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Abstract

A graph is F -saturated if it does not contain F as a subgraph but the
addition of any edge creates a copy of F . We prove that for s ≥ 3 and t ≥ 2,
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the minimum number of copies of K1,t in a Ks-saturated graph is Θ(nt/2).
More precise results are obtained in the case of K1,2, where determining
the minimum number of K1,2’s in a K3-saturated graph is related to the
existence of Moore graphs. We prove that for s ≥ 4 and t ≥ 3, an n-vertex
Ks-saturated graph must have at least Cnt/5+8/5 copies of K2,t, and we
give an upper bound of O(nt/2+3/2). These results answer a question of
Chakraborti and Loh on extremal Ks-saturated graphs that minimize the
number of copies of a fixed graph H. General estimates on the number of
Ka,b’s are also obtained, but finding an asymptotic formula for the number
Ka,b’s in a Ks-saturated graph remains open.
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2020 Mathematics Subject Classification: 05C35.

1. Introduction

Let F be a graph with at least one edge. A graph G is F -free if G does not contain
F as a subgraph. The study of F -free graphs is central to extremal combinatorics.
Turán’s Theorem, widely considered to be a cornerstone result in graph theory,
determines the maximum number of edges in an n-vertex Ks-free graph. An
interesting class of F -free graphs are those that are maximal with respect to the
addition of edges. We say that a graph G is F -saturated if G is F -free and adding
any missing edge to G creates a copy of F . The function sat(n, F ) is the saturation
number of F , and is defined to be the minimum number of edges in an n-vertex
F -saturated graph. In some sense, it is dual to the Turán function ex(n, F ) which
is the maximum number of edges in an n-vertex F -saturated graph.

One of the first results on graph saturation is a theorem of Erdős, Hajnal,
and Moon [11] which determines the saturation number of Ks. They proved that
for 2 ≤ s ≤ n, there is a unique n-vertex Ks-saturated graph with the minimum
number of edges. This graph is the join of a complete graph on s−2 vertices and an
independent set on n−s+2 vertices, denoted Ks−2+Kn−s+2. The Erdős-Hajnal-
Moon Theorem was proved in the 1960s, and since then, graph saturation has
developed into its own area of extremal combinatorics. We recommend the survey
of Faudree, Faudree, and Schmitt [7] as a reference for history and significant
results in graph saturation.

The function sat(n, F ) concerns the minimum number of edges in an F -
saturated graph. However, one can also replace an edge with any graph H, and
then ask for the minimum number of copies of H in an n-vertex F -saturated
graph. Let us write sat(n,H, F ) for this minimum. This function was introduced
in [18] and was motivated by the now well-studied Alon-Shikhelman generalized
Turán function [2]. Recalling that the Erdős-Hajnal-Moon Theorem determines
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sat(n,Ks) = sat(n,K2,Ks), it is quite natural to study the generalized function
sat(n,Kr,Ks), where 2 ≤ r < s. Answering a question of Kritschgau et al. [18],
Chakraborti and Loh [5] proved that for every 2 ≤ r < s, there is an nr such that
for all n ≥ nr,

sat(n,Kr,Ks) = (n− s+ 2)

(
s− 2

r − 1

)
+

(
s− 2

r

)
.

Furthermore, they showed that Ks−2+Kn−s+2 is the unique graph that minimizes
the number of copies of Kr among all n-vertex Ks-saturated graphs for n ≥ nr.
They proved a similar result for cycles (some assumptions are needed on the
length of the cycle in relation to s) where the critical point is thatKs−2+Kn−s+2 is
the unique extremal graph. We refer the reader to [5] for the specific statements of
these theorems. Chakraborti and Loh then asked the following question (Problem
10.5 in [5]).

Question 1. Is there a graph H for which Ks−2 + Kn−s+2 does not (uniquely)
minimize the number of copies of H among all n-vertex Ks-saturated graphs for
all large enough n?

Here we answer this question and show that there are graphs H for which
Ks−2 +Kn−s+2 is not the unique extremal graph. We begin by stating our first
two result, Theorems 2 and 3, where H = K1,t. Together, they demonstrate a
change in behaviour between the cases H = K1,2 and H = K1,t with t > 2.

