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Abstract

The cutwidth minimization problem consists of finding an arrangement
of the vertices of a graph G on a line Pn with n = |V (G)| vertices, in such
a way that the maximum number of edges between each pair of consecutive
vertices is minimized. A graph G with cutwidth k (k ≥ 1) is edge-maximal
if c(G + uv) > k for any uv ∈ {uv : u, v ∈ V (G) and uv /∈ E(G)}. In
this paper, we provide a complete insight to structural properties of edge-
maximal graphs with cutwidth at most 3.
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1. Introduction

Graphs in this paper are finite and simple with undefined notations following
[1]. The cutwidth of a graph G is the smallest integer k such that the vertices
of G are arranged in a linear layout [v1, v2, . . . , vn] in such a way that, for each
i = 1, 2, . . . , n− 1, there are at most k edges with one endpoint in {v1, v2, . . . , vi}
and the other in {vi+1, . . . , vn}. The cutwidth problem for graphs, together with a
class of optimal labeling (or embedding) problems, have significant applications in
VLSI designs, network communications and others. In particular, the cutwidth is
closely related to a basic parameter, called the congestion, in designing microchip
circuits [2, 5, 12]. Here, a graph G may be thought of as a model of the wiring
diagram of an electronic circuit, with the vertices representing components and
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the edges representing wires connecting them. When a circuit is laid out on
a certain architecture (say a path Pn), the maximum number of overlap wires
is the congestion, which is one of major parameters determining the electronic
performance. This motivates the cutwidth problem in graph theory practically.
Theoretically, the cutwidth is closely related to other graph-theoretic parameters
such as bandwidth, modified bandwidth, pathwidth and treewidth among other
domains [3, 5, 7, 11].

Deciding whether the cutwidth of G is at most k for a given graph G and an
integer k is an NP-complete problem [6], even for graphs with maximum vertex
degree 3 [11], but it admits a polynomial algorithm within the family of trees
[14]. The cutwidth problem has been extensively examined [5]. First, much work
has been done for determining the exact value of the cutwidth of special classes
of graphs (see e.g., [5, 8, 10, 13]) and algorithms computing the cutwidth of trees
[4, 14]. As to the structure of graphs with cutwidth k (k ≥ 1), relatively little
work has been done. A graph G is called k-cutwidth critical if (1) c(G) = k, and
(2) c(G − uv) < k for any edge uv ∈ E(G). In 2004, all five 3-cutwidth critical
graphs H ′

1, H
′
2, H

′
3, H

′
4 and H ′

5 were presented in [9], where H ′
1 is star K1,5, H

′
2 is

a tree with diameter 4 obtained by identifying a pendant vertex in three copies
of star K1,3, H

′
3 is obtained from H ′

2 by replacing a K1,3 by a triangle K3, H
′
4 is a

‘crown’ made of a cycle C3 with a pendant edge in each vertex of it, and H ′
5 is a

cycle C4 with a chord. It was proved that any 2-cutwidth graph contains no one
of H ′

1, H
′
2, H

′
3, H

′
4 and H ′

5 being an induced subgraph. Similarly, the 4-cutwidth
acyclic critical graph class has 18 graphs each of which can be decomposed into
three 3-cutwidth minimal subtrees [15, 16]. For k > 4, although the structure
of the acyclic critical graphs with cutwidth k is obtained in [17], the structural
characterization of general graphs with cutwidth k is also a task to study further.

A graph G is k-cutwidth edge-maximal for an integer k ≥ 1 if (1) c(G) = k,
and (2) c(G + uv) > k for any edge uv ∈ {vivj : vi, vj ∈ V (G) and vivj /∈
E(G)}. For any integer k ≥ 1, the k-cutwidth edge-maximal graphs have not been
previously studied. In this paper, we present a graph structure which precisely
characterizes the class of k-cutwidth edge-maximal graphs for k ≤ 3.

The rest of this paper is as follows. In Section 2, some preliminaries are
presented. Section 3 gives 2-connected forbidden subgraphs of 3-cutwidth graphs.
The 2-cutwidth edge-maximal graphs are characterized in Section 4. Section 5 is
devoted to presenting the structure of 3-cutwidth edge-maximal graphs. A short
remark is given in Section 6.

2. Preliminaries

Suppose that G = (V (G), E(G)) is a graph with |V (G)| = n. A labeling of a
graph G is a bijection φ : V (G) → {1, 2, . . . , n}, viewed as an embedding of G
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into the path Pn with vertices in {1, 2, . . . , n}, where consecutive integers are the
adjacent vertices. The cutwidth of G with respect to φ is

(1) c(G,φ) = max
1≤j<n

∣

∣{uv ∈ E(G) : φ(u) ≤ j < φ(v)}
∣

∣,

which is also the congestion of the embedding. If k = c(G,φ), then φ, as well as
the embedding induced by φ, is called a k-cutwidth embedding or labeling of G.
The cutwidth of G is defined by

(2) c(G) = min
φ
c(G,φ),

where the minimum is taken over all labelings φ. A labeling φ attaining the
minimum in (2) is an optimal labeling. For a graph G, let S ⊂ V (G), S̄ = V (G)\
S. The edge cut E[S, S̄], i.e., the set of edges of G with one end in S and the other
end in S̄, is called the coboundary of S and denoted by ∂(S), i.e., ∂(S) = E[S, S̄].

For a labeling φ of G and each 1 ≤ j < n, let Sφ
j = {v ∈ V (G) : φ(v) ≤ j}. Then

by (2), we have

(3) c(G,φ) = max
1≤j<n

∣

∣∂
(

Sφ
j

)
∣

∣.

In other words, if vi = φ−1(i) for 1 ≤ i < n, then Sj = {v1, v2, . . . , vj} and ∂
(

Sφ
j

)

= {vivh ∈ E(G) : i ≤ j < h} (also called the cut at [j, j + 1]). The cutwidth

c(G,φ) is the maximum size of these coboundaries ∂
(

Sφ
j

)

. An φ-max-coboundary

of G is a ∂
(

Sφ
j

)

achieving the maximum in (3).
For a graph G and integer i ≥ 1, let Di(G) = {v ∈ V (G) : dG(v) = i}, where

dG(v) is the degree of vertex v ∈ V (G), and the maximum degree is denoted
as ∆(G). For each v ∈ V (G), let NG(v) = {u ∈ V (G) : uv ∈ E(G)}. For
V ′ ⊂ V (G), E′ ⊂ E(G) and V ′ 6= ∅, E′ 6= ∅, G[V ′], G[E′] are an induced subgraph
and an edge-induced subgraph of G, respectively. The graph obtained from G by
adding an edge v1v2 /∈ E(G) is denoted as G+ v1v2. If G has a vertex v ∈ D2(G)
with NG(v) = {v1, v2} and v1v2 /∈ E(G), then G − v + v1v2, the graph obtained
from G− v by adding a new edge v1v2, is called a series reduction of G. A graph
G′ is homeomorphic to G if G′ is obtained by some series reductions of G. Let
G1 and G2 be two disjoint graphs with u ∈ V (G1), v ∈ V (G2). To identify u and
v, denoted as G1 ⊙u,v G2, is to replace u, v by a single vertex z (i.e., u = v = z)
incident to all the edges which were incident to u and v, where z is called the
identified vertex. If graph G = G1 ⊙u,v G2, then G is also called the series

composition of G1 and G2. To contract an edge v1v2 of graph G is to delete the
edge and then identify its ends v1, v2. A graph G′ is called a minor of G if G′ is
obtained by implementing series reductions and contracting edges from G. Two
xy-paths P and Q in G are internally disjoint if they have no internal vertices in
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common, that is, V (P ) ∩ V (Q) = {x, y}. Recall the definition of the bridge of
a cycle C [1]. For a connected graph G with cycle C, let N be a component of
G−C, the graph G[E(N)] is referred to as a bridge of C in G together with any
edge connecting C with N , denoted as B. For a bridge B of C, the elements of
V (B) ∩ V (C) are called its vertices of attachment to C. A bridge with t vertices
of attachment is called a t-bridge. Let {x1, x2} ⊂ V (C) and {y1, y2} ⊂ V (C),
the two pairs skew if and only if they are disjoint and the x-vertices alternate
with the y-vertices. Two bridges B1 and B2 skew if and only if their vertices of
attachment skew. B1 and B2 avoid each other if all the vertices of attachment
of B1 lie in a single segment of B2; otherwise they overlap. A bridge is simple if
and only if it is a path P . A connected graph that has no cut vertices is called
a block. Every block with at least three vertices is 2-connected. A block B of a
connected graph G is a subgraph that is a block and is maximal with respect to
this property. A block graph B of G is the graph whose vertices are the blocks
B1, B2, . . . , Br of G, with Bi, Bj joined if and only if Bi, Bj have a common cut
vertex for 1 ≤ i, j ≤ r (see an example in Figure 1 in which B3, B5, B6 and B7

are all K2). From the definition, the following property of the block graph B is
straightforward.
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(a) G
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(b) B

Figure 1. A graph G and its block graph B.

