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Abstract

It is proved that any 2-planar graph (i.e., a graph which can be drawn
on a plane such that any edge intersects at most two others) has a proper
vertex coloring with 9 colors.
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1. Introduction

We consider graphs without loops and use the standard notation. For a graph G,
we denote the set of its vertices by V (G) and the set of its edges by E(G). The
number of vertices and edges of G we denote by v(G) and e(G), respectively.

For two graphs G and H, denote by G ∪ H the graph with the vertex set
V (G) ∪ V (H) and the edge set E(G) ∪ E(H).

We denote the degree of a vertex x in a graph G by dG(x).

For R ⊂ V (G) ∪ E(G), we denote by G − R the graph obtained from G by
deleting all vertices and edges of R and all edges incident to vertices of R.

Recall that a graph is planar if it can be drawn on the plane such that
its edges do not intersect each other in inner points. The following definition
generalizes this notion.

Definition. A graph is called k-planar if it can be drawn on the plane such that
each edge intersects at most k others.
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Recall that a vertex coloring of a graph is proper if any two adjacent vertices
have distinct colors. The chromatic number of a graph G (denoted by χ(G)) is
the least number of colors in its proper vertex coloring. In what follows, we call
a proper vertex coloring with k colors simply by k-coloring.

It is well known that every planar graph has a 4-coloring. Some bounds
on the chromatic number of 1-planar graphs are known, their proofs are much
simpler than the proof of the Four Color Theorem. In 1965, Ringel [1] proved
that the chromatic number of a 1-planar graph does not exceed 7 and conjectured
that the upper bound 6 also holds. Ringel’s conjecture was proved in 1984 by
Borodin [3]. This bound is, clearly, tight: the complete graph K6 is 1-planar.

Concerning the chromatic number of 2-planar graphs, in 1997, Pach and
Toth proved [2] that, for k ≤ 4 and any k-planar graph G, the bound e(G) ≤
(k + 3)(v(G) − 2) holds. Hence, e(G) < 5v(G) for a 2-planar graph G and,
therefore, G has a 10-coloring.

The main result of our paper will strengthen this trivial bound.

Theorem 1. Let G be a 2-planar graph. Then χ(G) ≤ 9.

We are not sure that this bound is tight. However, it is not trivial: one can
construct an infinite series of 2-planar graphs with minimum degree 9.

2. Plane Drawings of 2-Planar Graphs

Speaking about plane drawings of graphs, we always mean that vertices are drawn
as points and edges are drawn as polylines. The drawing of an edge contains only
two vertices, namely, the ends of this edge. We mean that any two of these
polylines have no common segment, i.e., have finite number of cross points. For
each cross point, we mean that exactly two edges intersect each other in this point
(if more than two edges pass through a cross point then one can easily change the
drawing to avoid this problem). We put one more condition on plane drawings:
if A is a cross point of edges e and f then each sufficiently small circle ω with the
center A intersects both these edges twice and points of intersection with e and
f alternate on ω. (If this condition does not hold then one can easily change the
drawing such that the crossing of edges at A disappears, see Figure 1.)

2.1. Plane graphs

A plane graph is a crossing-free drawing of a planar graph on the plane. A plane
graph G divides the plane into several parts called faces. We will denote by F (G)
the set of all faces of G and by f(G) the number of faces of G.

Consider an edge e of a plane graph G. There are two possibilities: either e
separates two distinct faces (then e is a boundary edge of these two faces), or the
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face on both sides of e is the same (then e is an inner edge of this face). Boundary
vertices of a face a are all vertices incident to boundary or inner edges of a.
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Figure 1. The neighborhood of a cross point.

Remark 2. Since each cycle of a plane graph G divides the plane into two regions
and each face lies in one of these regions, an inner edge of a face is a bridge of G,
i.e., does not belong to any cycle.

Definition. Let G be a plane graph and let a ∈ F (G).

(1) The boundary of a face a is the subgraph B(a) of G, induced on the set
of all boundary and inner edges of a (the vertex set of B(a) consists of boundary
vertices of the face a).

(2) The size b(a) of the boundary of a is the sum of the number of boundary
edges of a and the double number of inner edges of a.

If b(a) = k then we call a a k-face. The number of k-faces of the plane graph
G will be denoted by fk(G).

(3) For a vertex x ∈ V (G), denote by da(x) the number of boundary edges
of a incident to x plus the double number of inner edges of a incident to x.

Remark 3. Let G be a plane graph.

(1) The sum of sizes of boundaries of all faces of the graph G is equal to
2e(G).

(2) Let x ∈ V (G) and a ∈ F (G). Then da(x) is even. Moreover, da(x) 6= 0 if
and only if x is a boundary vertex of the face a.

(3) If the boundary of a face a is a simple cycle then da(x) = 2 for each
boundary vertex x of a.

(4) Clearly,
∑

a∈F (G) da(x) = 2dG(x) for every vertex x ∈ V (G).

Definition. Let G be a plane graph and f ∈ F (G). A diagonal of f is a new
edge drawn inside a and joining two vertices of f which are not adjacent in B(f).

