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Abstract

Let G be a graph with vertex set V (G). A double Roman dominating
function (DRDF) on a graph G is a function f : V (G) −→ {0, 1, 2, 3} that
satisfies the following conditions: (i) If f(v) = 0, then v must have a neighbor
w with f(w) = 3 or two neighbors x and y with f(x) = f(y) = 2; (ii) If
f(v) = 1, then v must have a neighbor w with f(w) ≥ 2. The weight of a
DRDF f is the sum

∑
v∈V (G) f(v). The double Roman domination number

equals the minimum weight of a double Roman dominating function on G.
A double Italian dominating function (DIDF) is a function f : V (G) −→
{0, 1, 2, 3} having the property that f(N [u]) ≥ 3 for every vertex u ∈ V (G)
with f(u) ∈ {0, 1}, where N [u] is the closed neighborhood of v. The weight
of a DIDF f is the sum

∑
v∈V (G) f(v), and the minimum weight of a DIDF

in a graph G is the double Italian domination number. In this paper we first
present Nordhaus-Gaddum type bounds on the double Roman domination
number which improved corresponding results given in [N. Jafari Rad and H.
Rahbani, Some progress on the double Roman domination in graphs, Discuss.
Math. Graph Theory 39 (2019) 41–53]. Furthermore, we establish lower
bounds on the double Roman and double Italian domination numbers of
trees.
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1. Introduction

For definitions and notations not given here we refer to [12]. We consider simple
graphs G with vertex set V = V (G) and edge set E = E(G). The order of G
is n = n(G) = |V (G)|. The open neighborhood of a vertex v is the set N(v) =
NG(v) = {u ∈ V (G) | uv ∈ E(G)} and its closed neighborhood is the set N [v] =
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NG[v] = N(v) ∪ {v}. The degree of vertex v ∈ V (G) is d(v) = dG(v) = |N(v)|.
The maximum degree and minimum degree of G are denoted by ∆ = ∆(G) and
δ = δ(G), respectively. The complement of a graph G is denoted by G. A leaf

is a vertex of degree one, and its neighbor is called a support vertex. A strong

support vertex is a support vertex adjacent to more than one leaf. The diameter

of a graph G, denoted by diam (G), is the greatest distance between two vertices
of G. A subset D of V (G) is a dominating set in G if

⋃
v∈D N [v] = V (G). The

domination number γ(G) is the minimum cardinality of a dominating set in G. A
set S of vertices is independent if no two vertices in S are adjacent. We write Pn

for the path of order n, Cn for the cycle of length n andKn for the complete graph
of order n. For n ≥ 2, the star K1,n−1 has one vertex of degree n− 1 and n− 1
leaves. By Sp,q we denote the double star, where one center vertex is adjacent to
p leaves and the other one to q leaves. Cockayne, Dreyer, S.M. Hedetniemi and
S.T. Hedetniemi [10] introduced the concept of Roman domination in graphs, and
since then a lot of related variations and generalizations have been studied (see
[6–9]). In 2016, Beeler, Haynes and S.T. Hedetniemi [5] defined a stronger version
of Roman domination which they called double Roman domination. A double

Roman dominating function (DRDF) on a graph G is a function f : V (G) −→
{0, 1, 2, 3} that satisfies the following conditions: (i) If f(v) = 0, then v must have
a neighbor w with f(w) = 3 or two neighbors x and y with f(x) = f(y) = 2; (ii) If
f(v) = 1, then v must have a neighbor w with f(w) ≥ 2. The weight of a DRDF
f is the sum w(f) =

∑
v∈V (G) f(v). The double Roman domination number

γdR(G) equals the minimum weight of a double Roman dominating function on
G. A DRDF of G with weight γdR(G) is called a γdR(G)-function. Double Roman
domination has been studied in [1, 2, 11, 13] and the survey paper [7].

Mojdeh and Volkmann [15] considered a variant of double Roman domina-
tion which they called double Italian domination. A double Italian dominating

function (DIDF) on a graph G is a function f : V (G) −→ {0, 1, 2, 3} having the
property that for every vertex u ∈ V (G), if f(u) ∈ {0, 1}, then f(N [u]) ≥ 3. The
weight of a DIDF f is the sum w(f) =

∑
v∈V (G) f(v), and the minimum weight

of a DIDF in a graph G is the double Italian domination number, denoted by
γdI(G). This concept was further studied in [3, 4, 17].