Lemma 2.1. For an integer β ≥ 3, if the blocks B1, B2, . . . , Bβ of G have a

common cut vertex, then there exists a complete subgraph Kβ in the block graph

B of G.

Definition 1. For a graph G with |V (G)| = n and c(G) = k (k ≥ 1), if c(G +
uv) > k for any edge uv ∈ {vivj : vi, vj ∈ V (G) and vivj /∈ E(G)}, then G
is called k-cutwidth edge-maximal. We denote the set of the class of graphs by
MGn,k (k ≤ n).

To split a vertex v is to replace v by two adjacent vertices, v′ and v′′, and
to replace each edge incident to v by an edge incident to either v′ or v′′ (but not
both, unless it is a loop at v), the other end of the edge remaining unchanged
(Figure 2(a)). To triangulate a vertex v is to split a vertex v by two vertices v′ and
v′′ first, and then to add a new vertex u only connecting v′ and v′′, respectively
(Figure 2(b)).

From the previous definition, the following lemma is trivial.
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Figure 2. (a) To split a vertex v. (b) To triangulate a vertex v.

Lemma 2.2. Let G and G′ be graphs. Each of the following holds.

(i) If G′ is a subgraph or minor of G, then c(G′) ≤ c(G).

(ii) If G′ is homeomorphic to G, then c(G′) = c(G).

Lemma 2.3. For a graph G ∈ MGn,k, let φ be an optimal labeling of G with

φ(vi) = i for 1 ≤ i < n. Each of the following holds.

(i) If |∂(Sφ
j )| ≤ k − 1 for 1 ≤ j < n, then vjvj+1 ∈ E(G).

(ii) If vjvj+1 /∈ E(G), then |∂(Sφ
j )| = k for 1 ≤ j < n.

Proof. For (i), if vjvj+1 /∈ E(G), then
∣

∣∂
(

Sφ
j

)

∪ {vjvj+1}
∣

∣ ≤ (k − 1) + 1 = k,

contrary to G ∈ MGn,k. Likewise, since vjvj+1 /∈ E(G), if
∣

∣∂
(

Sφ
j

)
∣

∣ < k, then
∣

∣∂
(

Sφ
j

)

∪ {vjvj+1}
∣

∣ ≤ (k − 1) + 1 = k for (ii), also contrary to G ∈ MGn,k.

Theorem 2.4. Let G be a k-cutwidth graph with |V (G)| = n, φ be an optimal

labeling with φ(vi) = i for 1 ≤ i < n. Then G ∈ MGn,k if and only if there

are no two vertices vj, vj+1 with vj−1vj+1 /∈ E(G) and vjvj+2 /∈ E(G) such that
∣

∣∂
(

Sφ
j

)∣

∣ ≤ k − 1 and
∣

∣∂
(

Sφ
j+1

)∣

∣ ≤ k − 1, where vjvj+1 ∈ E(G), vj+1vj+2 ∈ E(G)
with 1 ≤ j < n− 1.

Proof. Sufficiency. By assumption, for vj and vj+1 with vj−1vj+1 /∈ E(G) and
vjvj+2 /∈ E(G), one of the three cases holds under φ:

(i)
∣

∣∂
(

Sφ
j−1

)∣

∣ =
∣

∣∂
(

Sφ
j

)∣

∣ =
∣

∣∂
(

Sφ
j+1

)∣

∣ = k;

(ii)
∣

∣∂
(

Sφ
j−1

)
∣

∣ = k,
∣

∣∂
(

Sφ
j

)
∣

∣ ≤ k − 1,
∣

∣∂
(

Sφ
j+1

)
∣

∣ = k;

(iii)
∣

∣∂
(

Sφ
j−1

)∣

∣ =
∣

∣∂
(

Sφ
j

)∣

∣ = k,
∣

∣∂
(

Sφ
j+1

)∣

∣ ≤ k − 1.

Assume towards a contradiction that G /∈ MGn,k. Then c(G + uv) = k
for some uv /∈ E(G) because otherwise c(G + uv) ≥ c(G). Let φ′ be an optimal
labeling ofG+uv such that c(G+uv, φ′) = k. Then φ′ must be an optimal labeling
of G (as otherwise c(G,φ′) ≤ k − 1, a contradiction), say φ = φ′. However, let
u = vj , v ∈ V (G)\{vj}. Then, for each case above, c(G+uv, φ′) = c(G+uv, φ) =
k + 1, a contradiction. So G ∈ MGn,k.

Necessity. Suppose to the contrary that there exist two vertices vj and vj+1

with vj−1vj+1 /∈ E(G) and vjvj+2 /∈ E(G) such that
∣

∣∂
(

Sφ
j

)∣

∣ ≤ k − 1 and
∣

∣∂
(

Sφ
j+1

)
∣

∣ ≤ k − 1 under φ and vjvj+1 ∈ E(G), vj+1vj+2 ∈ E(G) by Lemma

2.3. As vjvj+2 /∈ E(G),
∣

∣∂
(

Sφ
j

)

∪ {vjvj+2}
∣

∣ ≤ (k − 1) + 1 = k and
∣

∣∂
(

Sφ
j+1

)

∪
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{vjvj+2}
∣

∣ ≤ (k− 1)+1 = k. By |V (G+ vjvj+2)| = |V (G)| again, similar to Suffi-
ciency, let φ′ be a labeling of G+vjvj+2 and φ

′ = φ. Then, by c(G,φ) = c(G) = k,
∣

∣∂
(

Sφ′

j′

)
∣

∣ =
∣

∣∂
(

Sφ
j′

)
∣

∣ ≤ k when vj′ 6= vj , vj+1. Thus
∣

∣∂
(

Sφ′

j

)
∣

∣ ≤ k for each
1 ≤ j < n. By (3), c(G + vjvj+2, φ

′) = k implying c(G + vjvj+2) ≤ k by
(2). So, by c(G+ vjvj+2) ≥ k, c(G+ vjvj+2) = k contradicting G ∈ MGn,k.

3. Two-Connected Forbidden Subgraphs

In this section, we give eleven 2-connected forbidden subgraphs of 3-cutwidth
graphs in Figure 3, where the empty dots in R10 imply that two corresponding
edges either intersect or not.
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Figure 3. 2-connected forbidden subgraphs of 3-cutwidth graphs.

Lemma 3.1 [10]. For a bipartite graph Km,n, c(Km,n) =
⌊

m
2

⌋

×
⌊

n
2

⌋

+
⌈

m
2

⌉

×
⌈

n
2

⌉

.

Lemma 3.2. Let G(s, t) be a k-paths graph comprised of k internally-disjoint

paths Pi = svi1vi2 · · · vitit (1 < i ≤ k, 1 ≤ ti < n). Then c(G(s, t)) = k. In

particular, if k ∈ {2, 3} and ti = 1 for each 1 < i ≤ k, then G(s, t) ∈ MGk+2,k.

Proof. Let G′(s, t) be a k-paths graph in which the length of each Pi is two,
i.e., ti = 1 for each 1 < i ≤ k. Then G′(s, t) is homeomorphic to G(s, t). Since
G′(s, t) can be thought of as a bipartite graphKk,2 with bipartition (X,Y ), where
X = {v11, v21, . . . , vk1} and Y = {s, t}, c(G′(s, t)) =

⌊

k
2

⌋

+
⌈

k
2

⌉

= k by Lemma
3.1. Thus c(G(s, t)) = c(G′(s, t)) = k by homeomorphism. For k = 2 and ti = 1
(1 < i ≤ 2), G(s, t) = C4 and C4 ∈ MG4,2 clearly. For k = 3 and ti = 1
(1 < i ≤ 3), G(s, t) = R3 − st, which can be easily verified that G(s, t) ∈ MG5,3.
This completes the proof.

Lemma 3.3 [1]. A graph G with |V (G)| ≥ 3 is 2-connected if and only if any

two vertices x, y ∈ V (G) are connected by at least two internally-disjoint paths

P1(x, y) and P2(x, y).

Theorem 3.4. For a 2-connected graph G, c(G) ≤ 3 if and only if G does not

contain any subgraph Ri (1 ≤ i ≤ 11) in Figure 3 as its minor.
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Figure 4. Illustration of Case 3(a).

Proof. Necessity is straightforward. We now show sufficiency by contradiction.
Suppose that G is a minimum 2-connected graph with c(G) = k for k ≥ 4. By
Lemma 3.3, there are at least two internally-disjoint paths between x0 and y0 in
G. Since G contains no R3 and no R11, there are at most three internally-disjoint
paths between x0 and y0. Hence three are three cases that need to be considered.

Case 1. There are only two internally-disjoint paths P1(x0, y0) = x0x1x2 · · ·
xpy0 and P2(x0, y0) = x0y1y2 · · · yqy0 between x0 and y0. In this case, P1(x0, y0)∪
P2(x0, y0) is a (p+q+2)-cycle Cp+q+2 with cutwidth two. By the assumption that
G is minimum 2-connected, without loss of generality, we can let every bridge of
Cp+q+2 be simple. So, from the structure of G and the assumption of c(G) ≥ 4,
it suffices to consider the following three subcases.

