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Abstract

Inspired by the Isaacs remark (published in 1975), we show that the
Petersen and Heawood graphs (Pg and Hg) make up a bijectively linked pair
of graphs. Another related new result is that Pg is uniquely decomposable
into five induced 3-matchings. It shows a kind of the structural rigidity
of Pg. Information on maximal matchings with sizes 3, 4 and 5 in Pg
is recalled. Constructive proofs confirm that the strong chromatic index
sq(Pg) = 5 and sq(Hg) = 7. The three numerical edge coloring partitions
for Pg are also determined.
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1. Preliminaries

A matching in a graph is called an induced matching if no two edges in the match-
ing are adjacent to another edge of the graph. Strong chromatic index (in symbols
sq) of a graph is the smallest number of parts among decompositions of the graph
into induced matchings. In both our graphs maximal induced matchings comprise
three edges. It is claimed in Faudree et al. [4] that sq(Pg) = 5 and sq(Hg) = 7.
We prove that Pg is uniquely decomposable into five induced 3-matchings. We
construct next a decomposition of Hg into seven induced 3-matchings.

Theorem 1 (Isaacs [8]). If a normal map on a closed surface of any genus is

4-region colorable, then its graph G is 3-edge colorable.
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Isaacs’ ‘combinatorial’ proof [8, p. 223] deserves recalling: “Let A,B,C,D be
colors of the countries. Color an edge of G 1 if the adjoining countries are A,B
or C,D; 2, if they are A,C or B,D; 3, if they are A,D or B,C.”

Isaacs explains that the converse theorem is not true. He refers to a map
on the torus (wrongly named Heffter’s map) which is 7-region colorable and its
graph is 3-edge colorable. Actually, it is a toroidal dual of the Heawood [6]
toroidal triangulation which is an embedding of the complete graph K7 in the
torus, see Figures in [7, p. 302]. The Heawood graph, Hg, (which is cubic and
3-edge colorable) is the graph of that dual map.

2. On the Heawood and Petersen Graphs

Isaacs is the first who noticed a close relation between Hg and Pg [8, p. 225].

“If any vertex and its three incident edges are removed from Hg, Pg results”.
That observation is implied by the following elegant description due to Isaacs.
The graph Hg “is a 14-gon with two vertices — i and j under consecutive nu-
meration – also connected when i − j ≡ 5 (mod 14)”, i.e., i − j = 5 if j is odd
and j ≤ 9, otherwise j = 11, 13 and i = 2, 4, respectively.

Figure 1. The Heawood graph.

Isaacs’ observation is correct if his operation on Hg is seen as a claw ani-

hilation (or an anihilation of a claw). Otherwise, it should have the conclusion
that what results is: either a subdivision of Pg (as in [7, p. 209]) or Pg with three
subdivided edges. We have noticed that those three edges make up an induced
3-matching in Pg, see Figure 2.

Proposition 2. Deleting a vertex from the Heawood graph Hg gives the Petersen

graph Pg in which an induced 3-matching is subdivided.
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Notice that the Petersen and Heawood graphs are both highly symmetric.
Namely they are cubic, distance transitive and s-transitive with the largest possi-
ble s, s = ⌊(g+2)/2⌋ where g is the girth, (g, s) = (5, 3), (6, 4), respectively. This
is listed in [7, Table 3, p. 208]. That list can be slightly modified by including a
multigraph. One can see that the following chain of claw anihilations involves a

smaller cubic graph K3,3 from that table and next a cubic multigraph, K
3)
2 , on

two vertices.
Hg 7→ Pg 7→ K3,3 7→ K

3)
2 .

The converse chain of transformations

Hg ← Pg ← K3,3 ← K
3)
2

is defined as follows. In each step a new vertex of degree 3 is attached to 3 edges
so that order and size increase by 4 and 6, respectively, and girth also increases.
The girth of Hg cannot be increased this way. This converse chain is the chain
of converse transformations to claw anihilations. Consequenly, Hg cannot be
obtained by applying a claw anihilation.

Theorem 3. When an induced 3-matching in Pg is subdivided and the three

subdividing vertices are joined to a new vertex, what results is the graph Hg.

Proof is implied by the symmetry of Pg which is stated above. However,
conclusive is the following property which shows that Pg is a kind of a gem.

Lemma 4. For any edge e of Pg there is exactly one maximal induced matching

in Pg containing the edge e and this matching comprises three edges.

Proof. Let e be a fixed edge of Pg. Then there are four length-3 paths in Pg
containing e as the central edge and there are altogether five edges covered by
those paths. Each of those four paths has a private 2-edge extension to a pentagon
in Pg. Therefore the number of edges in Pg covered by those pentagons is 5+4 ·2
only. Hence there are two edges of Pg, say e′ and e′′, which are not covered and
either of them joins such two of the pentagons which have e as the only edge
in common. Consequently, the edges e, e′, e′′ make up the unique induced 3-
matching containing the edge e, see Figure 2.