Clearly, γdI(G) ≤ γdR(G), since every double Roman dominating function is
also a double Italian dominating function.

In this paper we first present Nordhaus-Gaddum type bounds on the double
Roman domination number which improve corresponding results given in [13].
Furthermore, we establish lower bounds on the double Roman and double Italian
domination numbers of trees.

We make use of the following known results.

Proposition 1 [5]. If G is a graph, then γdR(G) ≤ 3γ(G).
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Using Proposition 1 and the classical bound γ(G) ≤ n
2 of Ore for graphs G

of order n with δ(G) ≥ 1, we obtain the next observation immediately.

Proposition 2. If G is a graph of order n with δ(G) ≥ 1, then γdR(G) ≤ 3n
2 .

Let H be the family of connected graphs of order n that can be built from
n/4 copies of P4 by adding a connected subgraph on the set of centers of n

4P4.

Theorem 3 [5]. If G is a connected graph of order n ≥ 3, then γdR(G) ≤ 5n
4 ,

with equality if and only if G ∈ H.

Theorem 4 [14]. If G is a graph of order n, minimum degree δ ≥ 2, and with

no component isomorphic to C5 or C7, then γdR(G) ≤ 11n
10 .

Theorem 5 [1]. If G is a graph of order n and minimum degree δ ≥ 3, then

γdR(G) ≤ n.

Proposition 6 [15]. If G is a graph of order n ≥ 2, then γdI(G) ≥ 3, with

equality if and only if ∆(G) = n− 1.

Proposition 7 [1]. If Pn is a path of order n ≥ 1, then γdR(Pn) = n if n ≡
0 (mod 3) and γdR(Pn) = n+ 1 otherwise.

2. Nordhaus-Gaddum Type Results

Results of Nordhaus-Gaddum type study the extreme values of the sum or prod-
uct of a parameter on a graph and its complement. In their classical paper [16],
Nordhaus and Gaddum discussed this problem for the chromatic number. Jafari
Rad and Rahbani [13] presented Nordhaus-Gaddum type inequalities for the dou-
ble Roman domination number. In the following let Kn−e be the complete graph
minus an edge and Kn − {e1, e2} be the complete graph minus two independent
edges.

Theorem 8 [13]. If G is a graph of order n ≥ 2, then γdR(G)+γdR(G) ≤ 2n+3,
with equality if and only if G ∈ {Kn,Kn}.

Theorem 9 [13]. If G 6∈ {Kn,Kn} is a graph of order n ≥ 2, then γdR(G) +
γdR(G) = 2n+ 2 if and only if G ∈ {Kn − e,Kn − e, P4, C5}.

Note that Theorem 9 is incomplete, because we also have γdR(G)+γdR(G) =
2n+ 2 if G ∈ {C4, 2K2}. Next we improve these results.

Theorem 10. Let G 6∈ {Kn,Kn,Kn − e,Kn − e, C4, 2K2, P4, C5} be a graph of

order n ≥ 4. Then γdR(G) + γdR(G) ≤ 2n + 1, with equality if and only if G ∈
{Kn − {e1, e2},Kn − {e1, e2}} and n ≥ 5 or G,G ∈ {P5, 3K2}.
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Proof. First assume that δ(G) ≥ 1 and δ(G) ≥ 1. Assume next that δ(G) = 1
or δ(G) = 1, say δ(G) = 1. Furthermore, assume that G has a component of
order 2. Then we observe that γdR(G) ≤ 4, and hence Proposition 2 implies for
n ≥ 7 that γdR(G) + γdR(G) ≤ 3n

2 + 4 < 2n + 1. If n = 4, then G = 2K2,
G = C4 (and so γdR(G) + γdR(G) = 10 = 2n + 2), however, by the hypothesis
G 6∈ {2K2, C4}. If n = 5, then G consists of K2 and a component of order 3,
and we deduce that γdR(G) + γdR(G) ≤ 10 = 2n. If n = 6 and G = 3K2, then
γdR(G)+γdR(G) = 9+4 = 13 = 2n+1. If G 6= 3K2, then G consists of K2 and a
component of order 4, and it follows that γdR(G)+γdR(G) ≤ 3+5+4 = 12 = 2n.