Subcase 1.1. For a vertex xi′ (1 ≤ i′ ≤ p), there are at most three vertices in
V (Cp+q+2)\{xi′−1, xi′+1}, say y1, y2 and y3, such that (xi′ , y1)-path, (xi′ , y2)-path
and (xi′ , y3)-path are avoiding 2-bridges of Cp+q+2. In this case, 3 ≤ dG(vi′) ≤
5. Respectively, if (xi′ , y1)-path is a unique 2-bridge then dG(vi′) = 3. If
(xi′ , y1)-path and (xi′ , y2)-path are only two 2-bridges then dG(vi′) = 4. If, for
each 1 ≤ j ≤ 3, (xi′ , yj)-path is a 2-bridge, then dG(vi′) = 5. Thus, if dG(vi′) = 3
then there are at least two vertices xi1 with i1 < i′ and xi2 with i2 > i′ such that
xi1xi2 ∈ E(G) (because c(G) = 3, otherwise), where xp+1 = y0. This means that
R4 is a minor. Similarly, if dG(vi′) = 4 then R6, R8 are minors, because there are
also at least two vertices, say xi′−1 and xi′+1, such that xi′−1xi′+1 ∈ E(G). If
dG(vi′) = 5, then R5 is a minor. All are contrary to assumption.

Subcase 1.2. There are at least two avoiding 2-bridges which have no common
vertices of attachment. Let xi1yj1 , xi2yj2 be such two 2-bridges, where 1 ≤ i1 <
i2 ≤ p, 1 ≤ j1 < j2 ≤ q. Since c(G) ≥ 4, then there are at least two vertices,
say yj1 and yj2+1, such that yj1yj2+1 ∈ E(G) (as otherwise c(G) = 3), where
yq+1 = y0. This shows that R9 is a minor in G, a contradiction.

Subcase 1.3. There are at least two skewing 2-bridges in G. That is to
say, there are at least four vertices, say xi′1 , xi′2 (1 ≤ i′1 < i′2 ≤ p) and two of
{xi : 1 ≤ i ≤ p and i 6= i′1 − 1, i′1, i

′
1 +1, i′2 − 1, i′2, i

′
2 +1} ∪ {yi : 1 ≤ i ≤ q}, say y1

and y2, such that (xi′1 , y2)-path and (xi′2 , y1)-path are skewing 2-bridges. In this
subcase, R1 is a minor of G, also a contradiction.

Case 2. There are three internally-disjoint paths P1(x0, y0) = x0x1x2 · · ·xpy0,
P2(x0, y0) = x0y1y2 · · · yqy0 and P3(x0, y0) = x0z1z2 · · · zly0 between x0 and y0.
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If G = P1(x0, y0) ∪ P2(x0, y0) ∪ P3(x0, y0) then c(G) = 3 by Lemma 3.2. So, by
assumption, among three cycles Cp+q+2, Cp+l+2 and Cq+l+2, there are at least a
cycle, say Cp+q+2 also, such that Cp+q+2 has at least a simple 2-bridge whose
vertices of attachment are neither x0 nor y0, which results in an R4 minor of G,
also a contradiction.

Case 3. There is a path P3(x0, y0) = x0z1z2 · · · zhy0 such that at least
one of {V (P1(x0, y0) ∩ P3(x0, y0)), V (P2(x0, y0) ∩ P3(x0, y0))} is not empty, but
E(P1(x0, y0) ∩ P3(x0, y0)) = E(P2(x0, y0) ∩ P3(x0, y0)) = ∅. By the assumption
that G is minimum, without loss of generality, let h = 3, i.e., P3(x0, y0) =
x0z1z2y0. Then there are two subcases: (a) V (P1(x0, y0) ∩ P3(x0, y0)) 6= ∅,
V (P2(x0, y0) ∩ P3(x0, y0)) 6= ∅ (see Figure 4). Assume that V (P1(x0, y0) ∩
P3(x0, y0)) = {z1}, V (P2(x0, y0) ∩ P3(x0, y0)) = {z2}. By c(G) ≥ 4, P1(x0, y0) ∪
P2(x0, y0) must contain at least one simple 2-bridge except E(P3(x0, y0)) in G,
see the different dotted lines in Figure 4. This implies that one of {R1, R2, R4, R5,
R8, R10} must be a minor of G, a contradiction. (b) V (P1(x0, y0)∩P3(x0, y0)) 6= ∅
but V (P2(x0, y0)∩P3(x0, y0)) = ∅. In this case, similar to (a), one of {R3, R4, R5,
R10, R11} is a minor in G, also a contradiction. So c(G) ≤ 3. The proof is
completed.

4. Edge-Maximal Graphs with Cutwidth at Most 2

For any cycle Cµ+2 (µ ≥ 1) with vl, vr ∈ V (Cµ+2), if P1 = vlv1v2 · · · vivr,
P2 = vlvi+1vi+2 · · · vµvr are the internally-disjoint paths forming Cµ+2, then
vl, vr are viewed as the left terminal and the right terminal, respectively. Since
c(K1,5) = 3, c(R1−st) = 3 (see Figure 3), there are no K1,5 or no R1−st induced
subgraph or minor in any graph with cutwidth 2. First, Lemmas 4.1 and 4.2 are
straightforward.

Lemma 4.1. A graph G ∈ MGn,1 if and only if G is a path Pn with n vertices

for n ≥ 2.

Lemma 4.2. For cycle Cµ+2 with µ ≥ 1, Cµ+2 ∈ MGµ+2,2.

Now, for 1 ≤ j ≤ β, let µ = µj , l = lj , r = rj , i = ij with 1 ≤ ij < µj ,

and let P j
1 = vljv

j
1v

j
2 · · · v

j
ij
vrj , P

j
2 = vljv

j
ij+1v

j
ij+2 · · · v

j
µjvrj be two paths forming

Cµj+2, where vlj and vrj are the left terminal and the right terminal respectively.
By identifying vrj of Cµj+2 and vlj+1 of Cµj+1+2 for each 1 ≤ j ≤ β − 1 (i.e.,
vrj = vlj+1 = zj) consecutively, one can obtain the series composition H0 of
Cµ1+2, Cµ2+2, . . . , Cµβ+2 with the left terminal vl1 (= z0) and the right terminal

vrβ (= zβ) and |V (H0)| =
∑β

i=1 µj + β + 1 (see H0 with 4 cycles in Figure 5(a)).
Clearly, c(H0) ≥ 2 by Lemma 4.2. For each 1 ≤ j ≤ β, Cµj+2 is a

block Bj with the left terminal zj−1 and the right terminal zj in H0, and the
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block graph B of H0 is a path Pβ , where z0 = vl1 , zβ = vrβ . Suppose that
φ : V (H0) 7→ {1, 2, . . . , |V (H0)|} is an optimal labeling of H0 such that its subla-
beling φj restricted to Cµj+2 is

φj(v) =















∑j−1
i=0 µi + j if v = zj−1,

∑j−1
i=0 µi + j + ij if v ∈ V

(

P j
1

)

∪ V
(

P j
2

)

,
∑j

i=1 µi + j + 1 if v = zj ,

for 1 ≤ j ≤ β and 1 ≤ ij ≤ µj , where µ0 = 0. Since c(Cµj+2, φj) = 2 and
V (Cµj

)∩V (Cµj+1) = zj with φj(zj) = max{φj(v) : v ∈ V (Cµj
)} = min{φj+1(v) :

v ∈ V (Cµj+1)}, c(H0, φ) = 2. Hence c(H0) = 2. On the other hand, for any
x, y ∈ V (H0) with xy /∈ E(H0), if x, y ∈ V (Cµj+2) for some j, then by Lemma
4.2 c(Cµj+2+xy) = 3; if x ∈ V (Cµj1

+2), y ∈ V (Cµj2
+2) with j1 < j2, then, for any

labeling φ′ of H0+xy with φ
′(zj1) = ρ, |∂(Sφ′

ρ )| ≥ 3. So, by (3), c(H0+xy, φ
′) ≥ 3

resulting in c(H0 + xy) ≥ 3 too. So H0 ∈ MGn,2 with n = |V (H0)|.

r��r r rr
@@��

r r r
@@r��r r r

@@r��r r rccr
z0 x1 x2 x3 x4z1 z2 z3 z4

(a) H0

r��r r rr
@@ ��

r r r
@@r r��r r r

@@r��r r rcc
z0 x2 x3z′1 z′′1 z′2 z′′2 z3 z4

z′0 z′′0

(b) H1

r��r r rr
@@��

r r r
@@r��r r r

@@r��r r rcc��rr
z0 x1 x2 x3 x4z1 z2 z3 z4

w2

(=w1)

(c) H2

@@
r r��r rr

@@ r��r r
@@r ��

r r
@@r r��r r rcc��rr r

x2 x3z0 z′1 z′′1 z′2 z′′2 z3 z4

w2

(=w1)

w′

2

(=w′

1)

(d) H3

Figure 5. Four 2-cutwidth edge-maximal graphs.

