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Abstract

A k-coloring of a graph is neighbor-locating if any two vertices with the
same color can be distinguished by the colors of their respective neighbors,
that is, the sets of colors of their neighborhoods are different. The neighbor-
locating chromatic number X, (G) is the minimum k such that a neighbor-
locating k-coloring of G exists. In this paper, we give upper and lower
bounds on the neighbor-locating chromatic number in terms of the order
and the degree of the vertices for unicyclic graphs and trees. We also obtain
tight upper bounds on the order of trees and unicyclic graphs in terms of
the neighbor-locating chromatic number. Further partial results for trees
are also established.
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1. INTRODUCTION

We refer to location in graphs as a way to distinguish all their vertices subject
to some restrictions. There are mainly two types of location, metric location
and neighbor location. Roughly speaking, in metric location the vertices are
distinguished by means of distances to other vertices, while in neighbor location
only the neighbors of a vertex are taken into account to distinguish them. Metric-
locating sets (also known as resolving sets) were introduced simultaneously in
[15,18], meanwhile neighbor-locating sets were introduced in [19].

In [11], the notion of metric location was extended to vertex partitions, in-
troducing the so called locating partitions, also known as resolving-partitions, and
in [8], there were first studied the so-called locating colorings, obtained by consid-
ering locating partitions formed by independent sets of vertices. Both resolving
partitions and locating colorings have been extensively studied since then. See
for example [7,12-14,16,17] and [3,5,6,9,20], respectively.

In [1], neighbor-locating partitions formed by independent sets are studied,
which are named neighbor-locating colorings. More specifically, we consider vertex
colorings such that any two vertices with the same color can be distinguished from
each other by the colors of their respective neighbors. This concept was already
introduced and studied in [4] with the name of adjacency locating colorings as a
tool to study the chromatic locating number of the join of graphs.

In this paper, we focus on neighbor-locating colorings of trees and unicyclic
graphs. The remaining part of this paper is organized as follows. We finish this
section by giving the terminology used in the paper. In Section 2, the definition of
neighbor-locating colorings is given, together with some properties and bounds.
Section 3 deals with unicyclic graphs, proving that the upper bound on the order
given in Section 2 is tight for unicyclic graphs. In Section 4, neighbor-locating
colorings of trees are studied. Among other results, a tree that attains the upper
bound given in Section 2 restricted to trees is provided. Finally, in Section 5, we
summarize our results and pose some open problems.

All the graphs considered in this paper are connected, undirected, simple and
finite. The vertex set and the edge set of a graph G are denoted by V(G) and
E(G), respectively. Let n(G) denote the order of G, i.e., n(G) = |V(G)|. The
neighborhood of a vertex v € V(G) is the set N(v) = {w € V(G) : vw € E(G)}.
The degree of v, defined as the cardinality of N(v), is denoted by deg(v). When
deg(v) = 1, v is called a leaf. The mazimum degree A(G) of G is defined to be
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A(G) = max{deg(v) : v € V(G)}. The distance between two vertices v,w €
V(G) is denoted by d(v,w). The diameter of G is diam(G) = max{d(v,w) :
v,w € V(G)}. The path and the cycle of order n are denoted by P, and C,,
respectively.

Let [k] denote the set {1,...,k}. A proper coloring of G isamap f: V(G) —
[k], for some k > 1, such that f(u) # f(v) whenever uv € E(G). The elements
of [k] are called colors and we say that vertex v is colored with f(v). We refer to
f as a proper k-coloring, if we want to emphasize the number of potential colors.
If W C V(G), then f(W) = {f(w) : w € W} C [k]. Every proper k-coloring
defines a k-partition II(f) = {S1(f),...,Sk(f)}, where S;(f) = {u : f(u) =i},
such that S;(f) is an independent set of vertices for every i € [k]. Given a proper
k-coloring f of a graph G and a vertex v € V(G), the color-degree of v is the
number of different colors of its neighborhood, that is, [{f(z) : x € N(v)}|. Note
that the color-degree of a vertex v is at most deg(v).

2. NEIGHBOR-LOCATING COLORINGS

A proper coloring f of a graph G is called a neighbor-locating coloring, an NL-
coloring for short, if for every pair of different vertices u,v with f(u) = f(v), the
sets of colors of their neighborhoods are different, that is, f(NV(u)) # f(INV(v)).
We say that f is a k-NL-coloring if f is a proper k-coloring.

The neighbor-locating chromatic number x,,(G), NLC-number for short, is
the minimum £ such that there exists a k-NL-coloring of G. Note that the trivial
graph and the path of order 2 are the only graphs with NLC-number equal to 1
and 2, respectively.

As a straightforward consequence of these definitions the following remark is
derived.

Remark 1. Let f be a k-NL-coloring of a nontrivial graph G and let n; denote
the number of vertices of degree j, for 1 < j < A(G). Then,

(1) For every i,j € [k], there are at most (k;l) vertices in S;(f) with color-

degree j.
A(G)

k—1
(2) [Si(f)] < Z < j ), for every i € [k].
j=1
(3) For every j € [k], there are at most k(k ;1) vertices in G with color-degree j.