2.2. Drawings of 2-planar graphs and 2-diagonal graphs

All drawings of 2-planar graphs on the plane which are considered in this paper
are such that each edge intersects at most two others. Mostly, we will consider
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drawings of 2-planar graphs with minimal number of cross-points. In [4], The-
orem 1, it is proved that any two intersecting edges in a drawing with minimal
number of cross-points have exactly one cross-point and have no common end.
We will assume that each plane drawing of a 2-planar graph satisfy this condition.
For convenience, we will allow multiple edges in 2-planar graphs.

In general, our proof of Theorem 1 will follow the way of Borodin’s proof for 1-
planar graphs [3]. To estimate the chromatic number of 1-planar graphs, Borodin
considered certain specific 4-proper vertex colorings of plane graphs (such color-
ings that all vertices of each 4-face must have distinct colors). It was proved that
any plane graph has such a coloring with 6 colors. The question of constructing
a proper 6-coloring of a 1-planar graph was reduced to constructing a 4-proper
6-coloring of a plane graph.

We need a special type of 2-planar graphs defined in [4]. Let us repeat
definitions and some results of this paper.

Let H be a plane drawing of a 2-planar graph H.

Definition. An edge of H is simple if it does not intersect other edges and non-
simple otherwise. Denote by E′(H) the set of all simple edges of the drawing H.
The plane graph P (H) of the drawing H is the graph with the vertex set V (H)
and the edge set E′(H).

Clearly, P (H) is a plane graph, we always will consider its plane drawing
obtained from H by deleting all non-simple edges.

Definition. (1) In a plane drawing of a graph, for any vertex x, one can order
drawings of edges incident to x clockwise. Two edges are called neighboring at x
if they are incident to x and neighboring in this order.

If, among any three consecutive edges incident to x (in the clockwise order
defined above), there is at least one simple edge then we say that the drawing is
2-diagonal at x.

(2) A graph G′ is 2-diagonal if it has a plane drawing such that any edge
intersects at most two others, any two crossing edges have at most one cross-
point (in particular, two crossing edges have no common end) and the drawing
is 2-diagonal at each vertex.

(3) We will always identify a 2-diagonal graph G′ with its plane drawing G′
which satisfies the conditions from the above definition. We will call G = P (G′)
the plane graph of the 2-diagonal graph G′. We will call edges of E(G) simple
edges of G′.

(4) In a 2-diagonal graph, multiple edges are allowed only in the case where
all of them are simple in its plane drawing.

The following lemma is a simplified version of Theorem 3 from [4].



An Upper Bound on the Chromatic Number of 2-Planar Graphs 707

Lemma 4 [4, Theorem 3]. Any 2-planar graph G′ without multiple edges has a
2-diagonal supergraph H ′ (maybe, with multiple simple edges) such that V (H ′) =
V (G′).

Corollary 5. Let k, n ∈ N. Assume that all 2-diagonal graphs on n vertices have
k-colorings. Then all 2-planar graphs on n vertices have k-colorings.

Proof. Consider a 2-planar graph H∗ with v(H∗) = n. Until it is possible, we
will delete an edge from a pair of multiple edges. As a result, we will obtain a
2-planar spanning subgraph H ′ of H∗ such that H ′ has no multiple edges and two
vertices are adjacent in H ′ if and only if they are adjacent in H∗. By Lemma 4,
H ′ has a 2-diagonal supergraph G′ with V (G′) = V (H ′) = V (H∗) = n. By the
condition, G′ has a proper k-coloring, which is also a proper k-coloring of H∗.

Thus, it is enough to prove Theorem 1 only for 2-diagonal graphs.
Cross-points and ends divide edges into several parts which are also polylines.

If A and B are two points on an edge e (possibly being its ends) then we denote
by AeB the part of the edge e between A and B.

Definition. A part of a non-simple edge from its end to the nearest cross point
is a boundary part.

Remark 6. Any non-simple edge has two boundary parts. If A is a cross point of
edges e and f then at least one of two parts into which A divides e is a boundary
part (since e contains at most two cross points with other edges).

Definition. Let G′ be a plane drawing of a 2-planar graph G′ and let L be
a polyline with the ends x, y ∈ V (G′) which consists of parts of edges of G′

and intersects no other edges in G′. To draw an edge f along L means to draw
a new edge f with the ends x, y in G′ such that the region inside the closed
polyline formed by f and L contains no vertices of G′ and no parts of edges of
the drawing G′.

3. A Minimal Counterexample

Let k ∈ {8, 9}. In what follows, we consider all 2-diagonal graphs having no
proper k-coloring with the minimal number of vertices. First, we choose among
them all graphs having a drawing such that its plane graph has minimal number
of edges. After that, among all graphs chosen on the first step, we choose a graph
G′ with the minimal number of edges.

Thus, our 2-diagonal graph G′, its drawing G′ and the plane graph G = P (G′)
are such that e(G) is minimal and e(G′) is minimal among all 2-diagonal graphs
having a drawing which plane graph has e(G) edges. By Corollary 5, each 2-planar
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graph H ′ with v(H ′) < v(G′) has a proper k-coloring. Let us study properties of
G′ and G.

Claim 7. The graph G′ has no pair of multiple edges.