There are β − 1 cut vertices z1, z2, . . . , zβ−1 with degree 4 in H0. For an
integer ξ (1 ≤ ξ ≤ β − 1) and {zl1 , zl2 , . . . , zlξ} ⊆ {z1, z2, . . . , zβ−1}, we carry
out three operations in H0 at the same time: (1) splitting zl1 , zl2 , . . . , zlξ respec-
tively; (2) choosing ξ vertices x1, x2, . . . , xξ with degree 2 arbitrarily; and (3)
for x1, x2, . . . , xξ, implementing ξ series reductions consecutively in order to keep
|V (H0)| constant. Let Hξ be the graph obtained by carrying out the above op-

erations for zli and xi (1 ≤ i ≤ ξ), and Hβ
ξ = {Hξ : 0 ≤ ξ ≤ β − 1}, Ḣβ

ξ =
{

H ′ :

H ′ = H ⊙z0,w1 K2, H ∈ Hβ
ξ

}

, Ḧβ
ξ =

{

H ′′ : H ′′ = H ′ ⊙zβ ,w
′

1
K ′

2, H
′ ∈ Ḣβ

ξ

}

, where
K2 = w1w2,K

′
2 = w′

1w
′
2. For example, H1 in Figure 5(b) is obtained by splitting

z1, z2 and implementing 2 series reductions for x1, x4 in H0 at the same time,
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H2 = H0 ⊙z4,w1 K2 in Figure 5(c), and H3 = (H1 ⊙z0,w1 K2)⊙z4,w
′

1
K ′

2 in Figure

5(d). So H1 ∈ H4
2, H2 ∈ Ḣ4

0, H3 − z4w
′
2 ∈ Ḣ4

2 and H3 ∈ Ḧ4
2. Let H =

⋃β−1
ξ=0 H

β
ξ ,

Ḣ =
⋃β−1

ξ=0 Ḣ
β
ξ and Ḧ =

⋃β−1
ξ=0 Ḧ

β
ξ . For G ∈ H ∪ Ḣ ∪ Ḧ, its block Bi is either a

cycle Cµ or a K2, the block graph B is a path Ph with h vertices, where

h =



































β if G = H0,
β + 1 if G = H0 ⊙z0,w1 K2,
β + 2 if G = (H0 ⊙z0,w1 K2)⊙zβ ,w

′

1
K ′

2,

β + ξ if G ∈ Hβ
ξ but G 6= H0,

β + ξ + 1 if G ∈ Ḣβ
ξ but G 6= H0 ⊙z0,w1 K2,

β + ξ + 2 if G ∈ Ḧβ
ξ but G 6= (H0 ⊙z0,w1 K2)⊙zβ ,w

′

1
K ′

2.

Using a similar argument to that of the proof of H0, we can get the following
lemma.

Lemma 4.3. Assume that graphs H ∈ H, H ′ ∈ Ḣ and H ′′ ∈ Ḧ. Then H ∈
MGn,2, H

′ ∈ MGn+1,2 and H ′′ ∈ MGn+2,2.

Theorem 4.4. For a graph G with |V (G)| = n and block Bi (1 ≤ i ≤ β),
G ∈ MGn,2 if and only if each of the following holds.

(i) For each block Bi of G, either Bi = Cµi
with µi ≥ 3 or Bi = K2.

(ii) For each 1 ≤ i ≤ β − 1, at least one member of {Bi, Bi+1} is not K2.

(iii) The block graph B of G is a path Pβ .

Proof. By Lemma 4.3, it suffices to show its necessity by contradiction. First
assume that there is at least a block Bi0 such that Bi0 6= Cµi0

and Bi0 6= K2 in G,
which implies that some C ′

µs and K
′
2s must be the proper subgraphs of Bi0 . For

instance, Bi0 = H1 + z0z4 containing two C ′
4s, two C

′
5s and two K ′

2s (see H1 in
Figure 5). Without loss of generality, let Bi0 be a minimum block that contains
these C ′

µs and K
′
2s. Then, without considering the vertex number of each C ′

µ by
homeomorphism, we have

Claim 1. Bi0 must be homeomorphic to one of the six graphs in Figure 6, where
any of {u, v} can be viewed as a cut vertex of G by homeomorphism.

In fact, by the minimality of Bi0 , there is an edge uv ∈ E(G) such that
(i) holds in G − uv, in which either (1) u, v ∈ V (Cµi0

) or (2) u ∈ V (Cµi0
) and

v /∈ V (Cµi0
), in which any of u and v may be either a cut vertex or not in G.

For case (1), it is clear that Bi0 − uv is Figure 6(a). For case (2), there are two
subcases to consider: (a) Bi0 −uv contains two blocks which are either a Cµ1 and
a Cµ2 or a Cµ1 and a K2. In this case, Bi0 must be one of Figure 6(b) and Figure

6(c). (b) Bi0 − uv contains at least three blocks B
(1)
i0
, B

(2)
i0
, . . . , B

(ρ)
i0

(ρ ≥ 3). If

B
(1)
i0

= Cµ1 and B
(ρ)
i0

= Cµ2 then Bi0 must be Figure 6(d); if B
(1)
i0

= Cµ1 and
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B
(ρ)
i0

= K2 (or B
(1)
i0

= K2 and B
(ρ)
i0

= Cµρ) then Bi0 must be Figure 6(e); if

B
(1)
i0

= K2 and B
(ρ)
i0

= K2 then Bi0 must be Figure 6(f), where B
(r)
i0

is either a
Cµr or a K2 for every 1 < r < ρ. Thus Claim 1 holds.
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(a)
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r r
Q
Q
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r
r���rr
QQ r ru v

� �q q q
(f)

Figure 6. Six possible graphs homeomorphic to Bi0
.

r��r
rQ

Q��
rr
@@ rHH��

r
r

r
@@

��
ru v

� �q q q
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Hence, by Claim 1, Bi0 is homeomorphic to Figure 6(a) for case (1), and
Bi0 is homeomorphic to one of the graphs Figure 6(b)–(f) for case (2). Since the
cutwidth of each of the graphs in Figure 6 is three, i.e., c(Bi0) = 3 by Lemma
2.2(ii), c(G) ≥ 3 by Lemma 2.2(i), contrary to c(G) = 2. Hence Bi = Cµi

or
Bi = K2 for each block Bi of G, which shows that (i) holds.

Second, assume that Bi and Bi+1 are both K2 for 1 ≤ i ≤ β − 1, and
Bi = z1z2, Bi+1 = z2z3. Then c(G+ z1z3) = 2, contradicting G ∈ MGn,2. So (ii)
holds.

For (iii), assume to the contrary that the block graph B of G is not a path
Pβ , then B contains at least a complete graph Kr (r ≥ 3) by Lemma 2.1, say
K3 = B1B2B

′B1, and let Ph be the path with maximum length h in B, where
the common cut vertex of B1, B2, B

′ is zi0 and {B1, B2} ⊂ V (Ph). There are four
cases to consider by (ii): (1) B1 = Cµ1 , B2 = Cµ2 , B

′ = Cµ3 ; (2) B1 = Cµ1 , B2 =
Cµ2 , B

′ = K2; (3) B1 = Cµ1 , B2 = K2, B
′ = Cµ3 ; (4) B1 = Cµ1 , B2 = K2, B

′ =
K2. It is easy to verify that cases (1), (2) and (3) are not possible, as K1,5 is
a subgraph in G for each of them, which leads to c(G) ≥ 3, a contradiction.
For case (4), let B2 = zi0zi0+1, B

′ = zi0w, then c(G + wzi0+1) = 2 contradicting
G ∈ MGn,2. So case (4) is not possible. Thus B′ does not exist, and B is a
path Pβ .

Corollary 4.5. Let G ∈ MGn,2 with block Bi, φi : V (Bi) 7→ {1, 2, . . . , |V (Bi)|}
be an optimal labeling of Bi (0 ≤ i ≤ β). Then φi,i+1 is an optimal labeling of

Bi ∪Bi+1 for each 0 ≤ i ≤ β − 1, where

φi,i+1(v) =

{

φi(v) if v ∈ V (Bi),
φi+1(v) + |V (Bi)| − 1 if v ∈ V (Bi+1) \ {zi},

and V (Bi) ∩ V (Bi+1) = {zi}, B0 = z0.
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5. Edge-Maximal Graphs with Cutwidth at Most 3

In this section, by Theorem 3.4, 3-cutwidth edge-maximal graphs are investigated
carefully. For convenience, Px,y will be a path between x and y instead of P (x, y).
The following is Kuratowski’s Theorem, which can be seen in [1].

Theorem 5.1 (Kuratowski). A graph is planar if and only if it contains no sub-

division of either K5 or K3,3.

A 2-tree T is recursively defined as follows: (1) K3 is a 2-tree; (2) If T is a
2-tree, the graph obtained from T by joining a new vertex to two vertices of a
K3 in T is also a 2-tree. Clearly, 2-tree T with m (m ≥ 2) inner faces is planar.
The dual T ∗ of T is defined as follows: corresponding to each face f of T there
is a vertex f∗ of T ∗, and corresponding to each edge e of T there is an edge e∗ of
T ∗; two vertices f∗ and g∗ are joined by e∗ in T ∗ if and only if the corresponding
faces f and g are separated by e in T . If f∗0 of T ∗ is the vertex corresponding to
the outer face f0 of T with ∆(T ) = 4, and T ∗ − f∗0 is a path Pm, then we call T
linear. In a linear 2-tree T , except two 3 degree vertices x, y and two 2 degree
vertices x′, y′, dT (v) = 4 for every v ∈ V (T ) \ {x, y, x′, y′}. Such a 2-tree T is
denoted by LT (x, y), and we can easily obtain

Lemma 5.2. For each LT (x, y), LT (x, y) ∈ MGµ,3, where |V (LT (x, y))| = µ.

