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Abstract

Let G be a graph. For a set H of connected graphs, a spanning subgraph
H of a graph G is called an H-factor of G if each component of H is isomor-
phic to a member of H. An H-factor is also referred as a component factor.
If G − e admits an H-factor for any e ∈ E(G), then we say that G is an
H-factor deleted graph. Let k ≥ 2 be an integer. In this article, we verify
that (i) a graph G admits a {K1,1,K1,2, . . . ,K1,k, T (2k + 1)}-factor if and
only if its binding number bind(G) ≥ 2

2k+1
; (ii) a graph G with δ(G) ≥ 2 is a

{K1,1,K1,2, . . . ,K1,k, T (2k + 1)}-factor deleted graph if its binding number
bind(G) ≥ 2

2k−1
.
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1. Introduction

In this article, we discuss only finite simple graphs without loops or multiple
edges. Given a graph G, we let V (G) and E(G) denote its vertex set and edge
set, respectively. For a vertex x of a graph G, we use NG(x) to denote the set of
vertices adjacent to x in G, and use dG(x) to denote the degree of x in G. We
write δ(G) = min{dG(x) : x ∈ V (G)}. For a vertex subset X of a graph G, we
denote by G[X] the subgraph of G induced by X, and write G−X = G[V (G)\X]
and NG(X) =

⋃

x∈X NG(x). We denote by I(G) the set of isolated vertices of
G, and write i(G) = |I(G)|. The binding number bind(G) of a graph G is the
minimum, taken over all X ⊆ V (G) with X 6= ∅ and NG(X) 6= V (G), of the ratio
|NG(X)|

|X| .

We denote by Cn the cycle with n vertices, by Kn the complete graph with
n vertices, and by Kn,m the complete bipartite graph with partite sets X of size
n and Y of size m, where V (Kn,m) = X ∪ Y . For a tree T , we use Leaf(T ) to
denote the set of leaves. An edge of T incident with a leaf is said to be a pendant
edge.

We define a special class of trees T (2k + 1), where k ≥ 2 is an integer. Let
R be a tree that satisfies the following conditions: for any x ∈ V (R)− Leaf(R),

(a) dR−Leaf(R)(x) ∈ {1, 3, . . . , 2k + 1}
and

(b) 2 · (the number of leaves adjacent to x in R)+dR−Leaf(R)(x) ≤ 2k + 1.
For such a tree R, we derive a new tree TR as follows:

(c) insert a new vertex of degree 2 into each edge of R− Leaf(R)
and

(d) for every vertex x of R−Leaf(R) with dR−Leaf(R)(x) = 2r+1 < 2k+1,
add k − r−(the number of leaves adjacent to x in R) pendant edges to x.
Then the set of such trees TR for all trees R satisfying conditions (a) and (b) is
denoted by T (2k + 1).

For a set H of connected graphs, a spanning subgraph H of a graph G is
called an H-factor of G if every component of H is isomorphic to a member of H.
An H-factor is also referred as a component factor. If G− e admits an H-factor
for any e ∈ E(G), then we say that G is an H-factor deleted graph.

Tutte [8] derived a characterization for a graph admitting a {K2, Cn : n ≥ 3}-
factor. Amahashi and Kano [2] showed a necessary and sufficient condition for the
existence of a {K1,j : 1 ≤ j ≤ k}-factor in a graph. Kano, Lu and Yu [4] presented
a sufficient condition for a graph to have a {K1,2,K1,3,K5}-factor. Kano and
Saito [6] obtained a result on the existence of a {K1,j : k ≤ j ≤ 2k}-factor in a
graph. Zhang, Yan and Kano [11] posed a sufficient condition for the existence
of {K1,j ,K2k : k ≤ j ≤ 2k − 1}-factors in graphs. Zhou [14] derived some results
on the existence of component factors in graphs. For the relationships between
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binding number and graph factors, we refer the reader to [3,7,9,10,12,13,15–17].

Kano, Lu and Yu [5] gave a criterion for a graph having a {K1,1,K1,2, . . . ,K1,k,

T (2k + 1)}-factor, which is shown in the following.

Theorem 1 (Kano, Lu and Yu [5]). Let k be an integer with k ≥ 2. Then a

graph G admits a {K1,1,K1,2, . . . ,K1,k, T (2k + 1)}-factor if and only if

i(G−X) ≤

(

k +
1

2

)

|X|

for every X ⊆ V (G).

In this article, we establishes some relationships between binding numbers
and {K1,1,K1,2, . . . ,K1,k, T (2k + 1)}-factors in graphs.

Theorem 2. Let k be an integer with k ≥ 2. Then a graph G admits a {K1,1,K1,2,

. . . ,K1,k, T (2k + 1)}-factor if and only if its binding number bind(G) ≥ 2
2k+1 .

Theorem 3. Let k be an integer with k ≥ 2. Then a graph G with δ(G) ≥ 2
is a {K1,1,K1,2, . . . ,K1,k, T (2k + 1)}-factor deleted graph if its binding number

bind(G) ≥ 2
2k−1 .

