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Abstract

Let G be a graph with vertex set V(G). A double Roman dominating
function (DRDF) on a graph G is a function f : V(G) — {0,1,2,3} that
satisfies the following conditions: (i) If f(v) = 0, then v must have a neighbor
w with f(w) = 3 or two neighbors z and y with f(z) = f(y) = 2; (i) If
f(v) =1, then v must have a neighbor w with f(w) > 2. The weight of a
DRDF f is the sum }_, 1) f(v). The double Roman domination number
equals the minimum weight of a double Roman dominating function on G.
A double Ttalian dominating function (DIDF) is a function f : V(G) —
{0,1,2,3} having the property that f(N[u]) > 3 for every vertex u € V(G)
with f(u) € {0,1}, where Nu] is the closed neighborhood of v. The weight
of a DIDF f is the sum ), ¢y (g f(v), and the minimum weight of a DIDF
in a graph G is the double Italian domination number. In this paper we first
present Nordhaus-Gaddum type bounds on the double Roman domination
number which improved corresponding results given in [N. Jafari Rad and H.
Rahbani, Some progress on the double Roman domination in graphs, Discuss.
Math. Graph Theory 39 (2019) 41-53]. Furthermore, we establish lower
bounds on the double Roman and double Italian domination numbers of
trees.
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1. INTRODUCTION

For definitions and notations not given here we refer to [12]. We consider simple
graphs G with vertex set V = V(G) and edge set E = E(G). The order of G
is n = n(G) = |V(G)|. The open neighborhood of a vertex v is the set N(v) =
Ng(v) ={u € V(G) | uv € E(G)} and its closed neighborhood is the set N[v] =
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Nglv] = N(v) U{v}. The degree of vertex v € V(G) is d(v) = dg(v) = |N(v)].
The maximum degree and minimum degree of G are denoted by A = A(G) and
§ = §(G), respectively. The complement of a graph G is denoted by G. A leaf
is a vertex of degree one, and its neighbor is called a support vertexr. A strong
support vertex is a support vertex adjacent to more than one leaf. The diameter
of a graph G, denoted by diam (G), is the greatest distance between two vertices
of G. A subset D of V(G) is a dominating set in G if | J,.p N[v] = V(G). The
domination number «(G) is the minimum cardinality of a dominating set in G. A
set S of vertices is independent if no two vertices in S are adjacent. We write P,
for the path of order n, C, for the cycle of length n and K, for the complete graph
of order n. For n > 2, the star K1 ,—1 has one vertex of degree n —1 and n — 1
leaves. By S, ; we denote the double star, where one center vertex is adjacent to
p leaves and the other one to ¢ leaves. Cockayne, Dreyer, S.M. Hedetniemi and
S.T. Hedetniemi [10] introduced the concept of Roman domination in graphs, and
since then a lot of related variations and generalizations have been studied (see
[6-9]). In 2016, Beeler, Haynes and S.T. Hedetniemi [5] defined a stronger version
of Roman domination which they called double Roman domination. A double
Roman dominating function (DRDF) on a graph G is a function f : V(G) —
{0,1,2,3} that satisfies the following conditions: (i) If f(v) = 0, then v must have
a neighbor w with f(w) = 3 or two neighbors = and y with f(z) = f(y) = 2; (ii) If
f(v) =1, then v must have a neighbor w with f(w) > 2. The weight of a DRDF
fis the sum w(f) = Y cy () f(v). The double Roman domination number
var(G) equals the minimum weight of a double Roman dominating function on
G. A DRDF of G with weight v4r(G) is called a v4r(G)-function. Double Roman
domination has been studied in [1,2,11,13] and the survey paper [7].

Mojdeh and Volkmann [15] considered a variant of double Roman domina-
tion which they called double Italian domination. A double Italian dominating
function (DIDF) on a graph G is a function f : V(G) — {0,1,2, 3} having the
property that for every vertex u € V(G), if f(u) € {0,1}, then f(N[u]) > 3. The
weight of a DIDF f is the sum w(f) = > ,cy(q) f(v), and the minimum weight
of a DIDF in a graph G is the double Italian domination number, denoted by
va1(G). This concept was further studied in [3,4,17].

Clearly, v41(G) < v4r(G), since every double Roman dominating function is
also a double Italian dominating function.

In this paper we first present Nordhaus-Gaddum type bounds on the double
Roman domination number which improve corresponding results given in [13].
Furthermore, we establish lower bounds on the double Roman and double Italian
domination numbers of trees.