A 3-paths graph G(s, t) is a graph formed by three internally-disjoint paths

P
(1)
s,t , P

(2)
s,t , P

(3)
s,t with two common vertices s, t. Any 3-paths graph G(s, t) is

planar with two inner faces f1 and f2. By Lemma 3.2, c(G(s, t)) = 3, and
G(s, t) ∈ MGµ,3 if and only if G ∈ {R1 − st, R3 − st} (see R1, R3 in Figure 3).

Definition 2. A graph G(x, y) is a simple graph consisting of three edge-disjoint

paths P
(1)
x,y , P

(2)
x,y , P

(3)
x,y with vertices x, y in common. If P

(i)
x,y ∪ P

(3)
x,y ∈ MGµi3,2

for i = 1, 2, then G(x, y) is said to be linear, denoted as LG(x, y), where µi3 =
∣

∣

∣
V
(

P
(i)
x,y ∪ P

(3)
x,y

)∣

∣

∣
, x and y are called the 3-degree gluing points in LG(x, y).

From Definition 2, LG(x, y) = P
(1)
x,y ∪ P

(2)
x,y ∪ P

(3)
x,y and is 2-connected, in

which P
(i)
x,y ∪ P

(3)
x,y (i = 1, 2) either has a configuration as H0 in Figure 5(a)

or is a single cycle C. A linear 2-tree LT (x, y) and a 3-paths graph G(s, t)
with s = x, t = y are two special cases of LG(x, y). In the following state-

ments, we will let V
(

P
(1)
x,y ∩ P

(3)
x,y

)

=
{

v1j1 , v1j2 , . . . , v1jm0

}

and V
(

P
(2)
x,y∩ P

(3)
x,y

)

=
{

v2k1 , v2k2 , . . . , v2kr0
}

(possibly empty) except x and y, and let P
(1)
x,y , P

(2)
x,y be

internally-disjoint by Lemma 3.3.

Lemma 5.3. Each LG(x, y) with maximum degree 4 is planar.
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Proof. By contradiction. Suppose that LG(x, y) contains a subdivision of K5

by Theorem 5.1. By the assumption that LG(x, y) is simple, LG(x, y) does not
contain double edges. So |V (LG(x, y))| ≥ 5. Since dK5(v) = 4 for v ∈ V (K5)
but dLG(x,y)(x) = dLG(x,y)(y) = 3, x and y are not the 4-degree vertices of the

subdivision of K5. Now let P
(1)
x,y = xv11v12 · · · v1t1y, P

(2)
x,y = xv21v22 · · · v2t2y and

P
(3)
x,y = xv31v32 · · · v3t3y be the three edge-disjoint paths consisting of LG(x, y)

respectively, where P
(1)
x,y , P

(2)
x,y are also internally-disjoint by Lemma 3.3. Then

there are three cases to consider.

Case 1. P
(1)
x,y , P

(2)
x,y and P

(3)
x,y are internally-disjoint one another. In this case,

LG(x, y) is a 3-paths graph in which dLG(x,y)(x) = dLG(x,y)(y) = 3, dLG(x,y)(v) =
2 for any v ∈ V (LG(x, y))\{x, y}. So, by dK5(v) = 4 for any v ∈ V (K5), LG(x, y)
can not contain a subdivision of K5.

Case 2. P
(1)
x,y and P

(2)
x,y , P

(1)
x,y and P

(3)
x,y are internally-disjoint, respectively.

If there are at most 4 common vertices except x, y in V
(

P
(2)
x,y ∩ P

(3)
x,y

)

, then

the subdivision of K5 does not exist in LG(x, y). So, without loss of gener-

ality, assume that V (K5) = {v2k1 , v2k2 , v2k3 , v2k4 , v2k5} ⊂ V
(

P
(2)
x,y ∩ P

(3)
x,y

)

and

v2kj 6= x, y for 1 ≤ j ≤ 5. Then there is at least a vertex, say v2k1 , such
that either v2k1v2k5 ∈ E(LG(x, y)) or there are at least three subpaths between

v2k1 and v2k5 in P
(2)
x,y ∪ P

(3)
x,y , i.e., dLG(x,y)(v2k1) ≥ 5 by dK5(v2k1) = 4 (be-

cause otherwise P
(2)
x,y ∪ P

(3)
x,y is homeomorphic to H0 in Figure 5, which leads

to that the subdivision of K5 does not exist in LG(x, y)). In fact, for the

latter, a subpath Pv2k1 ,v2k5

(

⊂ P
(3)
x,y

)

between v2k1 and v2k5 can be thought of

as a subdivision of edge v2k1v2k5 , say Pv2k1 ,v2k5
= v2k1v3i6v2k5 . Thus P

(3)
x,y =

x · · · v3i1v2k1v3i2v2k2v3i3v2k3v3i4v2k4v3i5v2k5v3i6v2k1 · · · y, which results in dLG(x,y)

(v2k1) ≥ 6, contrary to ∆(LG(x, y)) = 4 as well as the linearity of P
(2)
x,y ∩ P

(3)
x,y .
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(a) Illustration of Case 3.
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(b) Illustration of Case 6.

Figure 7. Proof of Lemma 5.4.

Case 3. Only P
(1)
x,y and P

(2)
x,y are internally-disjoint. By Case 2, without

loss of generality, let V (K5) ⊆ V
(

P
(1)
x,y ∩ P

(3)
x,y

)

∪ V
(

P
(2)
x,y ∩ P

(3)
x,y

)

. Then we can
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let v1j1 , v1j2 , v1j3 , v2k1 , v2k2 form a subdivision of K5 with {v1j1 , v1j2 , v1j3} ⊂

V
(

P
(1)
x,y ∩ P

(3)
x,y

)

, {v2k1 , v2k2} ⊂ V
(

P
(2)
x,y ∩ P

(3)
x,y

)

. Similar to Case 2, P
(3)
x,y =

x · · · v3i1v1j1v3i3v2k1v3i5 v2k2v1j2 v3i8v1j3v3i10v1j1v3i12 · · · y (see Figure 7(a)), and
a subpath Pv1j1 ,v1j3

= v1j1v3i10v1j3 is a subdivision of edge v1j1v1j3 . However
dLG(x,y)(v1j1) ≥ 6 in this case, contrary to ∆(LG(x, y)) = 4 as well as the linear-

ity of P
(1)
x,y ∩ P

(3)
x,y . Hence LG(x, y) contains no subdivision of K5.

Now assume that LG(x, y) contains a subdivision of K3,3 with bipartition
(V1, V2) by Theorem 5.1. From the structure of LG(x, y), x, y /∈ V1 ∪ V2, so we
do not consider x, y in the following statements.

Case 4. P
(1)
x,y , P

(2)
x,y and P

(3)
x,y are internally-disjoint one another. Similar to

Case 1, dLG(x,y)(v) = 2 for each v ∈ V (LG(x, y)) \ {x, y}. So, by dK3,3(v) = 3 for
each v ∈ V (K3,3), LG(x, y) does not contain a subdivision of K3,3.

Case 5. P
(1)
x,y and P

(2)
x,y , P

(1)
x,y and P

(3)
x,y are internally-disjoint, respectively.

Since LG(x, y) is linear, by Definition 2 and Theorem 4.4, if C ′, C ′′ are two cycles

in P
(2)
x,y ∪ P

(3)
x,y then |V (C ′) ∩ V (C ′′)| = 0 or 1. However, if C ′, C ′′ are two cycles

in K3,3 then |V (C ′) ∩ V (C ′′)| ≥ 2, a contradiction.

Case 6. Only P
(1)
x,y and P

(2)
x,y are internally-disjoint (see an example in Fig-

ure 7(b)). By Case 5,
∣

∣

∣
V
(

P
(1)
x,y ∩ P

(3)
x,y

)
∣

∣

∣
≥ 1 and

∣

∣

∣
V
(

P
(2)
x,y ∩ P

(3)
x,y

)
∣

∣

∣
≥ 1. Let

∣

∣

∣
V
(

P
(1)
x,y ∩ P

(3)
x,y

)∣

∣

∣
+

∣

∣

∣
V
(

P
(2)
x,y ∩ P

(3)
x,y

)∣

∣

∣
≥ 6 because otherwise LG(x, y) contains

no a subdivision of K3,3. Without loss of generality, let V1 = {v1j1 , v1j2 , v1j3},

V2 = {v2k1 , v2k2 , v2k3}, and 1 ≤
∣

∣

∣
V2 ∩ V

(

P
(1)
x,y ∩ P

(3)
x,y

)
∣

∣

∣
≤ 3 by |V2| = 3. Then,

similar to Case 3, V1 ∪ V2 ⊆ V
(

P
(1)
x,y ∩ P

(3)
x,y

)

∪ V
(

P
(2)
x,y ∩ P

(3)
x,y

)

. And, by the

linearity of LG(x, y), for a vertex v2k3 ∈ V2 ∩ V
(

P
(2)
x,y ∩ P

(3)
x,y

)

, there are at most

two vertices v1j2 , v1j3 ∈ V1 ∩ V
(

P
(1)
x,y

)

connecting with v2k3 . So there are at

least a vertex, say v1j1 , such that the subdivision path Pv1j1 ,v2k3
between v1j1 and

v2k3 does not exist, a contradiction to assumption. Thus LG(x, y) contains no
subdivision of K3,3 too.

