Discussiones Mathematicae Graph Theory 43 (2023) 761–766 https://doi.org/10.7151/dmgt.2401

TWO SUFFICIENT CONDITIONS FOR COMPONENT FACTORS IN GRAPHS

SIZHONG ZHOU¹, QIUXIANG BIAN

School of Science Jiangsu University of Science and Technology Zhenjiang, Jiangsu 212100, China

e-mail: zsz_cumt@163.com bianqiuxiang@just.edu.cn

AND

ZHIREN SUN

School of Mathematical Sciences Nanjing Normal University Nanjing, Jiangsu 210046, China

e-mail: 05119@njnu.edu.cn

Abstract

Let G be a graph. For a set \mathcal{H} of connected graphs, a spanning subgraph H of a graph G is called an \mathcal{H} -factor of G if each component of H is isomorphic to a member of \mathcal{H} . An \mathcal{H} -factor is also referred as a component factor. If G - e admits an \mathcal{H} -factor for any $e \in E(G)$, then we say that G is an \mathcal{H} -factor deleted graph. Let $k \geq 2$ be an integer. In this article, we verify that (i) a graph G admits a $\{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, \mathcal{T}(2k+1)\}$ -factor if and only if its binding number $bind(G) \geq \frac{2}{2k+1}$; (ii) a graph G with $\delta(G) \geq 2$ is a $\{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, \mathcal{T}(2k+1)\}$ -factor deleted graph if its binding number $bind(G) \geq \frac{2}{2k-1}$.

Keywords: graph, minimum degree, binding number, \mathcal{H} -factor, \mathcal{H} -factor deleted graph.

2020 Mathematics Subject Classification: 05C70, 05C05.

¹Corresponding author.

1. INTRODUCTION

In this article, we discuss only finite simple graphs without loops or multiple edges. Given a graph G, we let V(G) and E(G) denote its vertex set and edge set, respectively. For a vertex x of a graph G, we use $N_G(x)$ to denote the set of vertices adjacent to x in G, and use $d_G(x)$ to denote the degree of x in G. We write $\delta(G) = \min\{d_G(x) : x \in V(G)\}$. For a vertex subset X of a graph G, we denote by G[X] the subgraph of G induced by X, and write $G-X = G[V(G) \setminus X]$ and $N_G(X) = \bigcup_{x \in X} N_G(x)$. We denote by I(G) the set of isolated vertices of G, and write i(G) = |I(G)|. The binding number bind(G) of a graph G is the minimum, taken over all $X \subseteq V(G)$ with $X \neq \emptyset$ and $N_G(X) \neq V(G)$, of the ratio $\frac{|N_G(X)|}{|X|}$.

 $\frac{|N_G(X)|}{|X|}$. We denote by C_n the cycle with n vertices, by K_n the complete graph with n vertices, and by $K_{n,m}$ the complete bipartite graph with partite sets X of size n and Y of size m, where $V(K_{n,m}) = X \cup Y$. For a tree T, we use Leaf(T) to denote the set of leaves. An edge of T incident with a leaf is said to be a pendant edge.

We define a special class of trees $\mathcal{T}(2k+1)$, where $k \geq 2$ is an integer. Let R be a tree that satisfies the following conditions: for any $x \in V(R) - Leaf(R)$,

(a) $d_{R-Leaf(R)}(x) \in \{1, 3, \dots, 2k+1\}$ and

(b) 2 · (the number of leaves adjacent to x in R)+ $d_{R-Leaf(R)}(x) \le 2k + 1$. For such a tree R, we derive a new tree T_R as follows:

(c) insert a new vertex of degree 2 into each edge of R - Leaf(R) and

(d) for every vertex x of R - Leaf(R) with $d_{R-Leaf(R)}(x) = 2r + 1 < 2k + 1$, add k - r-(the number of leaves adjacent to x in R) pendant edges to x. Then the set of such trees T_R for all trees R satisfying conditions (a) and (b) is denoted by $\mathcal{T}(2k + 1)$.

For a set \mathcal{H} of connected graphs, a spanning subgraph H of a graph G is called an \mathcal{H} -factor of G if every component of H is isomorphic to a member of \mathcal{H} . An \mathcal{H} -factor is also referred as a component factor. If G - e admits an \mathcal{H} -factor for any $e \in E(G)$, then we say that G is an \mathcal{H} -factor deleted graph.

Tutte [8] derived a characterization for a graph admitting a $\{K_2, C_n : n \ge 3\}$ -factor. Amahashi and Kano [2] showed a necessary and sufficient condition for the existence of a $\{K_{1,j} : 1 \le j \le k\}$ -factor in a graph. Kano, Lu and Yu [4] presented a sufficient condition for a graph to have a $\{K_{1,2}, K_{1,3}, K_5\}$ -factor. Kano and Saito [6] obtained a result on the existence of a $\{K_{1,j} : k \le j \le 2k\}$ -factor in a graph. Zhang, Yan and Kano [11] posed a sufficient condition for the existence of $\{K_{1,j}, K_{2k} : k \le j \le 2k - 1\}$ -factors in graphs. Zhou [14] derived some results on the existence of component factors in graphs. For the relationships between

binding number and graph factors, we refer the reader to [3, 7, 9, 10, 12, 13, 15-17].