Proof. Let G′ have multiple edges e1 and e2 with the ends x, y. By the definition
of a 2-diagonal graph, e1 and e2 are simple. These edges form a closed curve C
which divides the plane into two regions O1 and O2. Let Vi be the set of vertices
lying in Oi.

Assume that V1 = ∅. Then, in O1, no part of a non-simple edge incident to x
or y is drawn. Hence, G′−e2 is a 2-diagonal graph with drawing obtained from G′
by deleting the edge e2 and its plane graph is G−e2. Clearly, χ(G′−e2) = χ(G′).
Since e(G− e2) < e(G), we have a contradiction with the choice of G′.

Then V1, V2 6= ∅. Since C intersects no edge of G′, the set {x, y} separates
V1 from V2 in G′. Let G′1 = G′ − V2 and G′2 = G′ − V1. It is easy to see that
both G′1 and G′2 are 2-planar graphs, G′ = G′1 ∪G′2 and V (G′1)∩V (G′2) = {x, y}.
Since 2-planar graphs G′1 and G′2 have less than v(G′) vertices, they have proper
k-colorings, and the vertices x and y have distinct colors in these two colorings.
Therefore, we may assume that the proper k-coloring of G′1 agree with the proper
k-coloring of G′2 on vertices x and y. As a result, we obtain a proper k-coloring
of G′, a contradiction.

3.1. The type and the contribution of a vertex

Set the following notation:

fsG(v) =
1

2

∑
f∈F (G), b(f)=s

df (v), f≥sG (v) =
∞∑
i=s

f i(v),

sG(v) = dG(v) + f4G(v) + 2f≥5G (v), V k = {v ∈ V (G) : sG(v) = k}.

Definition. (1) Vertices of V k will be called k-vertices.
(2) The type of a vertex v is the ordered triple (dG(v), f3G(v), f4G(v)).

Most commonly, we will use the above notation for the graph G. In this case,
we will omit indexes and write simply d(v), s(v), f i(v) and so on. We will use
the notation d′(v) for dG′(v).

Remark 8. (1) Clearly,
∑∞

i=1 f
i(v) = d(v) for any vertex v ∈ V (G).

(2) Since χ(G′) ≥ 9, it is clear that v(G) ≥ 9. Since G has no loops, f1(v) = 0
for all v ∈ V (G). By Claim 7, G has no multiple edges, and, therefore, f2(v) = 0
for all v ∈ V (G).

Claim 9. (1) G has no isolated vertices.
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(2) The boundary of any 3-face of G is a triangle.

(3) The boundary of any 4-face of G is a simple 4-cycle.

Proof. (1) Let dG(v) = 0. Then v is incident in G′ to no simple edges and, by
the definition of a 2-diagonal graph, v is incident in G′ to at most two non-simple
edges, i.e., dG′(v) ≤ 2. Since, as we know, G′ − v has a proper k-coloring, the
graph G′ also has. We obtain a contradiction.

(2) Let a be a 3-face which boundary is not a triangle. Assume that a has s
boundary edges and t inner edges. Then 3 = s+ 2t, whence it follows s = 1, i.e.,
G has a loop, a contradiction.

(3) Let a be a 4-face which boundary is not a simple 4-cycle. Assume that
a has s boundary edges and t inner edges. Then 4 = s + 2t, whence it follows
that s = 2 or s = 0. If s = 2 then G has a 2-cycle, i.e., two multiple edges. This
contradicts Claim 7. Let s = 0. Then the face a is the whole plane. Since G has
no isolated vertices, G consists of two inner edges of the face a and their ends.
Hence, v(G) ≤ 4, a contradiction.

Remark 10. Let v ∈ V (G) is a vertex of type (d, f3, f4). Then, by Claim 9, v be-
longs to exactly f3 different 3-faces and to exactly f4 different 4-faces. Therefore,
d− f3 − f4 = f≥5(v).

Definition. A face of size at least 5 will be called big.

Claim 11. For any vertex v ∈ V (G), the following statements hold:

(1) s(v) ≥ d′(v);

(2) d(v) ≥ s(v)
3 .

Proof. (1) In G′, the vertex v ∈ V (G′) is incident to some edges of the graph G
and some diagonals of faces of G. By Claim 7, G′ has no multiple edges. Hence,
all these diagonals are drawn in faces of size at least 4, and in each of f4(v) faces
of size 4 containing v, at most one diagonal incident to v is drawn.

Let us prove that, in each big face a, at most da(v) diagonals incident to v
are drawn (this will give us at most 2f≥5(v) diagonals incident to v in big faces).
Indeed, let a be a big face and let v be its boundary vertex. Denote by P (v)
and N(v) the sets of all simple and non-simple edges incident to v respectively.
Consider all edges of G′ incident to v in the clockwise order. By the definition of
a 2-diagonal graph, for any edge of the set N(v), at least one of the neighboring
edges (on the left or on the right) belongs to P (v). Thus, we can assign to every
edge f ′ ∈ N(v) a neighboring edge f ∈ P (v). Clearly, if f ′ is a diagonal of the
face a then f is a boundary or inner edge of a. Any boundary edge f of the
face a can be assigned to at most one non-simple edge of N(v), since the face a
is disposed only on one side of the edge f . Any inner edge of the face a can be
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assigned to at most two non-simple edges of N(v). Hence, at most da(v) edges
of N(v) are diagonals of the face a.