Lemma 5.4. For LG(x, y) with maximum degree 4, c(LG(x, y)) = 3.

Proof. We first show that c(LG(x, y)) ≤ 3. Let P
(1)
x,y , P

(2)
x,y be two internally-

disjoint paths in LG(x, y). Consider the subgraph G1,3
x,y formed by P

(1)
x,y and P

(3)
x,y .

Since G1,3
x,y is a configuration as graphH0 in Figure 5(a), c

(

G1,3
x,y

)

= 2 by Theorem

4.4 and there is an optimal labeling φ′ : V
(

LG1,3
x,y

)

7→
{

1, 2, . . . ,
∣

∣

∣
V
(

G1,3
x,y

)
∣

∣

∣

}

in

which, for each coboundary Sφ′

j with 1 ≤ j ≤
∣

∣

∣
V
(

G1,3
x,y

)∣

∣

∣
,
∣

∣

∣
Sφ′

j

∣

∣

∣
≤ 2. Now let
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V
(

P
(2)
x,y ∩ P

(3)
x,y

)

=
{

v2k1 , v2k2 , . . . , v2kr0
}

except x and y. Then it is possible that

there are two subpaths P
(2)
r,r+1 and P

(3)
r,r+1 between v2kr and v2kr+1 for 0 ≤ r ≤ r0,

where v2k0 = x, v2kr0+1 = y, P
(2)
r,r+1 is a subpath of P

(2)
x,y , and P

(3)
r,r+1 is a subpath of

P
(3)
x,y . Note that P

(3)
r,r+1 is possibly a vertex (see P

(3)
1,2 and vertex v2k3 in Figure 7(b)

respectively, for instance), in which case P
(2)
r,r+1 ∪ P

(3)
r,r+1 is either a cycle C(r+1)

(for example, 4-cycle C(2) = v2k1wv2k2v3i7v2k1 in Figure 7(b)) or path P
(2)
r,r+1 itself

only (for example, P
(3)
0,1 , P

(3)
2,3 in Figure 7(b)) and dLG(x,y)(v2kr) = 4 for each r

except dLG(x,y)(x) = dLG(x,y)(y) = 3. Now, for all vertices with degree two of

P
(2)
x,y , we carry out the series reduction operations in LG(x, y) continuously until

there are no vertices with degree two in P
(2)
x,y , and denote the resulting graph

by LG′(x, y). By Lemma 2.2(ii), c(LG(x, y)) = c(LG′(x, y)). Thus, using φ′ of
G1,3

x,y, the cutwidth of LG(x, y) is equivalent to putting edge v2krv2kr+1 back to the

embedding φ′ for each 0 ≤ r ≤ r0 in LG
′(x, y). Since |V (LG′(x, y))| =

∣

∣V
(

G1,3
x,y

)
∣

∣,
φ′ is also a labeling of LG′(x, y) in which the congestion was increased at most
one. Thus we get a labeling φ′ of LG′(x, y) with cutwidth at most three. So
c(LG′(x, y)) ≤ 3 leading to c(LG(x, y)) ≤ 3. On the other hand, c(LG(x, y)) ≥ 3
is obvious, since R3-st in Figure 3 with cutwidth 3 is a minor of LG(x, y). Hence
c(LG(x, y)) = 3.

From Theorem 3.4 and Lemma 5.4, LG(x, y) contains no subgraph Ri (1 ≤
i ≤ 11) (see Figure 3) as its minor. By Lemma 5.3, LG(x, y) is planar with

V
(

P
(1)
x,y ∩ P

(3)
x,y

)

=
{

v1j1 , v1j2 , . . . , v1jm0

}

, and V
(

P
(2)
x,y ∩ P

(3)
x,y

)

=
{

v2k1 , v2k2 , . . . ,

v2kr0
}

except x and y. Let P
(1)
x,v1j1

and P
(3)
x,v1j1

be the subpaths of P
(1)
x,y , P

(3)
x,y between

x and v1j1 respectively, and P
(2)
x,v2k1

be the subpath of P
(2)
x,y between x and v2k1 (see

Figure 8). Likewise, let P
(2)
y,v2kr0

, P
(3)
y,v2kr0

be the subpaths of P
(2)
x,y , P

(3)
x,y between y

and v2kr0 respectively, and P
(1)
y,v1jm0

be the subpath of P
(1)
x,y between y and v1jm0

(see Figure 8).

r���HHH
r
r

r
r rHHH ���

r rr HH
Hr
rrHHH���r

· · ·

· · ·

· · ·P
(1)
x,v1j1

P
(2)
x,v2k1P

(3)
x,v1j1

v2k1
v2kr0

x
y

v1j1 v1jm0 P
(1)
y,v1jm0

P
(2)
y,v2kr0

P
(3)
y,v2kr0

v3i3

Figure 8. Six subpaths.

ց

տ

Now let P=
{

P
(1)
x,v1j1

, P
(2)
x,v1k1

, P
(3)
x,v1j1

, P
(1)
y,v1jm0

, P
(2)
y,v2kr0

, P
(3)
y,v2kr0

}

. Then we have
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Lemma 5.5. For any LG(x, y) with maximum degree 4, LG(x, y) ∈ MGµ,3 if and

only if the length of each element of P is at most two, where µ = |V (LG(x, y))|.

Proof. Sufficiency. It suffices to verify that c(LG(x, y) + uv) ≥ 4 for any uv /∈
E(LG(x, y)) by Lemma 5.4. There are four cases to consider as follows.

Case 1. u = x, v = y. LG(x, y) + uv contains four edge-disjoint paths with
the common vertices x, y and maximum degree 4. Without loss of generality,
assume that these four paths are also internally disjoint, then R3 (see Figure 3)
is its minor. So c(LG(x, y) + uv) ≥ 4, a contradiction.

Case 2. u = x, v 6= y.

Subcase 2.1. v ∈ {v2k1 , v1j1}. In this case, R3 or R11 is a minor of LG(x, y)+
uv resulting in c(LG(x, y) + uv) ≥ 4, a contradiction.

Subcase 2.2. v /∈ {v2k1 , v1j1}. If v ∈ V (P
(1)
x,y ) then R3 is a minor of LG(x, y)+

uv. If v ∈ V (P
(2)
x,y ) then one of {R6, R11} is a minor of LG(x, y) + uv. If v ∈

V (P
(3)
x,y ), say v3i3 , then R4 is a minor of LG(x, y) + uv. So, there is always a

subgraph Ri ∈ {R3, R4, R6, R11} such that Ri is a minor of LG(x, y) + uv, a
contradiction. This case is not possible.

Case 3. u 6= x, v = y. There are two subcases which are either u ∈
{

v1jm0
, v2kr0

}

or u /∈
{

v1jm0
, v2kr0

}

. Similar to Case 2.

Case 4. u 6= x, v 6= y.

Subcase 4.1. u, v ∈ V
(

P
(1)
x,y ∩ P

(3)
x,y

)

∪ V
(

P
(2)
x,y ∩ P

(3)
x,y

)

. If u, v ∈ V
(

P
(1)
x,y ∩

P
(3)
x,y

)

or u, v ∈ V
(

P
(2)
x,y ∩ P

(3)
x,y

)

then one of {R3, R8, R11} is a minor in LG(x, y)+

uv. If u ∈ V
(

P
(1)
x,y ∩ P

(3)
x,y

)

and v ∈ V
(

P
(2)
x,y ∩ P

(3)
x,y

)

then one of {R1, R5} is a

minor in LG(x, y) + uv. These lead to c(LG(x, y) + uv) ≥ 4. So this case is not
possible.

Subcase 4.2. u ∈ V
(

P
(1)
x,y ∩P

(3)
x,y

)

∪V
(

P
(2)
x,y ∩P

(3)
x,y

)

, but v /∈ V
(

P
(1)
x,y ∩P

(3)
x,y

)

∪

V
(

P
(2)
x,y ∩ P

(3)
x,y

)

. In this case, R5 must be a minor in LG(x, y) + uv, leading to

c(LG(x, y) = uv) ≥ 4, a contradiction.