We make use of the following known results.

Proposition 1 [5]. If G is a graph, then y4r(G) < 3v(G).
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Using Proposition 1 and the classical bound v(G) < § of Ore for graphs G
of order n with §(G) > 1, we obtain the next observation immediately.

Proposition 2. If G is a graph of order n with §(G) > 1, then y4r(G) < 2.

Let H be the family of connected graphs of order n that can be built from
n/4 copies of Py by adding a connected subgraph on the set of centers of 7 Py.

Theorem 3 [5]. If G is a connected graph of order n > 3, then y4r(G) < %”,
with equality if and only if G € H.

Theorem 4 [14]. If G is a graph of order n, minimum degree 6 > 2, and with
no component isomorphic to Cs or Cr, then y4r(G) < 111—0”.

Theorem 5 [1]. If G is a graph of order n and minimum degree § > 3, then
Var(G) < n.

Proposition 6 [15]. If G is a graph of order n > 2, then v4;(G) > 3, with
equality if and only if A(G) =n — 1.

Proposition 7 [1]. If P, is a path of order n > 1, then var(P,) = n if n =
0 (mod 3) and v4r(P,) = n+ 1 otherwise.

2. NORDHAUS-GADDUM TYPE RESULTS

Results of Nordhaus-Gaddum type study the extreme values of the sum or prod-
uct of a parameter on a graph and its complement. In their classical paper [16],
Nordhaus and Gaddum discussed this problem for the chromatic number. Jafari
Rad and Rahbani [13] presented Nordhaus-Gaddum type inequalities for the dou-
ble Roman domination number. In the following let K,, —e be the complete graph
minus an edge and K,, — {e1,e2} be the complete graph minus two independent
edges.

Theorem 8 [13]. If G is a graph of order n > 2, then v4r(G) +v4r(G) < 2n+3,
with equality if and only if G € {K,, K,}.

Theorem 9 [13]. If G ¢ {K,, K,} is a graph of order n > 2, then v4r(G) +
Yar(G) = 2n + 2 if and only if G € {K,, — e, K,, — e, Py, Cs}.

Note that Theorem 9 is incomplete, because we also have Y4z (G) +v4r(G) =
2n+ 2 if G € {Cy,2K5}. Next we improve these results.

Theorem 10. Let G ¢ {K,, K,, Ky —e Ky — e,Cy,2Ko, Py, Cs} be a graph of

order n > 4. Then Yar(G) + var(G) < 2n + 1, with equality if and only if G €
{K,, —{e1,e2}, K, — {e1,e2}} and n > 5 or G,G € {P5,3K>}.



724 L. VOLKMANN

Proof. First assume that 6(G) > 1 and 6(G) > 1. Assume next that §(G) =1

or §(G) = 1, say 6(G) = 1. Furthermore, assume that G has a component of

order 2. Then we observe that v4z(G) < 4, and hence Proposition 2 implies for
n > 7 that var(G) + 1r(G) < 2 +4 < 2n+ 1. If n = 4, then G = 2K,
G = Cy (and so Yr(G) + v4r(G) = 10 = 2n + 2), however, by the hypothesis
G & {2K5,Cy}. If n = 5, then G consists of Ko and a component of order 3,

and we deduce that v4r(G) + Y4r(G) < 10 = 2n. If n = 6 and G = 3K>, then

Yar(G) +74r(G) =9+4 =13 = 2n+1. If G # 3Ky, then G consists of K3 and a

component of order 4, and it follows that v4r(G)+v4r(G) < 34+5+4 =12 = 2n.

Now assume that each component of G' has order at least 3. Since §(G) = 1,
the graph G has a vertex of degree n — 2, and hence we observe that v4z(G) < 5.
Therefore Theorem 3 implies for n > 6 that vyr(G) + yar(G) < %” +5 <
2n 4+ 1. If n = 4, then G is connected. If G has a vertex of degree 3, then

Yar(G) +vir(G) <3+ 5=8=2n. If A(G) = 2, then G = Py, however by the
hypothesis G # P;. If n =5, then G is connected. If A(G) > 3, then v45z(G) <5

and thus v4r(G) +74r(G) < 10 = 2n. If A(G) = 2, then G = P5. Now according
to Proposition 7, we have 7@P5) = 6, and it easy to see that yyr(P5) = 5.
Consequently v4r(Ps) + vir(Ps) = 11 = 2n + 1.