(2) Let d(v) = d. It is enough to prove that s(v) ≤ 3d. By the definition,
s(v) ≤ d+

∑
f∈F (G) df (v) = d+ 2d = 3d.

Claim 12. Any vertex v ∈ V (G) is adjacent in G′ to at least k distinct vertices.
In particular, s(v) ≥ d′(v) ≥ k and d(v) ≥ 3.

Proof. Assume the converse; let v be adjacent in G′ to at most k − 1 vertices.
Clearly, G′ − v is a 2-planar graph and v(G′ − v) < v(G). By the choice of G′

and Corollary 5, the graph G′ − v has a k-coloring. Since v has at most k − 1
neighbors, we can color this vertex and obtain a k-coloring of G′, a contradiction.
Therefore, v is adjacent in G′ to at least k vertices and d′(v) ≥ k. By Claim 11,

s(v) ≥ d′(v) and d(v) ≥ s(v)
3 ≥ k

3 > 2.

Definition. We define two variants of the contribution of a vertex v ∈ V (G):

µ(v) = d(v)− 10 +
∞∑
i=3

4i− 10

i
f i(v) and

ν(v) = d(v)− 10 +
2

3
f3(v) +

3

2
f4(v) + 2f≥5(v).

Remark 13. Clearly, for any vertex v ∈ V (G),

µ(v) = ν(v) +

∞∑
i=6

2i− 10

i
f i(v) ≥ ν(v) and

ν(v) = s(v)− 10 +
2

3
f3(v) +

1

2
f4(v).

Claim 14.
∑

v∈V (G) µ(v) < 0.

Proof. Let e(G) = e, v(G) = v, f i(G) = f i. Clearly,

∞∑
i=3

4i · f i = 8e,
∑

v∈V (G)

f i(v) = if i and
∑

v∈V (G)

d(v) = 2e.

We obtain the following chain of calculations (the last equality follows from Eu-
ler’s formula for the plane graph G):

∑
v∈V (G)

µ(v) =
∑

v∈V (G)

(
d(v)− 10 +

∞∑
i=3

4i− 10

i
f i(v)

)

= 2e− 10v +
∞∑
i=3

(4i− 10)f i = 2e− 10v + 8e− 10f = −20.
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3.2. Short cycles in the minimal counterexample

Lemma 15. Let a cycle S in G′ and ab ∈ E(S) be such that v(S) ≤ 4 and
E(S) \ {ab} ⊂ E(G). Let S divide the plane into two regions O1 and O2. Denote
by Vi the set of vertices of G′ lying strictly inside Oi. Assume that, for every
vertex c ∈ V (S) \ {a, b}, the following two conditions hold:

(1) none of edges incident to c intersects ab;

(2) there exists i ∈ {1, 2} such that c is incident in G′ to at most two vertices
of Vi.

Then V1 = ∅ or V2 = ∅.

Proof. Assume that V1, V2 6= ∅. Let E′ be the set of all edges of G′ intersecting
ab. Then |E′| ≤ 2. Let Gi = G−V3−i, G′i = G′−V3−i and G′i be the plane drawing
of G′i obtained from G′ by deleting all surplus vertices and edges. Clearly, both
G′1 and G′2 are 2-planar graphs.

If E′ = ∅ then ab is a simple edge which separates in G two faces: q1 lying in
O1 and q2 lying in O2. If E′ 6= ∅ then non-simple edge ab and all edges of E′ are
diagonals of a certain face q of G. In this case, the diagonal ab splits q into a face
q1 of the graph G1 and a face q2 of the graph G2. One more new face appears in
G1 — the face f1 with the boundary S (recall that S is a cycle of length 2, 3 or
4). All other faces of G1 are faces of G, we will call them old faces. Let us draw
in G′1 all possible diagonals of the face f1 and denote the graph obtained by G∗1.
Clearly, G∗1 is 2-planar. Similarly, one can define the new face f2 of the graph
G2, its old faces and the 2-planar graph G∗2.

Since v(G∗1) < v(G′) and v(G∗2) < v(G′), both graphs G∗1 and G∗2 have k-
colorings. Vertices of the face f1 have different colors in a k-coloring of G∗1 and
vertices of the face f2 have different colors in a k-coloring of G∗2 (these vertices
are pairwise adjacent). Hence, any two k-colorings of the graphs G∗1 and G∗2 can
be agreed on the set V (S).

Only edges of E′ join vertices of V1 to vertices of V2. If E′ = ∅ then k-
colorings of G∗1 and G∗2 can be glued into a k-coloring of the graph G′, which does
not exist, a contradiction. In we assume that E′ 6= ∅. In this case, we will add
some edges to G∗1 and G∗2. After that, for the graphs obtained, we will construct
k-colorings agreed on the set V (S) in which ends of each edge of E′ will have
distinct colors. This will prove that G′ has a proper k-coloring and lead to a
contradiction.