Remark 4. For two graphs H1 and H2, H1 ∪H2 denotes the union of H1 and
H2, and H1 ∨ H2 denotes the join of H1 and H2. We show that the condition
bind(G) ≥ 2

2k−1 in Theorem 3 cannot be replaced by bind(G) ≥ 2
2k . To explain

this, we construct a graph G = H1∨((2kK1)∪(2H2)), where H1 = K2, H2 = K2,
and k ≥ 2 is an integer. Choose Y = V (2kK1). Obviously, Y 6= ∅ and NG(Y ) 6=

V (G). Furthermore, we easily see that bind(G) = |NG(Y )|
|Y | = 2

2k . Set e ∈ E(2H2)

and G′ = G− e. We choose X = V (H1). Thus, we derive

i(G′ −X) = 2k + 2 > 2k + 1 = 2

(

k +
1

2

)

=

(

k +
1

2

)

|X|.

By Theorem 1, G′ has no {K1,1,K1,2, . . . ,K1,k, T (2k + 1)}-factor, and so, G is
not a {K1,1,K1,2, . . . ,K1,k, T (2k + 1)}-factor deleted graph.

2. The Proof of Theorem 2

We first verify the following lemma, which is very useful in the proof of Theorem 2.

Lemma 5. Let G be a graph and λ ≥ 1 be a real number. Then the following

three statements are equivalent.

(i) i(G− S) ≤ λ|S| for all S ⊂ V (G).



764 S. Zhou, Q. Bian and Z. Sun

(ii) λ|NG(X)| ≥ |X| for all independent set X of G.

(iii) λ|NG(Y )| ≥ |Y | for all Y ⊂ V (G).

Proof. The equivalence of (i) and (ii) of Lemma 5 is known and easy (See Lemma
7.1 [1]). In what follows, we prove only that (ii) implies (iii).

We may assume that G is connected. Let ∅ 6= Y ⊂ V (G), and let X =
Y ∩NG(Y ). Then Y −X is an independent set of G, NG(X) ⊇ X and NG(Y −
X) ∩ Y = ∅. Then by (ii) and λ ≥ 1, we have

λ|NG(Y )| ≥ λ(|NG(Y −X)|+ |X|) ≥ |Y −X|+ |X| = |Y |.

Hence, (iii) holds. Lemma 5 is verified.

Proof of Theorem 2. Set λ = 2k+1
2 in Lemma 5. According to Theorem 1,

Lemma 5 and the definition of bind(G), we see that

bind(G) ≥
2

2k + 1

⇔
2k + 1

2
|NG(Y )| ≥ |Y | for all Y ⊂ V (G)

⇔ i(G− S) ≤
2k + 1

2
|S| for all S ⊂ V (G)

⇔ G admits a {K1,1,K1,2, . . . ,K1,k, T (2k + 1)}-factor.

We finish the proof of Theorem 2.

3. The Proof of Theorem 3

Proof of Theorem 3. Let G′ = G − e for any fixed e = xy ∈ E(G) and H =
{K1,1,K1,2, . . . ,K1,k, T (2k + 1)}. To prove Theorem 3, it suffices to verify that
G′ admits an H-factor. On the contrary, we assume that G′ has no H-factor.
Then it follows from Theorem 1 that

(1) i(G′ −X) >

(

k +
1

2

)

|X|

for some vertex subset X of G.
We first demonstrate the following claim.

Claim 1. |X| ≥ 2.

Proof. Since δ(G) ≥ 2, δ(G′) ≥ 1 and so G′ has no isolated vertex. Assume that
|X| = 1. Then it follows from (1) and k ≥ 2 that i(G′ −X) > (k + 1

2)|X| ≥ 5
2 ,

which implies

(2) i(G′ −X) ≥ 3.
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It is obvious that i(G′ −X) = i(G− e−X) ≤ i(G−X) + 2. Combining this
with (2), we derive i(G − X) ≥ i(G′ − X) − 2 ≥ 3 − 2 = 1, which implies that
there exists at least one vertex u in G − X with dG−X(u) = 0. Thus, we have
dG(u) ≤ dG−X(u) + |X| = 0 + 1 = 1, which contradicts δ(G) ≥ 2. Therefore, we
obtain |X| ≥ 2. We finish the proof of Claim 1. �

It follows from k ≥ 2, bind(G) ≥ 2
2k−1 , Lemma 5 and Claim 1 that

i(G′ −X) = i(G− e−X) ≤ i(G−X) + 2 ≤
2k − 1

2
|X|+ 2 ≤

2k + 1

2
|X|,

which contradicts (1). Hence, G−e has an H-factor by Theorem 1, which implies
that G is an H-factor deleted graph. This completes the proof of Theorem 3.

Finally, we present an open problem.

Problem. Find a criterion for a graph to be a {K1,1,K1,2, . . . ,K1,k, T (2k+1)}-
factor deleted graph.
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