Theorem 2. (i) For n ≥ 3,(
n

2

)
− n3/2

2
≤ sat(n,K1,2,K3) ≤

(
n− 1

2

)
.

(ii) For n ≥ s ≥ 4,

sat(n,K1,2,Ks) = (s− 2)

(
n− 1

2

)
+ (n− s+ 2)

(
s− 2

2

)
.

Furthermore, Ks−2 +Kn−s+2 is the unique n-vertex Ks-saturated graph with the
minimum number of copies of K1,2.

Theorem 3. For integers n ≥ s ≥ 3 and t ≥ 3,

sat(n,K1,t,Ks) = Θ
(
nt/2+1

)
.

A consequence of Theorem 3 is that for s ≥ 4 and large enough n in terms
of t, Ks−2 + Kn−s+2 does not minimize the number of copies of K1,t among all
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n-vertex Ks-saturated graphs. Indeed, Ks−2 +Kn−s+2 has Θ(nt) copies of K1,t.
Interestingly, the special case of determining sat(n,K1,2,K3) is related to the
existence of Moore graphs. This is discussed further in the Concluding Remarks
section, but when a Moore graph of diameter 2 and girth 5 exists, this graph will
have fewer copies of K1,2 than K1 + Kn−1 = K1,n−1. Thus, any potential result
that determines sat(n,K1,2,K3) exactly would have to take this into account.

The graph used to prove the upper bound of Theorem 3 is a Ks-saturated
graph with maximum degree at most csn

1/2. This graph was constructed by
Alon, Erdős, Holzman, and Krivelevich [1] and is structurally very different from
Ks−2 + Kn−s+2. Using this graph, one can prove a more general upper bound
that applies to any connected bipartite graph. This will be stated in Theorem 5
below.

Next we turn our attention to counting copies of K2,t (t ≥ 2) in Ks-saturated
graphs. The graph K1 +Kn−1 is K3-saturated and K2,t-free. Thus,

sat(n,K2,t,K3) = 0

for all t ≥ 2. For t = 2, Chakraborti and Loh [5] proved that for every s ≥ 4,

(1) sat(n,K2,2,Ks) = (1 + o(1))

(
s− 2

2

)(
n

2

)
.

Observe that the graph Ks−2 +Kn−s+2 has(
s− 2

2

)(
n− s+ 2

2

)
+

(
s− 2

3

)
(n− s+ 2) +

(
s− 2

4

)
copies of K2,2 and this gives the upper bound of (1). Now the focus of [5] was on
counting complete graphs and counting cycles, so here the above result is stated in
terms of K2,2, but of course K2,2 = C4. However, it is important and relevant to
this work to mention that Chakraborti and Loh [5] proved the following theorem
which shows that Ks−2 +Kn−s+2 does minimize the number of cycles in certain
cases.

Theorem 4 (Chakraborti and Loh). Let s ≥ 4 and r ≥ 7 if r odd, and r ≥
4
√
s− 2 if r is even. There is an nr,s such that for all n ≥ nr,s, the graph Ks−2 +

Kn−s+2 minimizes the number of copies of Cr over all n-vertex Ks-saturated
graphs. Moreover, when r ≤ 2s− 4, this is the unique extremal graph.

It is conjectured in [5] that Ks−2+Kn−s+2 is the unique graph that minimizes
the number of copies of Cr among all Ks-saturated graphs. Currently, it is known
that Ks−2 +Kn−s+2 minimizes the number of copies of Kr (Erdős-Hajnal-Moon
for r = 2 and [5] for r > 2), and minimizes the number of cycles under certain
assumptions. Theorem 3 shows Ks−2 + Kn−s+2 does not minimize the number



Minimizing the Number of Complete Bipartite Graphs in ... 797

of copies of K1,t since it has about
(
n−s+2

t

)
= Θ(nt) copies of K1,t. We extend

this to Ka,b with 1 ≤ a+ 1 < b in the next theorem which is based on the graph
constructed by Alon, Erdős, Holzman, and Krivelevich [1].