For every vertex c ∈ V (S)\{a, b}, we choose i ∈ {1, 2} such that c is adjacent
to at most two vertices of Vi. Let S1 consist of all c for which i = 1 and S2 consist
of all c for which i = 2. By condition (2), V (S) = {a, b} ∪ S1 ∪ S2.

We will consider several cases and, in each of them, construct auxiliary 2-
planar supergraphs H ′1 and H ′2 from G∗1 and G∗2.
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Case 1. |E′| = 1. Let E′ = {e′1} and let T1 be the cross point of e = ab and
e′1 = x1y1 where x1 ∈ V1 and y1 ∈ V2 (this assumption is correct due to condition
(1)). Then both aeT1 and beT1 are boundary parts and (by Remark 6) at least
one of the parts into which T1 divides e′1 (say, x1e

′
1T1) is a boundary part, see

Figure 2a. Let us draw simple edges x1a and x1b along the polylines x1e
′
1T1ea

and x1e
′
1T1eb, respectively (see Figure 2b). Denote the graph obtained by H ′1.

Clearly, H ′1 is 2-planar. Let H ′2 = G∗2.

b

b

a

b

b
e′1x1

G′

q1 q2T1

b
y1

bc

b

b

a

b

b
x1

H ′
1

q1

T1

bc

a b

Figure 2. |E′| = 1.

Case 2. |E′| = 2. Let E′ = {e′1, e′2} and these edges intersect e = ab at the
points T1 and T2, respectively (say T1 is closer to a, see Figure 3a). Let e′1 = x1y1
and e′2 = x2y2 where x1, x2 ∈ V1 and y1, y2 ∈ V2. The parts aeT1 and beT2 are
boundary. At least one of the parts into which T1 divides e′1 (say, x1e

′
1T1) is

a boundary part, and at least one of the part into which T2 divides e′2 is a is
boundary part. Consider two cases.
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Case 2a. The part x2e
′
2T2 is boundary. Similarly to Case 1, we draw sim-

ple edges x1a (along x1e
′
1T1ea) and x2b (along x2e

′
2T2eb). If x1 = x2 then the

construction of H ′1 is finished. If x1 6= x2 then we draw in the face q1 edges x1b
and x2a along x1e

′
1T1eb and x2e

′
2T2ea, respectively (see Figure 3b). These two

new edges will intersect only each other. In both cases, the graph H ′1 constructed
above is, clearly, 2-planar. Let H ′2 = G∗2.

Case 2b. The part y2e
′
2T2 is boundary. First, let us add edges to G∗1: draw

edges x1a along x1e
′
1T1ea and x1b along x1e

′
1T1eb (see Figure 3c). The edge x1a

is, clearly, simple. Since x1e
′
1T1eb intersects in G′ only the edge e′2 deleted in G∗1,
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the edge x1b is also simple. Clearly, the obtained graph H ′1 is 2-planar. Similarly,
we add to G∗2 simple edges y2b along y2e

′
2T2eb and y2a along y2e

′
2T2ea and obtain

a 2-planar graph H ′2.

In all cases (1, 2a, 2b), we will similarly construct k-colorings ρ1 and ρ2 of
H ′1 and H ′2, respectively. We need to match these colorings on S, but there is
one more difficulty — ends of each edge of E′ must have distinct colors. To
provide this, we will construct colorings ρ1 and ρ2, and, at the same time, the
correspondence of colors in ρ1 and ρ2.

Let us start with ρ1. First, we will construct a k-coloring ρ1 of the graph
H ′1−S1 (since v(H ′1−S1) < v(G′), this coloring exists). After that, we successively
consider vertices of the set S1. Let c ∈ S1. During the construction of H ′1 no
edges incident to c were added. Hence, dH′1(c) = dG∗1(c) ≤ 5 (the vertex c can be
adjacent in G∗1 to at most two vertices of V1 and to other |S|−1 ≤ 3 vertices of S).
Since k ≥ 8, we can choose the color ρ1(c) different from colors of all vertices of
NG′(c), ρ1(x1) and (if |E′| = 2) from ρ1(x2). Similarly, we construct a k-coloring
ρ2 of the graph H ′2 (colors of vertices of the set S2 will be different from colors
of the vertices y1 and y2).

Now we will describe gluing the colorings ρ1 and ρ2 into a k-coloring of the
graph G′. Both colorings color vertices of S in different colors. Thus, we can
make this colorings agreed on V (S). Denote by CS the set of colors of V (S), and
by C ′ the set of all other colors. The colors of CS will be fixed in both colorings,
all other colors can be renumbered. On this step, choosing a color for a certain
vertex in ρ1, we always will choose the same color for all vertices of its color class.
Similarly for ρ2. Note, that |C ′| ≥ 4.

Consider the vertex x1. We want the color ρ1(x1) to be different from ρ2(y1)
and ρ2(y2) (if the vertex y2 exists). First, consider the case ρ1(x1) ∈ CS , say,
ρ1(x1) = ρ1(c) for a certain vertex c ∈ V (S). Since, in all cases, x1a, x1b ∈ E(H ′1),
we have c /∈ {a, b}. By construction of ρ1, we know that c /∈ S1. Hence, c ∈ S2
and, therefore, ρ2(c) /∈ {ρ2(y1), ρ2(y2)} by construction of ρ2. Let ρ1(x1) /∈ CS .
In this case, we can choose the color ρ1(x1) ∈ C ′ such that it will be different
from ρ2(y1) and ρ2(y2): at most two colors from C ′ are forbidden for ρ1(x1) —
namely, ρ2(y1) and ρ2(y2).