Now assume that each component of G has order at least 3. Since δ(G) = 1,
the graph G has a vertex of degree n− 2, and hence we observe that γdR(G) ≤ 5.
Therefore Theorem 3 implies for n ≥ 6 that γdR(G) + γdR(G) ≤ 5n

4 + 5 <
2n + 1. If n = 4, then G is connected. If G has a vertex of degree 3, then
γdR(G) + γdR(G) ≤ 3 + 5 = 8 = 2n. If ∆(G) = 2, then G = P4, however by the
hypothesis G 6= P4. If n = 5, then G is connected. If ∆(G) ≥ 3, then γdR(G) ≤ 5
and thus γdR(G)+γdR(G) ≤ 10 = 2n. If ∆(G) = 2, then G = P5. Now according
to Proposition 7, we have γdR(P5) = 6, and it easy to see that γdR(P5) = 5.
Consequently γdR(P5) + γdR(P5) = 11 = 2n+ 1.

Second assume that δ(G) ≥ 2 and δ(G) ≥ 2. Assume next that δ(G) = 2
or δ(G) = 2, say δ(G) = 2. Since δ(G) = 2, the graph G has a vertex of
degree n − 3, and hence we observe that γdR(G) ≤ 7. Now Theorem 3 yields
for n ≥ 8 that γdR(G) < 5n

4 + 7 ≤ 2n + 1. The condition δ(G), δ(G) ≥ 2 leads
to n ≥ 5. If n = 5, then δ(G), δ(G) ≥ 2 shows that G = C5, however, this is
not allowed. If n = 7, then we deduce from Theorem 4 that γdR(G) ≤ 11n

10 = 77
10

or G = C7. If G = C7, then we observe that γdR(C7) ≤ 6 and γdR(C7) = 8
and therefore γdR(C7) + γdR(C7) ≤ 8 + 6 = 14 = 2n. In the remaining cases we
obtain γdR(G) + γdR(G) ≤ 7 + 7 = 14 = 2n. Finally, let n = 6, and let u be a
vertex of degree 2 in G, and let v and w be the neighbors of u in G. Theorem
4 implies γdR(G) ≤ 11n

10 = 66
10 and so γdR(G) ≤ 6. If vw ∈ E(G), then we see

that γdR(G) ≤ 6 and thus γdR(G) + γdR(G) ≤ 6 + 6 = 12 = 2n in this case.
Now assume that vw ∈ E(G), and let x, y, z be the neighbors of u in G. Since
δ(G) ≥ 2, without loss of generality, the vertex x is a neighbor of v and w in G.
Now the function f(x) = f(u) = 3 and f(x) = 0 is a DRDF on G of weight 6.
Consequently γdR(G) + γdR(G) ≤ 6 + 6 = 12 = 2n.

In the case δ(G) ≥ 3 and δ(G) ≥ 3, it follows from Theorem 5 that γdR(G)+
γdR(G) ≤ n+ n = 2n.

Finally assume that δ(G) = 0 or δ(G) = 0, say δ(G) = 0. Let I be the set of
isolated vertices of G, and let F = G− I. We deduce from Proposition 2 that

γdR(G) ≤ 2|I|+
3n(F )

2
= 2|I|+ 2n(F )−

n(F )

2
= 2n−

n(F )

2
.



Double Roman and Double Italian Domination 725

Since ∆(G) = n− 1, we have γdR(G) = 3, and this implies that

γdR(G) + γdR(G) ≤ 2n−
n(F )

2
+ 3 < 2n+ 1

if n(F ) ≥ 5. Let now n(F ) = 4. Note that δ(G) = 0 implies n ≥ 5 in this case. If
F = 2K2, then G = Kn − {e1, e2} and so γdR(G)+γdR(G) = 2n−2+3 = 2n+1. If
F 6= 2K2, then F is connected, and hence γdR(G)+γdR(G) ≤ 2(n−4)+5+3 = 2n.
If n(F ) = 3, then γdR(G) + γdR(G) ≤ 2(n − 3) + 3 + 3 = 2n. If n(F ) = 2,
then G = Kn − e and if n(F ) = 0, then G = Kn, however, by the hypothesis,
G 6∈ {Kn,Kn − e}. This completes the proof.