Theorem 5. Let F be a connected bipartite graph with part sizes a and b with
1 ≤ a+ 1 < b. If s ≥ 3 is an integer, then

sat(n, F,Ks) =

{
0 if a > s− 2,

O
(
n

1
2
(a+b+1)

)
if a ≤ s− 2,

where the implicit constant can depend on a, b, and s.

Theorem 5 naturally suggests the following question: how many copies of K2,t

must there be in a Ks-saturated graph? In this direction we prove the following.

Theorem 6. Let s ≥ 4 and t ≥ 3 be integers. If G is an n-vertex Ks-saturated
graph, then G contains at least

Cnt/5+8/5

copies of K2,t for some constant C > 0.

Saturation problems with restrictions on the degrees have also been well-
studied. Duffus and Hanson [9] investigated triangle saturated graphs with min-
imum degree 2 and 3. Day [8] resolved a 20 year old conjecture of Bollobás [15]
which asked for a lower bound on the number of edges inKs-saturated graphs with
minimum degree t. Gould and Schmitt [14] studied Kt

2 (the complete t-partite
graph with parts of size 2) saturated graphs with a given minimum degree. Fur-
thermore, Ks-saturated graphs with restrictions on the maximum degree were
studied in [1, 13, 16, 20]. Turning to generalized saturation numbers, as a step
towards generalizing Day’s Theorem, Cole et al. [6] proved bounds on the number
of triangles a Ks-saturated graph with minimum degree t. Motivated by these
results, we prove a lower bound on the number of Ka,b in Ks-saturated graphs in
terms of the minimum degree.

Theorem 7. Let s ≥ 4 and 2 ≤ a < b be integers with a ≤ s − 2. If G is an
n-vertex Ks-saturated graph with minimum degree δ(G), then G contains at least

c

(
n− δ(G)− 1

δ(G)a−1

)b/2
copies of Ka,b for some constant c = c(s, a, b) > 0.
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Theorem 7 shows that if 0 ≤ α < 1
a−1 and δ(G) ≤ κnα for some κ > 0,

then G contains at least cnb/2(1−α(a−1)) copies of Ka,b. In particular, when G has
constant minimum degree, we obtain Ω(nt/2) copies of K2,t. This improves the
lower bound of Theorem 6, but comes at the cost of a minimum degree assumption
that rules out the Alon et al. graph which has minimum degree Θs(n

1/2) and
Θ(nt/2+3/2) copies of K2,t.

In the next subsection we give the notation that will be used in our proofs.
Section 2 contains the proofs of Theorems 2 and 3. Section 3 contains the proofs
of Theorems 5, 6, and 7.

1.1. Notation

For graphs H1 and H2, we write N (H1, H2) for the number of copies of H1 in
H2. For a graph G and x, y ∈ V (G), write N(x) for the neighborhood of x, and
N(x, y) for N(x) ∩ N(y). More generally, if X ⊂ V (G) and v ∈ V (G), then
N(v,X) is the set of vertices adjacent to all vertices in {v}∪X. We write d(v) =
|N(v)|, d(X) = |N(X)|, and d(v,X) = |N(v,X)|. The set N [v] = N(v) ∪ {v}
is the closed neighborhood of v. For a hypergraph H, dH(v) is the number
of hyperedges containing v. Similarly, dH(X) and dH(v,X) is the number of
hyperedges containing X and {v} ∪X, respectively.

2. Bounds on sat(n,K1,t,Ks)

2.1. Proof of Theorem 2

We have the upper bound

(2) sat(n,K1,2,Ks) ≤ (s− 2)

(
n− 1

2

)
+ (n− s+ 2)

(
s− 2

2

)
coming from the number of copies of K1,2 in the graph Ks−2 +Kn−s+2.

When s = 3, a convexity argument can give a matching lower bound up to
an error term of order O(n3/2). Let G be an n-vertex K3-saturated graph. If

e(G) ≥
√
n−1n
2 , then

N (K1,2, G) =
∑

v∈V (G)

(
d(v)

2

)
≥ n

(
2e(G)/2

2

)
=

2e(G)2

n
− e(G) ≥

(
n

2

)
− n3/2

2
.