Now ends of the edge x1y1 have distinct colors. In the case where |E′| = 2 and
x1 = x2 the ends of the edge x2y2 have distinct colors. The only case remaining is
where |E′| = 2 and x1 6= x2. First, consider the Case 2a. Then x2a, x2b ∈ E(H ′1).
If ρ1(x2) ∈ CS then, similarly to the above case, we obtain that ρ1(x2) 6= ρ2(y2).
If ρ1(x2) /∈ CS then we can choose the color ρ1(x1) ∈ C ′ such that it will be
different from ρ2(y2): at most two colors from C ′ are forbidden for ρ1(x1) —
namely, ρ2(y2) and the color ρ1(x1) chosen before (in the case where ρ1(x1) ∈ C ′
and ρ1(x1) 6= ρ1(x2)). In the Case 2b, we have y2a, y2b ∈ E(H ′2) and will do the
same with changing H ′1 and ρ1 by H ′2 and ρ2: we will choose the color ρ2(y2)
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different from ρ1(x2).

Claim 16. (1) In the plane graph G, two 3-faces cannot have a common edge.

(2) In the plane graph G, a 3-face cannot have a common edge with a 4-face.

(3) For any vertex v ∈ V (G), f≥5(v) ≥ f3(v). If f≥5(v) = f3(v) then d(v) =
2f3(v).

Proof. (1) Assume that two 3-faces have a common edge. Since, by Claim 7,
G has no multiple edges, these two faces can have only one common edge, say,
e (Figure 4a). In the graph G− e, our two 3-faces are substituted by a 4-face f
(Figure 4b), all other faces are the same as in G. Let us add to the drawing G′−e
two diagonals of f — clearly, we obtain a drawing H′ of a 2-diagonal supergraph
H ′ of G′. The graph H ′ also has no k-coloring and P (H′) = G−e is smaller than
G. We obtain a contradiction with the choice of G′.

a c

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b
b

d

b

b

b

b

e

e e
x

y

z

v

Figure 4. Deleting the common edge of 3- and 4-faces.

(2) Assume that a 3-face f and a 4-face f ′ have a common edge e. First,
consider the case where e is the only common edge of these faces, see Figure 4c.
In G− e, two faces f and f ′ are substituted by a 5-face f∗ (Figure 4d), all other
faces are the same as in G. Let us add to the drawing G′ − e all diagonals of
f∗ — clearly, we obtain a drawing H′ of a 2-diagonal supergraph H ′ of G′. The
graph H ′ also has no k-coloring and P (H′) = G− e is smaller than G. We obtain
a contradiction with the choice of G′.

Clearly, the faces f and f ′ cannot have three common edges. Let they have
two common edges. Then we may assume that the boundary of f is a triangle
xyz and the boundary of f ′ is a 4-cycle xyzv, see Figure 4e. In this case, the
triangle xzv divide the plane into two regions such that one of them contains
exactly one vertex of G′ — namely, y. Since edges of G′ cannot intersect simple
edges of the triangle xzv, the vertex y is adjacent in G′ to at most three vertices,
a contradiction with Claim 12.

(3) Consider all simple edges incident to v in the clockwise order: e1, . . . , en
(the numeration is cyclic). Each pair of neighboring edges ej , ej+1 belongs to
a face containing v. If the pair ei, ei+1 belongs to a 3-face then, by items (1)
and (2), both pairs ei−1, ei and ei+1, ei+2 belong to big faces. Conversely, each
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pair ei, ei+1 belonging to a big face is surrounded by two pairs, which can belong
to 3-faces. Hence, f≥5(v) ≥ f3(v). Moreover, if f≥5(v) = f3(v) then pairs of
neighboring edges ei, ei+1 forming a 3-face alternate with pairs belonging to big
faces, therefore, d(v) = 2f3(v).

4. The Proof of Theorem 1

In what follows, we concentrate on the proof of our main Theorem, i.e., on the
case k = 9. The graphs G′ and G are the same as in previous section.

We will count the sum of contributions of vertices of G′ in another way, and
this sum will appear non-negative. This contradiction with Claim 14 will finish
the proof of Theorem 1.

Definition. An edge is big, if on both sides of it big faces are disposed (maybe,
it is the same big face).

Claim 17. (1) Let v ∈ V (G) be such that µ(v) < 0. Then v ∈ V 9, v has the
type (3, 0, 0) and µ(v) ≥ −1.

(2) A vertex of type (3, 0, 0) cannot be adjacent to a 9-vertex of another type.

Proof. (1) By the definition and Remark 13, only 9-vertices can have negative
contribution. Let us list all possible types of 9-vertices. In all cases, we will
estimate ν(v) and take into account that µ(v) ≥ ν(v).

Let a 9-vertex v have type (d, f3, f4) and let f≥5 = f≥5(v). Then d + f4 +
2f≥5 = 9. By Claim 12, we have d ≥ 3. Consider several cases.