Comment. That proof shows a structural rigidity of Pg.
Five mutually disjoint induced 3-matchings which make up a decomposition

of Pg are obtainable in Figure 2 by rotating the given 3-matching.

Theorem 5. Pg is uniquely decomposable into five induced 3-matchings.

Thus we have proved a claim in [4] that the strong chromatic index sq(Pg)
= 5.
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Figure 2. The Petersen graph with an induced 3-matching.

On continuing the proof of Theorem 3 we note that induced 3-matchings are
mutually similar in Pg and subdividing any of them increases the girth to 6.
The girth increases because removal of any induced 3-matching from Pg gives a
bipartite subgraph, the subdivided complete graph K4, without any pentagon. In
the standard ‘pentagonal drawing’ of the Petersen graph (Figure 2) each induced
3-matching comprises two parallel edges and one perpendicular to them.

Corollary 6. In the Petersen graph Pg

(i) each edge is uniquely extendable to an induced 3-matching, and each induced

3-matching comprises three induced 2-matchings,

(ii) the number of induced k-matching is five if k = 3 and 15 if k = 2,

(iii) any two induced k-matchings are similar, k = 2, 3,

(iv) removal of an induced 3-matching from Pg gives the subdivided square C4

with subdivided diagonals (i.e., the subdivided K4); conversely, adding three

edges which join a pair of degree-2 vertices on diagonals and both pairs on

the opposite sides of C4 gives back Pg.

We are going to use Theorem 3 in order to construct a decomposition of
Hg into seven induced 3-matchings. We consider Hg as obtained by attaching
a claw to an induced 3-matching in Pg. Now we put labels 1, 2, 3 in order to
differentiate between rays of the claw and next between each of rays and the two
adjacent non-rays. Then edges with the same label make up one of three induced
3-matching in Hg. Hence Hg is decomposable into seven induced 3-matchings
because four more come from Pg. Moreover, 3 is the largest size among induced
3-matchings in Hg. Thus we have proved a claim in [4] that the strong chromatic
index sq(Hg) = 7.
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3. Petersen’s Matchings

A matching which is not a proper submatching is called a maximal matching. In
the Petersen graph maximal are 5-matchings (perfectness), induced 3-matchings,
and also 4-matchings each of which is obtained from an induced 3-matching by
replacing its edge, say the edge e, with a 2-matching which covers both endvertices
of e.

3.1. Edge coloring classes

Remarks in the paper of Adel’son-Vel’skǐı and Titov [1, p. 12] can be read as
follows.

Proposition 7. Deleting any 2-matching (either induced or not) from the Pe-

tersen graph gives a subgraph with chromatic index 3.

Theorem 8. There are the three partitions of 15, namely 5, 4, 4, 2; 5, 4, 3, 3; and
4, 4, 4, 3, each of which is the sequence of sizes of edge coloring classes of Pg.

Proof. These are sizes of matchings which are being removed from Pg while pro-
ducing an edge 4-coloring of Pg. The term 5 arises after removing a 5-matching.
The next terms after 5 are sizes in the subgraph 2C5 which comprises two disjoint
pentagons. On the other hand the term 3 in the last partition is for an induced
3-matching.

Corollary 9. Deleting an induced 3-matching from Pg gives a subcubic subgraph

decomposable into three 4-matchings.

3.2. Petersen’s matchings in homogeneous traceability

Graphs with a Hamiltonian path are called traceable. Homogeneously traceable
is a graph in which every vertex is an end-vertex of a Hamiltonian path. This
notion was introduced in 1975 in [15] and a typewritten preprint [10] which was
submitted to Ann. New York Acad. Sci. and not published. Nevertheless, several
graph-theorists were inspired by the preprint, see two teams: Bermond et al. [2]
(on digraphs) and Chartrand et al. [3], see next [5, 16] and also the present
author’s several publications, e.g. [11, 12]. The articles [13, 14] were influenced
by the respective team’s works.

The following result is proved in [14, p. 9].

Theorem 10. Let E1 be a subset of edges in Pg and let G be a graph obtained by

subdividing once or twice each edge in E1. Then G is a homogeneously traceable

graph if and only if E1 is a matching and E1 is not an induced 3-matching.

Crucial for a proof is the fact that the four vertices which are not covered by
an induced 3-matching in Pg are mutually nonadjacent.
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4. Concluding Remarks

Both graphs, Hg and Pg, are milestones in the history of graph theory. It is
rather surprising that they are as related as presented in this paper.
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