Since γdI(G) ≤ γdR(G),

γdI(C5) + γdI(C5) = 10 = 2n < 2n+ 2 = 12 = γdR(C5) + γdR(C5),

γdI(C4) + γdI(C4) = γdR(C4) + γdR(C4) = 10 = 2n+ 2,

γdI(P4) + γdI(P4) = γdR(P4) + γdR(P4) = 10 = 2n+ 2,

γdI(P5) + γdI(P5) = γdR(P5) + γdR(P5) = 11 = 2n+ 1,

γdI(3K2) + γdI(3K2) = γdR(3K2) + γdR(3K2) = 13 = 2n+ 1,

γdI(Kn) + γdI(Kn) = γdR(Kn) + γdR(Kn) = 2n+ 3 (n ≥ 2),

γdI(Kn − e) + γdI(Kn − e) = γdR(Kn − e) + γdR(Kn − e) = 2n+ 2 (n ≥ 3),

γdI(Kn − {e1, e2}) + γdR(Kn − {e1, e2})

= γdR(Kn − {e1, e2}) + γdR(Kn − {e1, e2}) = 2n+ 1 (n ≥ 5),

Theorem 10 yields the following Nordhaus-Gaddum type result for the double
Italian domination number.

Corollary 11. Let G be a graph of order n ≥ 4 and suppose that G 6∈ {Kn,Kn,
Kn − e,Kn − e, C4, 2K2, P4}. Then γdI(G) + γdI(G) ≤ 2n + 1, with equality if

and only if G ∈ {Kn − {e1, e2},Kn − {e1, e2}} and n ≥ 5 or G,G ∈ {P5, 3K2}.

Observation 12. If G is a graph of order n ≥ 3, then γdR(G) + γdR(G) ≥
γdI(G) + γdI(G) ≥ 8, and this bound is sharp.

Proof. Since the left inequality is immediate, we only prove the right one. As-
sume, without loss of generality, that γdI(G) ≤ γdI(G). It follows from Proposi-
tion 6 that γdI(G) ≥ 3. If γdI(G) = 3, then Proposition 6 implies ∆(G) = n−1. If
v is a vertex of maximum degree in G, then v is an isolated vertex in G, and G−v
is a graph of order at least 2. Therefore Proposition 6 leads to γdI(G − v) ≥ 3
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and thus γdI(G) ≥ 5. We deduce that γdI(G) + γdI(G) ≥ 8. If γdI(G) ≥ 4, then
the assumption γdI(G) ≤ γdI(G) implies γdI(G) + γdI(G) ≥ 8.

Let H be a graph with ∆(H) = n−1 such that ∆(H) = n−2 (for example a
star). Then we note that γdR(G)+γdR(G) = γdI(H)+γdI(H) = 8. This example
demonstrates that the given bounds in Observation 12 are sharp.

3. Trees

If T is a tree, then Mojdeh and Volkmann [15] have shown that γdI(T ) = γdR(T ).
Thus all results in this section are also valid for γdI(T ) instead of γdR(T ).

Lemma 13. Let T be a tree of order n ≥ 2. If v is a leaf of T , then γdR(T −v) ≤
γdR(T ).

Proof. Let u ∈ N(v), and let f be a γdR(T )-function. If f(v) = 0 then f |V (T−v)

is a DRDF on T − v and so γdR(T − v) ≤ w(f) = γdR(T ). If f(v) ∈ {2, 3}, then
we define a function g by g(u) = max{f(u), f(v)} and g(x) = f(x) if x 6= u, v.
Then g is a DRDF on T − v and thus γdR(T − v) ≤ w(f) = γdR(T ). Finally,
assume that f(v) = 1. This leads to f(u) = 2. Now the function f |V (T )−{v} is a
DRDF on T − v, and therefore γdR(T − v) ≤ γdR(T ).

Corollary 14. If T is a tree of diameter d, then γdR(T ) ≥ d + 1 if d + 1 ≡
0 (mod 3) and γdR(T ) ≥ d+ 2 otherwise.