Case a. d = 3. Then f4 + 2f≥5 = 6 and f3 + f4 + f≥5 = 3, whence it follows
that f≥5 = 3. Thus, v has type (3, 0, 0) and ν(v) = 9− 10 = −1 (see Figure 5a).
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Figure 5. Types of 9-vertices.

Case b. d = 4. Then f4 + 2f≥5 = 5 and f3 + f4 + f≥5 = 4. Therefore,
f≥5 ≤ 2.

First, consider the case f≥5 = 2. Then f3 = f4 = 1 and the vertex v
has type (4, 1, 1). Since the 3-face and the 4-face containing v cannot have a
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common edge, they are separated by big faces containing v (maybe, this is the
same big face), and we obtain the configuration from Figure 5b. In this case,
ν(v) = 9− 10 + 2

3 + 1
2 = 1

6 .
The case f≥5 = 0 is impossible: then f4 ≤ d = 4 and s(v) = f4 + d ≤ 8, a

contradiction.
Consider the case f≥5 = 1. By Claim 16, f3 = 0 (otherwise, d(v) = 2, a

contradiction). Then f4 = 3 and v has the type (4, 0, 3), see Figure 5c. In this
case, ν(v) = 9− 10 + 3 · 12 = 1

2 .
In all possible cases, µ(v) ≥ ν(v) > 0, a contradiction.

Case c. d ≥ 5. By Claim 16, we have f3 ≤ f≥5, whence it follows that
f4 + 2f≥5 ≥ f3 + f4 + f≥5 = d ≥ 5. This implies s ≥ 10, a contradiction.

(2) It follows from the above-proved classification of 9-vertices that a 9-vertex
of type (3, 0, 0) is incident only to big edges and 9-vertices of other types are not
incident to big edges. Hence, a vertex of type (3, 0, 0) cannot be adjacent to other
9-vertices.

Definition. Let H ′ be a 2-planar graph with a drawing H′ and let a, b ∈ V (H ′)
be non-adjacent vertices joined by a polyline L which does not intersect edges of
H ′. Then H ′# ab is a graph obtained from H ′ by merging of vertices a and b,
i.e., their joining into one vertex a# b, which is incident to all vertices incident
to a or b in H ′. The graph H ′# ab has a drawing H′# ab, in which the vertices a
and b are merged into a# b along the polyline L. Multiple edges are admissible.

Remark 18. In the conditions of the above definition, the graph H ′# ab is 2-
planar (merging along the polyline L can be done such that no new intersection
appears).

Clearly, for a 2-diagonal graph H ′, the graph H ′# ab can be not 2-diagonal,
but we do not need this.

Claim 19. Let v be a vertex of type (3, 0, 0), NG(v) = {a1, a2, a3}. For each
i ∈ {1, 2, 3}, let fi be the face which boundary contains the part ai−1vai+1 (the
numeration is cyclic modulo 3, see Figure 6a, some of these faces may coincide).
Then, in each face fi, the diagonal ai−1ai+1 exists.

Proof. Let us prove that the diagonal a2a3 is drawn in the face f1, the proof for
two other diagonals is similar.

Assume that e = a2a3 ∈ E(G′). Consider the case where e is drawn outside
f1∪f2∪f3. Then e cannot intersect edges incident to v. No simple edges go from
v in one of the regions into which the cycle S = a2a3v divides the plane (namely,
to the region D that contains f4, see Figure 6a). Therefore, v is adjacent to at
most two vertices inside this region (recall that, among any three successive edges
incident to v, there must be at least one simple edge). Thus, we can apply Lemma



An Upper Bound on the Chromatic Number of 2-Planar Graphs 717

15 to the cycle S and obtain that one of the regions into which S divides the plane
contains no vertices of G inside it. Clearly, this region is D and this is possible
only if the boundary of f1 is the triangle a2a3v (if a2 and a3 are non-neighboring
in B(f1) then the vertex between them which is different from v is separated by
S from a1, but this contradicts the above-proved, see Figure 6a). Therefore, f1 is
not a big face and v cannot be a vertex of type (3, 0, 0), a contradiction. Thus, e
is drawn inside f1 ∪ f2 ∪ f3. Since e cannot intersect simple edges, e is a diagonal
of the face f1 and the desired statement is proved.
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b b
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f1

f2

f3
e

a b

a2

a1

a2
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f2

f3

a1

b

e

Figure 6. The diagonal a2a3.

Now assume that a2a3 /∈ E(G′). In this case, we consider the graph H ′ =
(G′ − v) # a2a3 (vertices a2 and a3 can be merged along the polyline a2va3, see
Figure 6b). Since H ′ is a 2-planar graph and v(H ′) < v(G′), by Corollary 5, H ′

has a 9-coloring ρ. We will color both a2 and a3 with color ρ(a2 # a3) and obtain
a 9-coloring ρ′ of the graph G′ − v in which at most 8 colors are forbidden for v
(since v ∈ V 9 and two vertices a2, a3 adjacent to v have the same color). Then
we can color v and obtain a 9-coloring of G′, a contradiction.

Claim 20. Two 9-vertices of type (3, 0, 0) cannot be adjacent in G.