Second assume that 6(G) > 2 and 6(G) > 2. Assume next that §(G) = 2

or 6(G) = 2, say 6(G) = 2. Since 6(G) = 2, the graph G has a vertex of

degree n — 3, and hence we observe that y4r(G) < 7. Now Theorem 3 yields
for n > 8 that y4r(G) < 2* + 7 < 2n + 1. The condition §(G),§(G) > 2 leads
ton > 5. If n = 5, then 6(G),5(G) > 2 shows that G = C5, however, this is
not allowed. If n = 7, then we deduce from Theorem 4 that y4r(G) < 11157’ = %
or G = C7. If G = Cy, then we observe that v4r(C7) < 6 and v4r(C7) = 8
and therefore v4r(C7) + var(C7) < 8 + 6 = 14 = 2n. In the remaining cases we
obtain ygr(G) + vqr(G) < 74 7 = 14 = 2n. Finally, let n = 6, and let u be a
vertex of degree 2 in GG, and let v and w be the neighbors of v in G. Theorem
4 implies 14r(G) < B2 = % and so y4r(G) < 6. If vw € E(G), then we see
that var(G) < 6 and thus v4r(G) + 7ar(G) < 6 +6 = 12 = 2n in this case.
Now assume that vw € E(G), and let z,y, z be the neighbors of u in G. Since
§(G) > 2, without loss of generality, the vertex z is a neighbor of v and w in G.
Now the function f(z) = f(u) = 3 and f(z) = 0 is a DRDF on G of weight 6.

Consequently v4r(G) + vir(G) <6+ 6 = 12 = 2n.
In the case §(G) > 3 and §(G) > 3, it follows from Theorem 5 that yyr(G) +

vir(G) <n+n=2n.

Finally assume that §(G) = 0 or §(G) = 0, say 6(G) = 0. Let I be the set of
isolated vertices of G, and let F' = G — I. We deduce from Proposition 2 that

3n(F)
2

:2|I\+2n(F)—@:2n—@.

G) <2|I
v4ar(G) < 2[1| + 5 2
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Since A(G) = n — 1, we have v4r(G) = 3, and this implies that

Yar(G) + var(G) < 2n — 71(2F) +3<2n+1

if n(F') > 5. Let now n(F') = 4. Note that §(G) = 0 implies n > 5 in this case. If
F =2K5, then G = K,, — {e1, e2} and 50 Yar(G)+7ar(G) = 2n—2+3 = 2n+1. If
F # 2K3, then F is connected, and hence v4r(G)+v4r(G) < 2(n—4)+5+3 = 2n.
If n(F) = 3, then v4r(G) + var(G) < 2(n —3) +3+3 = 2n. If n(F) = 2,
then G = K,, — e and if n(F) = 0, then G = K,,, however, by the hypothesis,
G € {K,, K, — e}. This completes the proof. |

Since ’}/d[(G) < ’VdR(G)y

Ya1(Cs) +7a1(C5) = 10 = 2n < 2n + 2 = 12 = v4r(C5) + 74r(Cs),
Y41 (C4) + var(Cy) = var(Cy) + var(Cs) = 10 = 2n + 2,
Yar (Py) + Yar(P1) = var(Py) + var(P1) = 10 = 2n + 2,
Yar(Ps) 4+ Yar(Ps) = var(Ps) + var(Ps) = 11 = 2n + 1,

Yar (Kn) + var(Kn) = var(Kn) + var(Kn) = 2n + 3 (n > 2),

(
(
(
(
Yar (3K2) + va1 BK2) = var(3K2) + var(3K2) = 13 = 2n + 1,
(
Yar(Ky — €) + var (Kn — €) = var(Kn — €) + var(Kn — €) = 2n+ 2 (n > 3),
(Kn

— {e1,e2}) + Yar(Kn — {e1, e2})
= Yar(Kn — {e1, €2}) + var(Kn — {e1,e2}) =2n+1 (n > 5),

Theorem 10 yields the following Nordhaus-Gaddum type result for the double
Italian domination number.

Corollary 11. Let G be a graph of order n > 4 and suppose that G & {K, K,
K, —e, K, —e,Cy,2K, Py}. Then vq1(G) + 741 (G) < 2n + 1, with equality if
and only if G € {K, — {e1,ea}, K, — {e1,e2}} andn >5 or G,G € {Ps,3K>}.

Observation 12. If G is a graph of order n > 3, then v4r(G) + var(G) >
Y1 (G) +7ar(G) > 8, and this bound is sharp.