Proof. If T is a tree of diameter 0 ≤ d ≤ 1, then clearly γdR(T ) ≥ d+2. Let now
d ≥ 2. Let P be a diametrical path of T which is a copy of Pd+1. By Proposition
7, we note that γdR(Pd+1) = d + 1 if d + 1 ≡ 0 (mod 3) and γdR(Pd+1) = d + 2
otherwise. Now applying Lemma 13 for finite times leads to the desired result.

The next examples will show that Corollary 14 is sharp.

Example 15. Let P = v1v2 · · · v3p be a path of order 3p for an integer p ≥ 1. If
we add t3i−1 ≥ 0 pendant edges to each vertex v3i−1 for 1 ≤ i ≤ p, then let H
be the resulting tree. If we define the function f by f(v3i−1) = 3 for 1 ≤ i ≤ p
and f(x) = 0 otherwise, then f is a DRDF on H of weight 3p, and therefore
γdR(H) ≤ 3p = diam (H) + 1. Corollary 14 implies γdR(H) = diam (H) + 1.

If we add a vertex v3p+1 to H, adjacent to v3p, then we denote the resulting
tree by Q. If we define the function g by g(v3i−1) = 3 for 1 ≤ i ≤ p, g(v3p+1) = 2
and g(x) = 0 otherwise, then g is a DRDF on Q of weight 3p+ 2, and therefore
γdR(Q) ≤ 3p+ 2 = diam (Q) + 2. Corollary 14 implies γdR(Q) = diam (Q) + 2.

Theorem 16. Let T be a tree of order n ≥ 4 with ℓ(T ) leaves. If T is not a star,

then γdR(T ) ≥
n+8−ℓ(T )

2 .
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Proof. We use an induction proof on the order. If n = 4, then T = P4, since T
is not a star. Proposition 7 implies γdR(T ) = 5 = n+8−ℓ(T )

2 . Thus assume that

n ≥ 5 and γdR(T
′) ≥ n′+8−ℓ(T ′)

2 for every tree T ′ of order n′ which is not a star
with 4 ≤ n′ < n. If diam (T ) = 3, then T is a double star with γdR(T ) ∈ {5, 6}

and ℓ(T ) = n−2, and thus γdR(T ) ≥ 5 = n+8−(n−2)
2 = n+8−ℓ(T )

2 . Thus we assume
that diam (T ) ≥ 4.

Assume that T has a strong support vertex u, and let v be a leaf adjacent
to u. Then T − v is not a star, and it follows from Lemma 13 and the induction
hypothesis that

γdR(T ) ≥ γdR(T − v) ≥
n− 1 + 8− (ℓ(T )− 1)

2
=

n+ 8− ℓ(T )

2
.

Thus assume that T does not have a strong support vertex.

Let v1v2 · · · vk be a diametrical path in T , where v1 and vk are leaves and
k ≥ 5. Since T has no strong support vertex, d(v2) = d(vk−1) = 2. Let f be a
γdR(T )-function.

If f(v2) = 2, then f(v1) = 1. Let T ′ = T − v1 and f ′ = f |V (T ′). Then f ′ is a
DRDF on T ′ such that γdR(T

′) ≤ w(f ′) = w(f)− 1 = γdR(T )− 1, ℓ(T ′) = ℓ(T ),
and T ′ is not a star. By the induction hypothesis, we have

γdR(T ) ≥ γdR(T
′) + 1 ≥

n− 1 + 8− ℓ(T )

2
+ 1 >

n+ 8− ℓ(T )

2
.

If f(v2) = 1, then f(v1) = 2. If we replace f(v2) by 2 and f(v1) by 1, then
we obtain the desired bound as before.

Next assume that f(v2) = 0. Then f(v1) ≥ 2. If f(v1) = 3, then the function
g with g(v1) = 0, g(v2) = 3 and g(u) = f(u) otherwise is also a DRDF on T
of weight w(g) = w(f). However this we will discuss in the last case. Therefore
assume now that f(v1) = 2. Then f(v3) ≥ 2. If T = P5, then Proposition 7

implies γdR(T ) = 6 ≥ n+8−ℓ(T )
2 . Next assume that T 6= P5. Let T

′′ = T −{v1, v2}
and f ′′ = f |V (T ′′). Then f ′′ is a DRDF on T ′′, ℓ(T ′′) ≤ ℓ(T ), and T ′′ is not a
star. The induction hypothesis leads to

γdR(T ) = w(f) = w(f ′′) + 2 ≥ γdR(T
′′) + 2 ≥

n(T ′′) + 8− ℓ(T ′′)

2
+ 2

≥
n− 2 + 8− ℓ(T )

2
+ 2 =

n+ 8− ℓ(T )

2
+ 1 >

n+ 8− ℓ(T )

2
.