Proof. Assume that w, v ∈ V (G) are two adjacent vertices of type (3, 0, 0).
Denote vertices of their neighborhoods and faces as it is shown on Figure 7a. By
Claim 19, diagonals cv and bw are drawn in the face f2, and diagonals dv and
aw are drawn in the face f4. Let e = ac ∈ E(G′). Clearly, e is drawn outside
f1 ∪ f2 ∪ f3 ∪ f4 (otherwise, e would intersect at least one simple edge, but this
is impossible). Hence, edges incident to v or w cannot intersect e. Consider the
cycle S = avwc. No simple edges go from v in one of the regions into which
the cycle S divides the plane (namely, to the region that contains f1, see Figure
7a). Therefore, v is adjacent to at most two vertices inside this region (recall
that, among any three successive edges incident to v, there must be at least one
simple edge). The similar argument holds for w. Thus, we can apply Lemma 15
to the cycle S and obtain that one of the regions into which S divides the plane
contains no vertices of G inside it. Since S separates b from d (see Figure 7a),
this is impossible. Hence, ac /∈ E(G′).
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Figure 7. Two adjacent vertices of type (3, 0, 0).

Consider the graph H ′ = (G′ − {v, w}) # ac (vertices a and c can be merged
along the polyline avwc, see Figure 7b). Since H ′ is a 2-planar graph and v(H ′) <
v(G′), by Corollary 5, H ′ has a 9-coloring ρ. We will color both a and c with
the color ρ(a# c) and obtain a 9-coloring ρ′ of the graph G′−{v, w} in which at
most 8 colors are forbidden for v (since w is not colored). Then we can color v
and obtain a 9-coloring of G′ − w in which at most 8 colors are forbidden for w
(since a, c ∈ NG′(w) have the same color). Then we can color w and obtain a
9-coloring of G′, a contradiction.

Proof of Theorem 1. We will call big vertices all k-vertices for k ≥ 10.

Let us define the corrected contribution of a vertex. For each edge vw where v
is a 9-vertex of type (3,0,0) and w is a big vertex, 1

3 will be subtracted from µ(w)
and added to µ(v). For each x ∈ V (G), denote by µ′(x) the new contribution
changed as said above.

We will prove that the corrected contribution of any vertex is nonnegative.
Therefore,

∑
x∈V (G) µ(x) =

∑
x∈V (G) µ

′(x) ≥ 0. This contradiction with Claim 14
will finish the proof of Theorem 1.

The corrected contribution µ′(v) can be negative only in two cases: either
µ(v) < 0 (i.e., v is a vertex of type (3, 0, 0)) or v has given a part of its contribution
to neighboring vertices of type (3, 0, 0). Note that if w has given a part of its
contribution to v then vw is a big edge.

Consider several cases.

Case 1. v is a vertex of type (3, 0, 0). By Claim 20, v is not adjacent to
9-vertices of type (3, 0, 0). By Claim 17, v is not adjacent to 9-vertices of other
types. Therefore, v is adjacent to three big vertices and each of them gives 1

3
to v. Hence, µ′(v) = µ(v) + 3 · 13 ≥ 0.

In what follows we assume that v has type (d, f3, f4) and f≥5 = f≥5(v).
Recall that µ(v) ≥ ν(v) = s(v)− 10 + 2f3

3 + f4
2 .

Case 2. s(v) ∈ {10, 11}. Assume that v is incident to k big edges. Note that
if v belongs only to big faces then s(v) = 3f≥5. Since this does not hold in our
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case, f≥5 ≥ k + 1. By Claim 11, d ≥ s
3 , whence it follows d ≥ 4 and f≥5 ≤ 11−4

2 ,
i.e., f≥5 ≤ 3 and k ≤ 2. Consider two subcases.
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Figure 8. 10- and 11-vertices incident to big edges.

Case 2.1. k = 2. Then f≥5 = 3. If s(v) = 10 then d = 4, f3 = 1 and f4 = 0.
In this case, v has type (4, 1, 0) (see Figure 8a) and ν(v) = 2

3 .

If s(v) = 11 then two variants are possible: d = 4, f3 = 0, f4 = 1 or d = 5,
f3 = 2, f4 = 0. In the first case, v has type (4, 0, 1) (see Figure 8b) and ν(v) = 3

2 .
In the second case, v has type (5, 2, 0) (see Figure 8c) and ν(v) = 7

3 .

In all cases, µ′(v) ≥ ν(v)− 2 · 13 ≥ 0.

Case 2.2. k = 1. As it is proved above, f3 + f4 ≥ 1, whence it follows that
ν(v) ≥ s(v)− 10 + 1

2 ≥ 1
2 and µ′(v) ≥ ν(v)− 1

3 ≥ 0.

Case 3. s(v) = s ≥ 12. Let v is incident to k big edges. Since f≥5 ≤ d, we
have s ≥ d+ 2f≥5 ≥ 3f≥5. Therefore, k ≤ f≥5 ≤ s

3 and

µ′(v) ≥ µ(v)− s

3
· 1

3
≥ s− 10− s

9
> 0

(the last inequality for s ≥ 12 can be easily verified).
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