence HD; is contained in
S’

After this, the algorithm checks whether any vertex of N[z;] is not 2-step
dominated by HD;_;. If x; is not 2-step dominated by HD;_; (i.e., if D[x;] = 0)
and Ng(x) has a pendant neighbor v that is not 2-step dominated by HD;_1,
then the algorithm selects x,;) and y;). Thus, HD; = HD;1 U {a:p(i),y@(i)}.
By Lemma 6, there is a minimum hop dominating set of G containing HD; =
HD;—1 U{Zp), Yoy} If 2 is not 2-step dominated by HD; 1 (i.e., if D[z;] = 0)
and Ng/(z) has no pendant neighbor v that is not 2-step dominated by HD;_1,
then the algorithm selects ;). Thus, HD; = HD;_1 U {z,;}. By Lemma 9,
there is a minimum hop dominating set of G' containing HD; = HD; 1 U {z ;) }.
If x; is 2-step dominated by HD,_; (i.e., if D[x;] # 0) and N¢gr(x) has a pendant
neighbor v that is not 2-step dominated by HD,_;, then the algorithm selects
Ye(s)- Hence, HD; = HD;—1 U {yy;)}. By Lemma 10, there is a minimum hop
dominating set of G containing HD; = HD;_; U {yg(i)}. Therefore, by induction
HD,,, is a minimum hop dominating set of G. We record this formally in the
following lemma.
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Lemma 11. HD,,, is a minimum hop dominating set of the given chordal bipar-
tite graph G.

We now discuss how the algorithm HDS-CBG(G) can be implemented in
O(n + m) time for a given chordal bipartite graph G having n vertices and m
edges. Given a chordal bipartite graph with a weak elimination ordering, by
Theorem 1, a strong 7 -elimination ordering of G can be computed in O(n) time.
We maintain an array D to track whether a vertex is 2-step dominated or not by
the hop dominating set constructed thus far. Initially, D[v] = 0 for all v € V(G).
At the i-th iteration, the algorithm checks the set {v € N(z;) | D[v] = 0}
and the D-label of the vertex z; which can be done in O(|N[z;]|) time, i.e., in
O(dg(zi)+1) = O(dg(z;)) time. Once new vertices are selected by the algorithm,
the vertices in N(z;) are updated to be 2-step dominated, i.e., the D-label is
made 1 for the selected vertices and the 2-step dominated vertices of N[z;].

To select new vertices, the algorithm checks the conditions as mentioned
in Case 1-5 of the algorithm. In Case 1 of the algorithm at the i-iteration it
checks the condition “x; ¢ HD and z; has neighbor v such that N(v) NHD # (7.
To do this, we maintain two arrays £ and A on the vertices of G. Initially,
L[v] = Alv] = 0 for every v € V(G). Once a vertex v is selected to the set HD,
L[v] is made 1 and A[u| is made 1 for every u € N(v). Hence we can conclude
that if L[v] = 1 at any iteration of the algorithm, then v belongs to HD and
if Alu] = 1, then a neighbor of w is already present in HD. Throughout the
algorithm, the arrays £ and A can be maintained in at most

> O(da(v)) = O(n+m)

veV(Q)

time. In other cases, the algorithm looks for a pendant neighbor of z; in G' =
G[X; UY]. For this, we maintain an array B on the vertices of Y. Initially,
Bly] = dg(y) for every y € Y. For every ¢ € [n,], after the end of the i-th
iteration B[y| is decremented by 1 for every y € N(x;). Hence, at the beginning
of the i-th iteration if B[y'] = 1 for some 3y’ € N(z;), then 3/ is a pendant neighbor
of z; in G’. Throughout the algorithm, the array B can therefore be maintained in
at most 3,y Oda(v)) = O(n+m) time. Moreover, at the i-th iteration, the
arrays D, £, A, and B can be maintained in at most O(dg(z;)) time. As before,
all other conditions at the i-th iteration can be checked in at most O(dg(z;)).
Thus the degrees of the vertices of the graph are scanned a constant number of
times throughout the algorithm. Therefore, the algorithm in total takes at most
O(n + m) time.

Due to the above discussion and Lemma 11, we have the following theorem.
Theorem 12. Given a weak elimination ordering of a chordal bipartite graph

G having n vertices and m edges, a minimum hop dominating set of G can be
computed in O(n + m) time.
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4. CONCLUSION

The hop domination problem is known to be NP-complete for planar bipartite
graphs, planar chordal graphs, and perfect elimination bipartite graphs. In this
paper, we present a linear time algorithm for computing a minimum hop domi-
nating set in chordal bipartite graphs if a weak elimination ordering of the graph
is given. Since the hop domination problem is NP-complete for chordal graphs,
it would be very interesting to decide the complexity of the minimum hop domi-
nation problem in subclasses of chordal graphs such as block graphs and interval
graphs.
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