Proof. Since the left inequality is immediate, we only prove the right one. As-
sume, without loss of generality, that v47(G) < v47(G). It follows from Proposi-
tion 6 that v47(G) > 3. If v47(G) = 3, then Proposition 6 implies A(G) = n—1. If
v is a vertex of maximum degree in G, then v is an isolated vertex in G, and G —v
is a graph of order at least 2. Therefore Proposition 6 leads to vy (G — v) > 3
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If ’}/d[(G) > 4, then

Let H be a graph with A(H) = n—1 such that A(H) = n—2 (for example a
star). Then we note that Yygr(G) +v4r(G) = var(H) +~4r(H) = 8. This example
demonstrates that the given bounds in Observation 12 are sharp. [

3. TREES

If T is a tree, then Mojdeh and Volkmann [15] have shown that v47(T) = vyar(T).
Thus all results in this section are also valid for v47(T") instead of vir(T').

Lemma 13. Let T be a tree of order n > 2. If v is a leaf of T', then var(T —v) <
Yar(T)-

Proof. Let u € N(v), and let f be a y4r(T)-function. If f(v) = 0 then f [y (7_y)
is a DRDF on T' — v and so ygr(T — v) < w(f) = vyqr(T). If f(v) € {2,3}, then
we define a function g by g(u) = max{f(u), f(v)} and g(x) = f(z) if x # u,v.
Then ¢ is a DRDF on T' — v and thus v4r(T — v) < w(f) = v4r(T). Finally,
assume that f(v) = 1. This leads to f(u) = 2. Now the function f |y ()_y,) is @
DRDF on T — v, and therefore yp(T — v) < v4r(T). |

Corollary 14. If T is a tree of diameter d, then ygr(T) > d+1 ifd+1 =
0 (mod3) and yar(T) > d+ 2 otherwise.

Proof. If T is a tree of diameter 0 < d < 1, then clearly y4r(T) > d+2. Let now
d > 2. Let P be a diametrical path of T" which is a copy of Pz11. By Proposition
7, we note that ygr(Pi+1) = d+1if d+1 = 0(mod3) and vyr(FPat1) = d + 2
otherwise. Now applying Lemma 13 for finite times leads to the desired result. m

The next examples will show that Corollary 14 is sharp.

Example 15. Let P = vjvy - - - v3, be a path of order 3p for an integer p > 1. If
we add t3;_1 > 0 pendant edges to each vertex vs;_1 for 1 < i < p, then let H
be the resulting tree. If we define the function f by f(vsi—1) =3 for1 <i<p
and f(x) = 0 otherwise, then f is a DRDF on H of weight 3p, and therefore
vir(H) < 3p = diam (H) + 1. Corollary 14 implies ygr(H) = diam (H) + 1.

If we add a vertex vsp41 to H, adjacent to v3p, then we denote the resulting
tree by Q. If we define the function g by g(vsi—1) =3 for 1 <i < p, g(vzpy1) =2
and g(x) = 0 otherwise, then g is a DRDF on @ of weight 3p + 2, and therefore
var(Q) < 3p + 2 = diam (@) + 2. Corollary 14 implies v45(Q) = diam (Q) + 2.

Theorem 16. Let T be a tree of order n > 4 with ¢(T') leaves. If T is not a star,
then yap(T) > "H5540).
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Proof. We use an induction proof on the order. If n = 4, then T' = Py, since T
is not a star. Proposition 7 implies v4r(T) = 5 = %. Thus assume that
n > 5 and yr(T") > % for every tree T" of order n’ which is not a star
with 4 < n/ < n. If diam (T') = 3, then T is a double star with v4r(T) € {5,6}
and ((T) = n—2, and thus yr(T) > 5 = n+872("72) = n+8;€(T). Thus we assume
that diam (7") > 4.

Assume that T has a strong support vertex u, and let v be a leaf adjacent
to u. Then T — v is not a star, and it follows from Lemma 13 and the induction
hypothesis that

2 - 2

Yar(T) = var(T — v) n—1+8-((T)-1) n+8—€(T)'

v

Thus assume that T does not have a strong support vertex.

Let vivg - - - v be a diametrical path in T, where v; and v are leaves and
k > 5. Since T has no strong support vertex, d(vy) = d(vk—1) = 2. Let f be a
~var(T')-function.