Now assume that e(G) <
√
n−1n
2 . If x and y are not adjacent, then they must be

joined by a path of length 2. Hence,

N (K1,2, G) ≥ e(G) =

((
n

2

)
− e(G)

)
≥
(
n

2

)
− n3/2

2
.
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This inequality completes the proof of Theorem 2 part (i).
Next we prove part (ii) by showing

sat(n,K1,2,Ks) ≥ (s− 2)

(
n− 1

2

)
+ (n− s+ 2)

(
s− 2

2

)
for s ≥ 4. Let G be an n-vertex Ks-saturated graph with n ≥ s ≥ 4. Kim, Kim,
Kostochka and O [17] proved that∑

v∈V (G)

(d(v) + 1)(d(v) + 2− s) ≥ (s− 2)n(n− s+ 1).

It is easy to check that∑
v∈V (G)

(d(v)+1)(d(v)+2−s) =
∑

v∈V (G)

(d(v)−1)d(v)+(4−s)
∑

v∈V (G)

d(v)+(2−s)n.

Therefore,

(3)
∑

v∈V (G)

(d(v)− 1)d(v) ≥ (s− 2)n(n− s+ 1) + (s− 4)2e(G) + (s− 2)n.

By the Erdős-Hajnal-Moon Theorem

sat(n,Ks) = (s− 2)(n− s+ 2) +

(
s− 2

2

)
,

and Ks−2 + Kn−s+2 is the unique n-vertex Ks-saturated with sat(n,Ks) edges.
Thus,

2e(G) ≥ 2(s− 2)(n− s+ 2) + 2

(
s− 2

2

)
= (s− 2)(2n− s+ 1).

Plugging this into (3) we get that if s ≥ 4,∑
v∈V (G)

(d(v)− 1)d(v) ≥ (s− 2)n(n− s+ 1) + (s− 4)(s− 2)(2n− s+ 1) + (s− 2)n.

Dividing through by 2 and simplifying the right hand side yields∑
v∈V (G)

(
d(v)

2

)
≥ (s− 2)

(
n− 1

2

)
+ (n− s+ 2)

(
s− 2

2

)

where equality will hold only if G is Ks−2 + Kn−s+2. This completes the proof
of part (ii) of Theorem 2.
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2.2. Proof of Theorem 3

Using another inequality of Kim, Kim, Kostochka, and O [17] and the Power
Means Inequality, we prove a lower bound on the number of copies of K1,t in a
Ks-saturated graph that gives the correct order of magnitude for t ≥ 3.

Proposition 8. Let n ≥ s ≥ 3 and t ≥ 3 be integers. If G is an n-vertex Ks-
saturated graph, then

N (K1,t, G) ≥ ((n− 1)2(s− 2) + (s− 2)2(n− s+ 2))t/2

ttnt/2−1

=

(√
s− 2

t

)t
nt/2+1 +Os,t(n

t/2).

Proof. Let G be an n-vertex Ks-saturated graph. Kim, Kim, Kostochka and O
[17] proved that

(4)
∑

v∈V (G)

d(v)2 ≥ (n− 1)2(s− 2) + (s− 2)2(n− s+ 2)

and that equality holds if and only if G is Ks−2 +Kn−s+2, except for in the case
that s = 3 where equality holds if and and only if G is K1 + Kn−1 or a Moore
graph. By the Power Means Inequality,

(5)
∑

v∈V (G)

d(v)2 ≤ n1−2/t
 ∑
v∈V (G)

d(v)t

t/2

.

Combining (4) and (5) with the inequality
∑

v∈V (G) d(v)t ≤ tt
∑

v∈V (G)

(
d(v)
t

)
and

rearranging gives

N (K1,t, G) =
∑

v∈V (G)

(
d(v)

t

)
≥ ((n− 1)2(s− 2) + (s− 2)2(n− s+ 2))t/2

ttnt/2−1
.

This completes the proof of Proposition 8.

Proposition 9. Let s ≥ 3 and t ≥ 3 be integers. For sufficiently large n,

sat(n,K1,t,Ks) ≤
ctsn

t/2+1

t!

where cs is a constant depending only on s.