Kano, Lu and Yu [5] gave a criterion for a graph having a $\{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, \mathcal{T}(2k+1)\}$ -factor, which is shown in the following.

Theorem 1 (Kano, Lu and Yu [5]). Let k be an integer with $k \ge 2$. Then a graph G admits a $\{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, \mathcal{T}(2k+1)\}$ -factor if and only if

$$i(G-X) \le \left(k + \frac{1}{2}\right)|X|$$

for every $X \subseteq V(G)$.

In this article, we establishes some relationships between binding numbers and $\{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, \mathcal{T}(2k+1)\}$ -factors in graphs.

Theorem 2. Let k be an integer with $k \ge 2$. Then a graph G admits a $\{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, \mathcal{T}(2k+1)\}$ -factor if and only if its binding number $bind(G) \ge \frac{2}{2k+1}$.

Theorem 3. Let k be an integer with $k \ge 2$. Then a graph G with $\delta(G) \ge 2$ is a $\{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, \mathcal{T}(2k+1)\}$ -factor deleted graph if its binding number $bind(G) \ge \frac{2}{2k-1}$.

Remark 4. For two graphs H_1 and H_2 , $H_1 \cup H_2$ denotes the union of H_1 and H_2 , and $H_1 \vee H_2$ denotes the join of H_1 and H_2 . We show that the condition $bind(G) \geq \frac{2}{2k-1}$ in Theorem 3 cannot be replaced by $bind(G) \geq \frac{2}{2k}$. To explain this, we construct a graph $G = H_1 \vee ((2kK_1) \cup (2H_2))$, where $H_1 = K_2$, $H_2 = K_2$, and $k \geq 2$ is an integer. Choose $Y = V(2kK_1)$. Obviously, $Y \neq \emptyset$ and $N_G(Y) \neq V(G)$. Furthermore, we easily see that $bind(G) = \frac{|N_G(Y)|}{|Y|} = \frac{2}{2k}$. Set $e \in E(2H_2)$ and G' = G - e. We choose $X = V(H_1)$. Thus, we derive

$$i(G' - X) = 2k + 2 > 2k + 1 = 2\left(k + \frac{1}{2}\right) = \left(k + \frac{1}{2}\right)|X|.$$

By Theorem 1, G' has no $\{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, \mathcal{T}(2k+1)\}$ -factor, and so, G is not a $\{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, \mathcal{T}(2k+1)\}$ -factor deleted graph.

2. The Proof of Theorem 2

We first verify the following lemma, which is very useful in the proof of Theorem 2.

Lemma 5. Let G be a graph and $\lambda \geq 1$ be a real number. Then the following three statements are equivalent.

(i) $i(G-S) \leq \lambda |S|$ for all $S \subset V(G)$.

(ii) $\lambda |N_G(X)| \ge |X|$ for all independent set X of G. (iii) $\lambda |N_G(Y)| \ge |Y|$ for all $Y \subset V(G)$.

Proof. The equivalence of (i) and (ii) of Lemma 5 is known and easy (See Lemma 7.1 [1]). In what follows, we prove only that (ii) implies (iii).

We may assume that G is connected. Let $\emptyset \neq Y \subset V(G)$, and let $X = Y \cap N_G(Y)$. Then Y - X is an independent set of G, $N_G(X) \supseteq X$ and $N_G(Y - X) \cap Y = \emptyset$. Then by (ii) and $\lambda \ge 1$, we have

$$\lambda |N_G(Y)| \ge \lambda (|N_G(Y - X)| + |X|) \ge |Y - X| + |X| = |Y|.$$

Hence, (iii) holds. Lemma 5 is verified.

Proof of Theorem 2. Set $\lambda = \frac{2k+1}{2}$ in Lemma 5. According to Theorem 1, Lemma 5 and the definition of bind(G), we see that

$$bind(G) \ge \frac{2}{2k+1}$$

$$\Leftrightarrow \frac{2k+1}{2} |N_G(Y)| \ge |Y| \text{ for all } Y \subset V(G)$$

$$\Leftrightarrow i(G-S) \le \frac{2k+1}{2} |S| \text{ for all } S \subset V(G)$$

 $\Leftrightarrow G$ admits a $\{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, \mathcal{T}(2k+1)\}$ -factor.

We finish the proof of Theorem 2.

3. The Proof of Theorem 3

Proof of Theorem 3. Let G' = G - e for any fixed $e = xy \in E(G)$ and $\mathcal{H} = \{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, \mathcal{T}(2k+1)\}$. To prove Theorem 3, it suffices to verify that G' admits an \mathcal{H} -factor. On the contrary, we assume that G' has no \mathcal{H} -factor. Then it follows from Theorem 1 that

(1)
$$i(G'-X) > \left(k + \frac{1}{2}\right)|X|$$

for some vertex subset X of G.

We first demonstrate the following claim.

Claim 1. $|X| \ge 2$.