Finally assume that f(v2) = 3. Then f(v1) = 0. If f(v3) ≥ 2, then the
function g with g(v1) = 2, g(v2) = 0 and g(u) = f(u) otherwise is a DRDF on
T with weight less than w(f), a contradiction. If f(v3) = 1, then we define the
function g by g(v1) = 2, g(v2) = 0, g(v3) = 2 and g(u) = f(u) otherwise. Then
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g is a DRDF on T of weight w(g) = w(f), and as above, we obtain the desired
result.

Thus assume that f(v3) = 0. Assume first that d(v3) = 2. If k = 5, then
T = P5, and we have seen above that the desired result is valid. So assume that
k ≥ 6. If T = P6, then Proposition 7 implies γdR(T ) = 6 = n+8−ℓ(T )

2 . Next
assume that T 6= P6. Let T ′ = T − {v1, v2, v3} and f ′ = f |V (T ′). Then f ′ is a
DRDF on T ′, ℓ(T ′) ≤ ℓ(T ), and T ′ is not a star. It follows from the induction
hypothesis that

γdR(T ) = w(f) = w(f ′) + 3 ≥ γdR(T
′) + 3 ≥

n(T ′) + 8− ℓ(T ′)

2
+ 3

≥
n− 3 + 8− ℓ(T )

2
+ 3 =

n+ 8− ℓ(T )

2
+

3

2
>

n+ 8− ℓ(T )

2
.

Next assume that d(v3) ≥ 3. Let u2 6= v2, v4 be a further neighbor of v3. Assume
that d(u2) = 1. This implies that f(u2) = 2. Then the function g defined by
g(v1) = 2, g(v2) = 0, g(v3) = 2, g(u2) = 1 and g(u) = f(u) otherwise is a DRDF
on T of weight w(g) = w(f). If we consider T − {v1, v2}, then we obtain the
desired result as above. Assume next, without loss of generality, that d(u2) = 2,
and let u1 6= v3 be a neighbor of u2. Clearly, u1 is a leaf and f(u1) + f(u2) = 3.
Then the function g defined by g(v1) = g(v3) = g(u1) = 2, g(v2) = g(u2) = 0 and
g(u) = f(u) otherwise is a DRDF on T of weight w(g) = w(f). Now the result
follows as before, and the proof is complete.

The next examples will show that Theorem 16 is sharp.

Example 17. If Sp,1 is a double star, then γdR(Sp,1) = 5 =
n(Sp,1)+8−ℓ(Sp,1)

2 .

Let Sp,q be the double star with the center vertices u and v. Now let Hp,q be
the tree constructed by subdividing the edge uv in Sp,q twice. Then we observe

that γdR(Hp,q) = 6 =
n(Hp,q)+8−ℓ(Hp,q)

2 .

A DIDF f on a graph G is called in [4] an outer-independent double Italian

dominating function (OIDIDF) if V0 = {v ∈ V (G) : f(v) = 0} is an independent
set. The minimum weight of an OIDIDF on a graph G is called the outer-

independent double Italian domination number of G and is denoted by γoidI(G).
The definitions lead to γoidI(G) ≥ γdI(G). Since γdI(T ) = γdR(T ) for each tree,
Theorem 16 leads to the next bound immediately.

Corollary 18. Let T be a tree of order n ≥ 4 with ℓ(T ) leaves. If T is not a

star, then γoidI(T ) ≥
n+8−ℓ(T )

2 .

If T is a star, then γoidI(T ) = 3 = n(T )+5−ℓ(T )
2 . Therefore Corollary 18

implies the next known result.
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Corollary 19 [4]. If T is a tree of order n ≥ 3 with ℓ leaves, then γoidI(T ) ≥
n+5−ℓ(T )

2 , with equality if and only if T is a star.
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