Minimizing the Number of Complete Bipartite Graphs in ... 801

Proof. By a result of Alon, Erdős, Holzman, and Krivelevich, for each s ≥ 3 and
sufficiently large n, there is a Ks-saturated graph G with maximum degree cs

√
n

(the constant cs satisfies cs → 2s as s→∞). The number of K1,t’s in G is then

∑
v∈V (G)

(
d(v)

t

)
≤ n

(
∆(G)

t

)
≤ ctsn

t/2+1

t!
.

Proof of Theorem 3. The proof of Theorem 3 follows from Propositions 8
and 9.

3. Bounds on sat(n,K2,t,Ks) with s ≥ 4 and t ≥ 3

3.1. Upper bound on sat(n,K2,t,Ks)

We begin this section by stating two simple lemmas that can be easily proved by
counting embeddings.

Lemma 10. Let F be a connected bipartite graph with parts of size a and b. If
G is an n-vertex graph with maximum degree ∆, then

N (F,G) ≤ n∆a+b−1.

Lemma 11. Let F be a connected bipartite graph with parts of size a and b. For
any n-vertex graph G,

N (Ka,b, G) ≤ N (F,G).

Having stated these two lemmas, we are ready to prove Theorem 5.

Proof of Theorem 5. If a > s − 2, then Ks−2 + Kn−s+2 is Ks-saturated with
no copies of F . Indeed, a copy of F would need at least a vertices from the Ks−2,
but a > s− 2.

Now assume a ≤ s− 2. Let Gsq be the Ks-saturated graph constructed in [1]

where n (and thus q) is chosen large enough so that b < q+1
2 . There is a constant

cs > 0 such that ∆
(
Gsq
)
≤ cs
√
n. By Lemma 10, the number of copies of F in Gsq

is at most nca+b−1s n(1/2)(a+b−1) = ca+b+1
s n(1/2)(a+b+1).

We conclude this subsection by showing that the graph Gsq used in the
proof of Theorem 5 cannot be used to further improve upon the upper bound of

O
(
n

1
2
(a+b+1)

)
when F = Ka,b. Since we are showing that Gsq cannot be used

to improve the upper bound, we will be brief in our argument. We will use the
same terminology as in [1], but one point at which we differ is the notation we
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use for a vertex. A vertex in Gsq is determined by its level, place, type, and copy.
A vertex at level i, place j, type t, and copy c will be written as

((i− 1)q + j, t, c).

First, take n large enough so that b < q+1
2 . Choose a sequence i1, i2, . . . , ia

of levels with 1 ≤ i1 < i2 < · · · < ia ≤ q+1
2 . Likewise, choose a sequence of b

levels q+1
2 ≤ ia+1 < ia+2 < · · · < ia+b ≤ q + 1. This can be done in

( q+1
2
a

)( q+1
2
b

)
ways. Next, choose a place j1 ∈ [q] which can be done in q ways, and a type
t1 ∈ [s− 2] which can be done in s− 2 ways. Finally, choose a sequence of copies
1 ≤ c1, c2, . . . , ca+b ≤ s−1 arbitrarily. This can be done in (s−1)a+b ways. Using
the definition of Gsq, one finds that the a vertices in the set

{((iz − 1)q + j1, t1, cz) : 1 ≤ z ≤ a}

are all adjacent to the b vertices in the set

{((iz − 1)q + (j1 + 1)q, (t1 + 1)s−2, cz) : a+ 1 ≤ z ≤ a+ b}

(here (j1 +1)q is the unique integer ζ in {1, 2, . . . , q} for which j1 +1 ≡ ζ(mod q),
and (t1 + 1)s−2 is the unique integer ζ ′ in {1, 2, . . . , s − 2} for which t1 + 1 ≡
ζ ′(mod s − 2)). This gives a Ka,b in Gsq and so the number of Ka,b in Gsq is at
least(

(1/2)(q + 1)

a

)(
(1/2)(q + 1)

b

)
q(s−2)(s−1)a+b ≥ Cs,a,bqa+b+1 ≥ Cn(1/2)(a+b+1).

By Lemmas 11 and 10, Gsq is a Ks-saturated n-vertex graph with

Θs,a,b

(
n(1/2)(a+b+1)

)
copies of Ka,b.

3.2. Lower bounds on sat(n,K2,t,Ks)

First we prove Theorem 6.