Subcase 4.3. u, v /∈ V
(

P
(1)
x,y ∩ P

(3)
x,y

)

∪ V
(

P
(2)
x,y ∩ P

(3)
x,y

)

. If u, v ∈ V
(

P
(1)
xy

)

or V
(

P
(2)
xy

)

then one of {R1, R3, R11} is a minor in LG(x, y) + uv. If u, v ∈

V
(

P
(3)
xy

)

, then R3 is a minor in LG(x, y) + uv. If u ∈ V
(

P
(1)
xy

)

or V
(

P
(1)
xy

)

,

then v ∈ V
(

P
(3)
xy

)

and one of {R1, R4, R10} is a minor in LG(x, y) + uv. So

c(LG(x, y) + uv) ≥ 4, a contradiction.
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Necessity. Suppose to the contrary that the length of at least one element of

P, say P
(1)
x,v1j1

, is at least three. Let P
(1)
x,v1j1

= xx1x2v1j1 . Then there is an optimal
3-cutwidth labeling φ of LG(x, y) with φ(x1) = 1, φ(x2) = 2 and φ(x) = 3,
i.e., c(LG(x, y), φ) = 3. But, under φ, c(LG(x, y) + xx2, φ) = 3, contradicting
LG(x, y) ∈ MGµ,3. In summary, LG(x, y) ∈ MGµ,3, and the proof is complete.

Like x and y, the neighbors of x, y satisfying Lemma 5.5 are also called the
2-degree gluing points of LG(x, y). Likewise, for a 3-cycle C3 = z1z2z3z1, z1, z2
and z3 are also called the gluing points of C3. Now let

G = {G : G is a LG(x, y)} ∪ {C3}.

For H1, H2 ∈ G (not necessarily distinct) with H1 = LG(x1, y1) and H2 =
LG(x2, y2) or C3, define G1 = H1⊙y1,x2H2, G2 = H1⊙y1,wH2 with w ∈ NH2(x2)
and dH2(w) = 2 or w ∈ V (C3). Then we have

Lemma 5.6. Let φ1, φ2 be optimal labelings of H1 and H2, respectively. Then

two labelings φ : V (G1) 7→ {1, 2, . . . , |V (G1)|}, ψ : V (G2) 7→ {1, 2, . . . , |V (G2)|}
are optimal 3-cutwidth labelings of G1 and G2 respectively, where

φ(v) =

{

φ1(v) if v ∈ V (H1),
φ2(v) + |V (H1)| − 1 if v ∈ V (H2) \ {x2},

and

ψ(v) =

{

φ1(v) if v ∈ V (H1),
φ2(v) + |V (H1)| − 1 if v ∈ V (H2) \ {w}.

Proof. For φ1, since x1, y1 are the original and the terminal with degree 3 in H1,
we can conclude that φ1(x1), φ1(y1) can equal 1 and |V (H1)| respectively, and
so do the labels φ2(x2) and φ2(y2). So, for j = 1, 2, φj is an optimal sublabeling
of φ restricted to block Hj of G1, which leads to that c(G1, φ) = c(H1, φ1) = 3.
Thus φ is an optimal labeling of G1.

Now we consider ψ ofG2. The proof of the case ofH2 = C3 is straightforward,
so it suffices to consider the case of H2 = LG(x2, y2). If φ2(w) = 1 then it is
trivial. Otherwise, assume that there is an optimal labeling φ′2 of H2 such that
φ′2(w) = α 6= 1. By the assumption that w ∈ NH2(x2) and dH2(w) = 2, define φ2
as follows: for v ∈ V (H2),

φ2(v) =







1 if v = w,
φ′2(v) + 1 if v 6= w and φ′2(v) < α,
φ′2(v) if v 6= w and φ′2(v) > α.

Then c(H2, φ2) = c(H2, φ
′
2) = 3 leading to that φ2 is also optimal for H2. Thus,

similar to the labeling of G1, let φ1(x1) = 1, φ1(y1) = |V (H1)|. Then φj is an
optimal sublabeling of ψ restricted to block Hj of G2 for j = 1, 2, which leads to
c(G2, ψ) = c(H1, φ1) = c(H2, φ2) = 3. So, ψ is an optimal labeling of G2.
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Lemma 5.7. Each of the following holds.

(i) If the neighbors of x1, y2 are 2-degree gluing points of H1, H2, then G1 ∈
MGn1,3 with n1 = |V (G1)|.

(ii) If w and other neighbors of x1, y2 are 2-degree gluing points of H1, H2, then

G2 ∈ MGn2,3 with n2 = |V (G2)|.

Proof. (i) By Lemmas 5.4−5.6, each Hj ∈ MGµj ,3 with µj = |V (Hj)| for j =
1, 2, so it suffices to show that c(G1+uv) ≥ 4 for any uv /∈ E(G1) with u ∈ V (H1)
and v ∈ V (H2). In fact, let the identified vertex of y1 and x2 be z in G1, i.e.,
y1 = x2 = z, then dG1(z) = 6. Thus R5 (see Figure 3) is a minor in G1 + uv,
which results in c(G1 + uv) ≥ 4. So G1 ∈ MGn1,3 with n1 = |V (G1)|.

(ii) Denote the identified vertex by z in G2, i.e., y1 = w = z. First let
H2 = C3. Since c(H1) = 3 and c(C3) = 2. By Lemma 5.6, c(G2) = 3. On
the other hand, since x1 and its neighbors are 2-degree gluing points in H1 and
H2 = C3, for any uv /∈ E(H1) with u, v ∈ V (H1), c(G2 + uv) ≥ 4 by Lemma 5.5.
For any uv /∈ E(H1) with u ∈ V (H1) and v ∈ V (C3), similar to that of (i), we can
see that R5 is a minor of G2+uv because of dG2(z) = 5. So c(G1+uv) ≥ 4. Next
letH2 = LG(x2, y2). Since x1, w and the neighors of x1 are 2-degree gluing points,
by Lemma 5.5, it suffices to consider the case of u ∈ V (H1) and v ∈ V (H2) for
any uv /∈ E(G1). In this case, R5 is also a minor of G2+uv because of dG2(z) = 5.
Thus c(G+ uv) ≥ 4.

Lemma 5.8. For 2-connected graph G with |V (G)| = n and c(G) = 3, if G ∈
MGn,3, then G ∈ G \ {C3}.

Proof. Clearly, G 6= C3. By assumption that G is 2-connected, there are at least

two internally-disjoint paths P
(1)
x,y , P

(2)
x,y for x, y ∈ V (G) by Lemma 3.3. But it is

not possible that there are four edge-disjoint paths between x and y because of

c(G) = 3. So, there is a path P
(3)
x,y between x and y such that at most one of

V
(

P
(1)
x,y ∩P

(3)
x,y

)

and V
(

P
(2)
x,y ∩P

(3)
x,y

)

is the empty set except x and y. Now suppose

towards contradiction that G /∈ MGn,3, and G is a minimum counterexample on
|V (G)|, then we have

Claim 2. G is either a graph Figure 9(a) or a graph Figure 9(b) only.

r rrr rPPr��r� �
P

(2)
x,y

P
(1)
x,y

x yx1 x4
x2 x3x5� �

� �
(a)

r r���
�r r
r rPPr��r� �

x1x5

P
(2)
x,y

P
(1)
x,y

x y

x3

x2

x4x6� �
� �

(b)

Figure 9. Two cases of minimum counterexamples of G.

In fact, for the case of V
(

P
(1)
x,y ∩ P

(3)
x,y

)

= ∅ and V
(

P
(2)
x,y ∩ P

(3)
x,y

)

6= ∅, let
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P
(3)
x,y = x0x1x2 · · ·xρxρ+1 with x0 = x, xρ+1 = y, and let P

(1)
x,y = K2 = xy by the

assumption that G is minimum on |V (G)|. First, by G /∈ MGn,3, P
(2)
x,y ∩P

(3)
x,y is not

a configuration like H0 (see H0 in Figure 5), as otherwise c(G) = 3 by Lemma 5.4.

So there is at least a vertex in P
(3)
x,y , say xi0 , such that xi0 must be a subdivision

vertex of some edge xrixri+1 of path P
(2)
x,y , where 1 ≤ i0 ≤ ρ and ri+1 ≤ i0 − 1.

Since G is minimum and simple,
∣

∣

∣
V
(

P
(2)
x,y ∩ P

(3)
x,y

)

\ {x, y}
∣

∣

∣
= 5, which results in

that P
(3)
x,y = xx1x2x3x4x5y, and G must be a graph in Figure 9(a). Similarly, for

the case of V
(

P
(j)
x,y ∩ P

(3)
x,y

)

6= ∅ for each j = 1, 2, by the minimlality of G, we

can first let V
(

P
(1)
x,y ∩P

(3)
x,y

)

= {x1}. And then, for P
(2)
x,y ∩P

(3)
x,y , with an argument

similar to the above case, P
(3)
x,y = xx1x2x3x4x5x6y, which results in that G is a

graph in Figure 9(b). Hence Claim 2 holds.
By Claim 2, G is one of Figure 9(a) and Figure 9(b). However, in Figure

9(a) and Figure 9(b), R4 and R9 (see Figure 3) are minors leading to that the
cutwidth of each of them is at least 4, contradicting c(G) = 3. So G ∈ G \ {C3}.
This completes the proof.