Proof. Since $\delta(G) \ge 2$, $\delta(G') \ge 1$ and so G' has no isolated vertex. Assume that |X| = 1. Then it follows from (1) and $k \ge 2$ that $i(G' - X) > (k + \frac{1}{2})|X| \ge \frac{5}{2}$, which implies

764

It is obvious that $i(G' - X) = i(G - e - X) \le i(G - X) + 2$. Combining this with (2), we derive $i(G - X) \ge i(G' - X) - 2 \ge 3 - 2 = 1$, which implies that there exists at least one vertex u in G - X with $d_{G-X}(u) = 0$. Thus, we have $d_G(u) \le d_{G-X}(u) + |X| = 0 + 1 = 1$, which contradicts $\delta(G) \ge 2$. Therefore, we obtain $|X| \ge 2$. We finish the proof of Claim 1.

It follows from $k \ge 2$, $bind(G) \ge \frac{2}{2k-1}$, Lemma 5 and Claim 1 that

$$i(G'-X) = i(G-e-X) \le i(G-X) + 2 \le \frac{2k-1}{2}|X| + 2 \le \frac{2k+1}{2}|X|,$$

which contradicts (1). Hence, G - e has an \mathcal{H} -factor by Theorem 1, which implies that G is an \mathcal{H} -factor deleted graph. This completes the proof of Theorem 3.

Finally, we present an open problem.

Problem. Find a criterion for a graph to be a $\{K_{1,1}, K_{1,2}, \ldots, K_{1,k}, \mathcal{T}(2k+1)\}$ -factor deleted graph.

Acknowledgments

The authors would like to express their gratitude to the anonymous referees for their very helpful comments and suggestions which resulted in a much improved paper. This work is supported by Six Big Talent Peak of Jiangsu Province (Grant No. JY-022).

References

- J. Akiyama and M. Kano, Factors and Factorizations of Graphs, Lect. Note Math. 2031 (Springer, Berlin, Heidelberg, 2011). https://doi.org/10.1007/978-3-642-21919-1_1
- [2] A. Amahashi and M. Kano, On factors with given components, Discrete Math. 42 (1982) 1–6. https://doi.org/10.1016/0012-365X(82)90048-6
- W. Gao, W. Wang and Y. Chen, Tight bounds for the existence of path factors in network vulnerability parameter settings, International Journal of Intelligent Systems 36 (2021) 1133–1158. https://doi.org/10.1002/int.22335
- M. Kano, H. Lu and Q. Yu, Component factors with large components in graphs, Appl. Math. Lett. 23 (2010) 385–389. https://doi.org/10.1016/j.aml.2009.11.003
- M. Kano, H. Lu and Q. Yu, Fractional factors, component factors and isolated vertex conditions in graphs, Electron. J. Combin. 26(4) (2019) #P4.33. https://doi.org/10.37236/8498

- M. Kano and A. Saito, Star-factors with large components, Discrete Math. 312 (2012) 2005–2008. https://doi.org/10.1016/j.disc.2012.03.017
- M. Plummer and A. Saito, Toughness, binding number and restricted matching extension in a graph, Discrete Math. 340 (2017) 2665-2672. https://doi.org/10.1016/j.disc.2016.10.003
- [8] W.T. Tutte, The 1-factors of oriented graphs, Proc. Amer. Math. Soc. 4 (1953) 922-931. https://doi.org/10.2307/2031831
- S. Wang and W. Zhang, Research on fractional critical covered graphs, Probl. Inf. Transm. 56 (2020) 270–277. https://doi.org/10.1134/S0032946020030047
- [10] J. Yu and G. Liu, Binding number and minimum degree conditions for graphs to have fractional factors, J. Shandong Univ. 39 (2004) 1–5.
- [11] Y. Zhang, G. Yan and M. Kano, *Star-like factors with large components*, J. Oper. Res. Soc. China **3** (2015) 81–88. https://doi.org/10.1007/s40305-014-0066-7
- S. Zhou, Binding numbers and restricted fractional (g, f)-factors in graphs, Discrete Appl. Math. 305 (2021) 350–356. https://doi.org/10.1016/j.dam.2020.10.017
- [13] S. Zhou, Remarks on path factors in graphs, RAIRO Oper. Res. 54 (2020) 1827– 1834. https://doi.org/10.1051/ro/2019111
- S. Zhou, Some results on path-factor critical avoidable graphs, Discuss. Math. Graph Theory 43 (2023) 233-244. https://doi.org/10.7151/dmgt.2364
- [15] S. Zhou, H. Liu and Y. Xu, Binding numbers for fractional (a, b, k)-critical covered graphs, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 21 (2020) 115–121.
- [16] S. Zhou and Z. Sun, Binding number conditions for P≥2-factor and P≥3-factor uniform graphs, Discrete Math. 343(3) (2020) 111715. https://doi.org/10.1016/j.disc.2019.111715
- [17] S. Zhou and Z. Sun, Some existence theorems on path factors with given properties in graphs, Acta Math. Sin. (Engl. Ser.) 36 (2020) 917–928. https://doi.org/10.1007/s10114-020-9224-5

Received 9 October 2020 Revised 20 February 2021 Accepted 21 February 2021