Proof of Theorem 6. Let G be a Ks-saturated graph on n vertices. Note that
we can assume

(6) e(G) ≤ n
7
4

10
.

Otherwise, a theorem of Erdős and Simonovits [10] implies that there is a positive
constant γ such that

(7) N (K2,t, G) ≥ γ e(G)2t

n3t−2
= Ω

(
n

t
2
+2
)
,
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proving Theorem 6.

LetK−4 be the graph consisting of 4 vertices and 5 edges obtained by removing
an edge from K4. For a copy of K−4 with vertices x, y, u, v, where uv /∈ E(G), let
xy be called the base edge of this K−4 . We estimate the number of copies of K−4
in a Ks-saturated graph G.

For every u, v with uv /∈ E(G) there is a set S such that S ⊆ N(u, v) and S
induces a Ks−2 in G. Therefore, there are at least

(
s−2
2

)
pairs x, y ∈ S such that

u, v, x, y form a copy of K−4 . On the other hand, every xy ∈ E(G) is the base

edge of at most
(
d(x,y)

2

)
copies of K−4 in G.

Therefore,

∑
xy∈E(G)

(
d(x, y)

2

)
≥ N (K−4 , G) ≥

∑
uv∈E(G)

(
s− 2

2

)
≥ e(G)

(6)

≥ n2

4
.

Thus, there is a constant ct = c(t) such that the following holds.

N (K2,t, G) ≥
∑

xy∈E(G)

(
d(x, y)

t

)
≥ 1

tt

∑
xy∈E(G)

((
d(x, y)

2

) t
2

− tt
)

≥ e(G)

tt

(∑
xy∈E(G)

(
d(x,y)

2

)
e(G)

) t
2

− e(G) ≥ (n2/4)
t
2

tte(G)
t
2
−1
− e(G)

=
(n2/4)

t
2 − tte(G)t/2

tte(G)
t
2
−1

(6)

≥ ctn
t

e(G)
t
2
−1

.

Combining this with (7) we get

N (K2,t, G) ≥ min

{
γ
e(G)2t

n3t−2
,

ctn
t

e(G)
t
2
−1

}
.

Let e(G) = nα. Then

N (K2,t, G) ≥ min
{
γn2αt−3t+2, ctn

t−αt/2+α
}
.

Choosing α = 8t−4
5t−2 and C = min{γ, ct}, we get the desired lower bound

Cn
t
5
− 16

125t−10
+ 41

25 > Cn
t
5
+ 8

5 .

Next we turn to the proof of Theorem 7. We need the following lemma.
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Lemma 12. Let s ≥ 4 and 2 ≤ a ≤ b be integers with a ≤ s − 2. Suppose that
G is an n-vertex Ks-saturated graph with vertex set V . For any v ∈ V , there are
at least

c

(
n− d(v)− 1

d(v)a−1

)b/2
copies of Ka,b that contain v where c = c(s, a, b) is a positive constant.

Proof. Let v ∈ V . For each u ∈ V \N [v], there is a set Su ⊂ N(v) such that Su
induces a Ks−2 in G. Fix such an Su and define an (s − 1)-uniform hypergraph
H to have vertex set V \{v}, and edge set E(H) = {{u} ∪ Su : u ∈ V \N [v]}. By
construction, H has n−d(v)−1 edges, each of which contains exactly one vertex
from V \N [v] and s− 2 vertices from N(v). Also, no two edges of H contain the
same vertex from V \N [v]. In what follows, we will add the subscript H if we are
referring to degrees in H, and no subscript will be included if we are referring to
degrees or neighborhoods in G.

By averaging, there is a set X ∈
(
N(v)
a−1
)

such that

dH(X) ≥
(
s−2
a−1
)
(n− d(v)− 1)(

d(v)
a−1
) .

We then have

(8)
∑

y∈N(v,X)

dH(y,X) ≥ dH(X)

(s− 2)− |X|
≥ c1

n− d(v)− 1

d(v)a−1

for some constant c1 = c1(s, a) > 0. The number of Ka,b with X ∪ {y} forming
the part of size a (y is an arbitrary vertex from N(v,X)) and v in the part of
size b is at least∑

y∈N(v,X)

(
dH(y,X)

b− 1

)
≥ d(v,X)

( c1(n−d(v)−1)
d(v,X)d(v)a−1

b− 1

)
≥ c2(n− d(v)− 1)b−1

d(v,X)b−2d(v)(a−1)(b−1)
.