Lemma 5.9. For graph G ∈ MGn,3 with |V (G)| = n, let B1, B2, . . . , Bβ be blocks

of G. Then Bi ∈ G for each 1 ≤ i ≤ β, and the block graph B of G is a path Pβ,

where β ≥ 2.

Proof. If Bi = LG(x, y) or C3 then it is trivial by Lemma 5.8. So let Bi 6=
LG(x, y) or C3. We first verify that, for each 1 ≤ i ≤ β, Bi 6= K2. Otherwise,
let Bi ∩ Bi+1 = {zi} and Bi = K2 = zi−1zi. Clearly, c(Bi+1) ≥ 3 by Lemma 5.4
and dBi+1(zi) ≥ 3 (since otherwise there must exist a vertex w ∈ V (Bi+1) such
that c(G + zi−1w) = c(G), a contradiction). Since G is simple, there is at least
a vertex, say w, such that ziw ∈ E(Bi+1) and dBi+1(w) = 2. By Lemma 5.6, let
φi+1 be the optimal sublabeling restricted to Bi+1 by an optimal labeling φ of
G, in which φi+1(w) = min{φi+1(v) : v ∈ V (Bi+1)}. Then c(G+ zi−1w) = c(G),
contradicting G ∈ MGn,3. So Bi 6= K2. Next we claim |V (Bi)| = 3. Otherwise,
let |V (Bi)| ≥ 4. Since c(Bi) ≤ 3, by Lemmas 5.4, 5.5 and 5.8, for r ≥ 4, Bi must
be either a cycle Cr with at least one simple 2-bridge or a cycle Cr without bridge.
For the former, if Cr has a simple 2-bridge B then Bi ∈ G; if Cr has at least two
simple 2-bridges B1 with 2 vertices x1, x2 of attachment and B2 with 2 vertices
y1, y2 of attachment, then B1 and B2 avoid each other (otherwise, if B1,B2 skew
then R1 is a minor; if x1, y1 overlap then Bi = R6 − st ∈ G (see R6 in Figure
3)), where B, B1 and B2 are all paths by definition. Thus there are two vertices,
say x2 and y1, such that c(G + x2y1) = c(G), a contradiction. For the latter,
let r = 4, i.e., C4 = x1x2x3x4x1. In this case, if x1 and x4 are gluing vertices
then c(G + x1x3) = 3; if x1 and x3 are gluing vertices then c(G + x2x4) = 3, a
contradiction. The case of r > 4 is similar. Hence Bi = C3 resulting in Bi ∈ G.
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Now let zi be a common vertex of three blocks Bi, Bi+1 and B′, then dBi
(zi) = 2,

dBi+1(zi) = 3 (or dBi
(zi) = 3, dBi+1(zi) = 2) and B′ = K2 = ziz

′ (otherwise G has
a 4-cutwidth subgraph containing zi with dG(zi) ≥ 6, a contradiction). Thus there
is at least a vertex u ∈ NBi

(zi) (or u ∈ NBi+1(zi)) such that c(G + z′u) = c(G),
a contradiction. So B′ does not exist, which leads to that B is a path Pβ .

Theorem 5.10. For graph G with |V (G)| = n, G ∈ MGn,3 if and only if each

of the following holds.

(i) G is planar, and its blocks can be listed as B1, B2, . . . , Bβ with V (Bi) ∩
V (Bi+1) = {zi} (1 ≤ i ≤ β − 1) such that the block graph B is a path Pβ.

(ii) For each 1 ≤ i ≤ β, Bi ∈ G, where G = {G : G is a LG(x, y)} ∪ {C3}.

(iii) For each 1 ≤ i ≤ β − 1, dBi
(zi) ≥ 2, dBi+1(zi) ≥ 2, and at least one of them

is 3.

(iv) zi is a gluing point with degree either 3 or 2 of Bi as well as Bi+1. If

dBi
(zi−1) = dBi

(zi) = 2, then Bi ∈ MGµi,3 with µi = |V (Bi)| or Bi = C3.

If dBi
(zi) = 3 or dBi+1(zi) = 3, then Bi = LGi or Bi+1 = LGi+1, and the 2-

degree neighbors of zi in Bi or Bi+1 are unnecessary to be the gluing points,

where LGi = LG(xi, yi).

(v) If B1 = LG1 and Bβ = LGβ, then the neighbors with degree 2 of x1, yβ must

be 2-degree gluing points in B1, Bβ, respectively.

Proof. Sufficiency. By Lemmas 5.4–5.7, G ∈ MGn,3 is true.

Necessity. (i) and (ii) are true by Lemmas 5.3, 5.8 and 5.9.

(iii) Clearly, dBi
(zi) ≥ 2, dBi+1(zi) ≥ 2 by Lemma 5.9. Assume now that

Bi = LG(xi, yi) and dBi
(zi) = dBi+1(zi) = 2 for 1 ≤ i ≤ β − 1. Then there are

at least two vertices u ∈ NBi
(zi) and v ∈ NBi+1(zi), say u = yi and v = xi+1,

such that c(G + uv) = c(G), a contradiction to G ∈ MGn,3. So one member of
{dBi

(zi), dBi+1(zi)} is 3.

(iv) The first conclusion is obvious. For the second conclusion, Bi = LG(xi, yi)
or Ci by Lemma 5.9. So it is needed to show that if Bi = LG(xi, yi) then
Bi ∈ MGµi,3. In fact, if Bi /∈ MGµi,3, then zi−1 (or zi) must be adjacent to a 2-
degree vertex wi−1 (or wi). Without loss of generality, let NBi

(zi−1) = {xi, wi−1}
and NBi

(zi) = {yi, wi}. Then, by Lemma 5.6, there is a sublabeling φi restricted
to Bi by an optimal labeling φ of G such that φi(zi−1) = min{φi(v) : v ∈ V (Bi)},
φi(wi−1) = φi(zi−1) + 1 and φi(xi) = φi(zi−1) + 2. Thus c(G + xiwi−1, φ) =
c(G,φ), a contradiction. Likewise, for zi, let φi(zi) = max{φi(v) : v ∈ V (Bi)},
φi(wi) = φi(zi) − 1 and φi(yi) = φi(zi) − 2. Then c(G + yiwi, φ) = c(G,φ), also
a contradiction. Hence Bi ∈ MGµi,3. For the third conclusion, on the one hand,
Bi 6= C3 or Bi+1 6= C3 (as otherwise dBi

(zi) = 2 or dBi+1(zi) = 2), so Bi = LGi

or Bi+1 = LGi+1 by (ii). On the other hand, zi = yi = xi+1, which is a 3-degree
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gluing point of Bi as well as Bi+1. So the 2-degree neighbors of zi in Bi and Bi+1

are not necessarily the gluing points.

(v) Similar to that of (iii), by Lemma 5.7, (v) is also true, omitted here. This
completes the proof.

Figure 10 is a graph G ∈ MGn,3 with β blocks Bi and their gluing pattern,
in which wi, w

′
i are neighbors with degree two of xi and yi in Bi for 1 ≤ i ≤ β

respectively, and B1 = LG1 = LG(x1, y1).

rx1 ��
��rHH�� ��HH��

��rrr rrr raa!! !!aa��
��rr rrr rrr raa!! !!aa��

��rr rr raa!! !!aa��
��rrr rrr raa!! !!aa

rr��
��rr aa!! r · · ·

y1
=x2

w′

2
=x3

y3
=w4

w′

4
=x5

y5
=w6

LG1 LG2 LG3 LG4∈MGµ4,3

or C3

LG5 LG6∈MGµ6,3

or C3

B1 B2 B3 B4 B5 B6

Figure 10. The gluing pattern of blocks of G.

Corollary 5.11. Suppose that G ∈ MGn,3 with blocks B1, B2, . . . , Bβ (β ≥ 1),
V (Bi)∩V (Bi+1) = {zi}, {zl1 , zl2 , . . . , zlr} ⊆ {zi : 1 ≤ i ≤ β−1} for 1 ≤ r ≤ β−1.
If dBlj

(zlj ) = dBlj+1
(zlj ) = 3 for each 1 ≤ j ≤ r, G′ is obtained by triangulating

each zlj consecutively, then G′ ∈ MGn+2r,3.

Proof. The proof is straightforward by Theorem 5.10(iv).

6. Remarks

In this paper, we characterized the structures of the edge-maximal graphs with
c(G) ≤ 3, from which we know that any edge-maximal graph with c(G) ≤ 3
is decomposable. Regarding the edge-maximal graphs with c(G) ≥ 4, we guess
that the structure of each of them is similar to that of 3-cutwidth edge-maximal
graphs. But its block Bi does not necessarily consist of 4 edge-disjoint paths. We
achieved some results in this direction and will try to finish those efforts. For
instance, let G = (R1 ⊙s,s0 G(s0, t0))⊙t0,t′ R

′
1, where G(s0, t0) is a 4-paths graph

with common vertices s0 and t0 (see Lemma 3.2), R′
1 and t′ are copies of R1 and

t in Figure 3, respectively. It is not hard to verify that G ∈ MGn,4. However,
it seems that our technique cannot be easily used to examine the structure of
the class of graphs. A further task is to detect the structures of such k-cutwidth
edge-maximal graphs for k ≥ 4.
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