If f(vg) =2, then f(v1) = 1. Let T" =T —w; and f' = f |y(77). Then f'is a
DRDF on T” such that y4r(T") < w(f’) = w(f) =1 =v4r(T) — 1, £(T") = ¢(T),
and T is not a star. By the induction hypothesis, we have

— 148 (T — T
n-148-UT) | n+8—UT)

Yar(T) > var(T") +1 > 5 5

If f(ve) =1, then f(v1) = 2. If we replace f(v2) by 2 and f(v1) by 1, then
we obtain the desired bound as before.

Next assume that f(ve) = 0. Then f(v1) > 2. If f(v1) = 3, then the function
g with g(v1) = 0, g(v2) = 3 and g(u) = f(u) otherwise is also a DRDF on T
of weight w(g) = w(f). However this we will discuss in the last case. Therefore
assume now that f(vy) = 2. Then f(v3) > 2. If T = P5, then Proposition 7
implies y4r(T) = 6 > %Z(T). Next assume that T # Ps. Let T" = T — {vy,v2}
and f" = f |y(ry. Then f”is a DRDF on T", £(T") < 4(T'), and T" is not a
star. The induction hypothesis leads to

n(T") +8 — (T")

Yar(T) = w(f) = w(f") +2 > yp(T") +2 > 5 +2
> n—2+28—€(T) to= n—|—82—£(T) 1> n—|—82—€(T)'

Finally assume that f(va) = 3. Then f(vi) = 0. If f(v3) > 2, then the
function g with g(v1) = 2, g(v2) = 0 and g(u) = f(u) otherwise is a DRDF on
T with weight less than w(f), a contradiction. If f(v3) = 1, then we define the
function g by g(vi) = 2, g(v2) =0, g(v3) = 2 and g(u) = f(u) otherwise. Then
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g is a DRDF on T of weight w(g) = w(f), and as above, we obtain the desired
result.

Thus assume that f(vs) = 0. Assume first that d(vs) = 2. If & = 5, then
T = Ps, and we have seen above that the desired result is valid. So assume that
k > 6. If T = Py, then Proposition 7 implies y4p(T) = 6 = M. Next
assume that 7' # Ps. Let 7" = T — {v1,v2,v3} and f" = f |y(gry. Then f'is a
DRDF on T, {(T") < ¢(T), and T” is not a star. It follows from the induction
hypothesis that

Yar(T) = w(f) =w(f') +3 > yar(T') +3 > n(T/)JFS_E(T,) +3
n=3+8-0T) , n+8—UT) 3 _n+8-UT)
> : by NEBoUD) 3 a8 UT)

Next assume that d(vs) > 3. Let ug # va, v4 be a further neighbor of v3. Assume
that d(ug) = 1. This implies that f(uz) = 2. Then the function g defined by
g(v1) =2, g(va) =0, g(v3) =2, g(uz) =1 and g(u) = f(u) otherwise is a DRDF
on T of weight w(g) = w(f). If we consider T'— {v1,v9}, then we obtain the
desired result as above. Assume next, without loss of generality, that d(ug) = 2,
and let u; # v3 be a neighbor of uy. Clearly, u; is a leaf and f(uy) + f(u2) = 3.
Then the function g defined by g(v1) = g(v3) = g(u1) = 2, g(v2) = g(uz2) = 0 and
g(u) = f(u) otherwise is a DRDF on T of weight w(g) = w(f). Now the result
follows as before, and the proof is complete. [

The next examples will show that Theorem 16 is sharp.

Example 17. If S, is a double star, then v4r(Sp1) =5 = w.

Let S, 4 be the double star with the center vertices v and v. Now let H,, , be
the tree constructed by subdividing the edge uv in S}, ; twice. Then we observe

that FYdR(HP,q) =6 = Tl(Hp,q)+28—f(Hp,q) .

A DIDF f on a graph G is called in [4] an outer-independent double Italian
dominating function (OIDIDF) if Vj = {v € V(G) : f(v) = 0} is an independent
set. The minimum weight of an OIDIDF on a graph G is called the outer-
independent double Italian domination number of G and is denoted by ;a1 (G).
The definitions lead to v,iqr(G) > v41(G). Since v47(T) = var(T) for each tree,
Theorem 16 leads to the next bound immediately.

Corollary 18. Let T be a tree of order n > 4 with ¢(T) leaves. If T is not a
star, then Yoiqr(T) > %.

If T is a star, then ~,q;(T) = 3 = w Therefore Corollary 18
implies the next known result.
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Corollary 19 [4]. If T is a tree of order n > 3 with ¢ leaves, then Yoiar(T') >

n+5—¢(T)
2

1]

, with equality if and only if T is a star.
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