Here we have used convexity, (8), and c2 = c2(s, a, b) is some positive constant.

Recalling that |X| = a− 1, there are
(d(v,X)

b

)
copies of Ka,b where {v} ∪X is

the part of size a and the part of size b is contained in N(v)\X. Thus, for some
constant c3 = c3(s, a, b) > 0, the number of Ka,b that contain v is at least

c3(n− d(v)− 1)b−1

d(v,X)b−2d(v)(a−1)(b−1)
+ c3d(v,X)b.

By considering cases as to which is this the bigger term in this sum, we find that
in both cases, there are at least

c3

(
n− d(v)− 1

d(v)a−1

)b/2
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copies of Ka,b containing v.

Applying Lemma 12 to a vertex v with d(v) = δ(G) proves Theorem 7.

4. Concluding Remarks

An interesting open problem is determining the minimum number of copies ofK1,2

in a K3-saturated graph. There is a connection between this problem and Moore
graphs with girth 5. An n-vertex Moore graph with girth 5 and diameter 2 is K3-

saturated. If it’s degree is d, then d =
√
n− 1 and it will contain n

(
d
2

)
= n

(√
n−1
2

)
copies of K1,2. This value is always less than

(
n−1
2

)
which is the number of copies

of K1,2 in K1 + Kn−1 = K1,n−1. Furthermore, one can duplicate vertices of a
Moore graph and preserve the K3-saturated property. Duplicating a vertex of
the Petersen graph will lead to an 11-vertex K3-saturated graph with 42 copies
of K1,2, but K1,10 has 45 copies of K1,2. Starting from the Hoffman-Singleton
graph, one can duplicate a vertex up to 4 times and still have fewer copies of K1,2

than the corresponding K1,n−1. Duplicating a single vertex is not necessarily
the optimal way to minimize the number of copies of K1,2, but the point is that
it is not just the known Moore graphs that have fewer copies of K1,2 than the
corresponding K1,n−1.

It would also be interesting to determine the order of magnitude of

sat(n,K2,t,Ks).

There is a gap in the exponents (this is discussed in the introduction) and it
would be nice to close this gap. It is not clear if our lower or upper bound is
closer to the correct answer.

Another potential approach to studying sat(n,H, F ) is via the random F -
free process. This random process orders the pairs of vertices uniformly and
then adds them one by one subject to the condition that adding an edge does
not create a copy of F . The resulting graph is then F -saturated. This process
was first considered in [4, 12, 21, 22] and has since been studied extensively. If
XH,F is the random variable that counts the number of copies of H in the output
of this process, then we have that sat(n,H, F ) ≤ E(XH,F ). Unfortunately, this
random variable seems quite challenging to understand. If F satisfies a certain
balancedness condition (that, e.g., complete graphs and cycles satisfy), and we
let

p = n
− v(F )−2

e(F )−1 (log n)1/(e(F )−1),

then many results on the F -free process show that the resulting graph behaves in
certain ways like the Erdős-Rényi random graph with edge probability p. Bohman
and Keevash [3] conjectured that the maximum degree of the final graph in the
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F -free process will be O(pn) and this was proven up to a logarithmic factor
by Osthus and Taraz [19]. Bohman and Keevash also showed that in the early
stages of the F -free process, the number of common neighbors of any fixed set of
vertices is of the same order of magnitude as what it would be in a random graph

with edge probability n
− v(F )−2

e(F )−1 ([3] Corollary 1.5). It seems very likely (though
potentially technically difficult to prove) that

sat(n,Ka,b,Ks) ≤ E
(
XKa,b,Ks

)
≤ na+b−

2ab
s+1

+o(1).

One might even guess that the no(1) can be replaced by (log n)
ab
s−2 . This would

be better than Theorem 5 for many choices of a, b and s.
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[10] P. Erdős and M. Simonovits, Supersaturated graphs and hypergraphs, Combinatorica
3 (1983) 181–192.
https://doi.org/10.1007/BF02579292
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