1) S 0 <k (k ; 1), for every i € [A(G)].
j=1 j=1

Neighbor-locating colorings and the neighbor-locating chromatic number of
a graph have been studied in [1,2,4]. An upper bound on the order of a graph
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in terms of the NLC-number is given in [1].
Theorem 2 [1]. Let G be a nontrivial graph such that x, (G) = k. Then,

(1) n(G) < k(2" —1), and this bound is tight.
A(G) k1

(2) If A(G) <k—1, thenn(G) <k E ( , >
- J
Jj=1

Paths and cycles are the only connected graphs with A(G) = 2. In this case,
we have

(1) n(G)gk(k—1)+k<k_1>:kS_kQ.

2 2

Behtoei and Anbarloei [4] calculate the exact value of the NLC-number of paths
and cycles, and from their results, it can be easily derived that the preceding
upper bound is attained for every k > 2. Their proof is constructive, that is,
they give specific NL-colorings for all paths and cycles. Another k-NL-coloring
of paths and cycles that leads to the same results is given in [2]. Also in [4], the
NLC-number for complete and bipartite complete graphs is given, and for fans
and wheels is implicitly given, since the authors calculate the locating chromatic
number of these graphs, that is equal to the NLC-number for graphs of diameter 2.

Next, we provide an upper bound on the order of a graph that turns out
to be better than the bounds given in Theorem 2 for some families of graphs,
including trees and unicyclic graphs, as we will see in the remaining sections.
This bound involves the cycle rank of a graph G, denoted by ¢(G), defined as
c(G) = |E(G)| —n(G) + 1 (see [10]). Notice that trees and unicyclic graphs are
those graphs with cycle rank equal to 0 and 1, respectively.

Theorem 3. If G is a graph such that x,(G) =k > 3, then
1, .
n(G) <5 (k> + k* — 2k) +2(c(G) — 1).

Moreover, if the equality holds, then G has mazimum degree 3, and it has exactly
k(k—1) leaves, w vertices of degree 2, and k(k—1)+2(c(G)—1) vertices
of degree 3.

Proof. Let ni, n2, n3 and n., be respectively the number of leaves, the number
of vertices of degree 2, the number of vertices of degree 3 and the number of
vertices of degree at least 3 of G. On the one hand, we know that

ni+2ng+ »  deg(u)= > deg(u) =2|E(G)| =2(n(G) +¢(G) - 1)
deg(u)>3 ueV(G)

:2(n1+n2+n23+c(G)—1).
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From here, we deduce that

(2) ni= Y (deg(u) —2) = 2(c(G) = 1) > n_; —2(c(G) - 1).
deg(u)=>3

If X\, (G) =k, then by (2) and Remark 1,

n(G) =n1+ng+n., §k(k:—1)+k< 5

) +n1+2(c(G) = 1)

gk(k—1)+k< 5

) +k(k— 1)+ 2(e(G) — 1)
_ % (K + k2 — 2k) + 2(c(G) — 1).

Now, assume that there is a graph G attaining this bound. In such a case,
the inequalities in the preceding expression must be equalities. Thus, n., =
n1 +2(c(G) — 1) = k(k — 1) +2(c(G) — 1) and ny + ng = k(k — 1) + k(*31).
Hence, n1 = k(k — 1) and ny = k‘(kgl) = w From (2), we deduce that
n., =ni + 2(c¢(G) — 1) if and only if there are no vertices of degree greater than
3. Hence, n3 =n., = ny +2(c(G) — 1) = k(k — 1) + 2(c(G) — 1). |

3. UNicycLic GRAPHS

A connected graph G is unicyclic if it contains precisely one cycle. As a direct
consequence of Theorem 3, we have the following bound for unicyclic graphs
taking into account that the cycle rank for unicyclic graphs is 1.

Corollary 4. Let G be a unicyclic graph. If x, (G) =k > 3, then
1
n(G) < 5 (K + k% = 2k).

Moreover, if the equality holds, then G has maximum degree 3, and it contains
exactly k(k — 1) leaves, W vertices of degree 2, and k(k — 1) vertices of
degree 3.

Hence, for k € {3,4}, the maximum order of a unicyclic graph with NLC-
number k is given by the general bound of Theorem 2, whereas for k£ > 5, the
bound given in the preceding corollary is more adjusted (see Table 1). In all
cases, these bounds are tight. For k = 3, the cycle of order 9 is a unicyclic graph
attaining the bound (see Figure 1(a)) and for k = 4, the graph in Figure 1(b)
provides an example of unicyclic graph of order 28.



664 L. ALcon, M. GUTIERREZ, C. HERNANDO, M. MORA AND [.M. PELAYO

Xn.(G) | general bound unicyclic graphs
k k(2F1—1) | 3B +k2—2k) | m1 n2 ng
3 9 15 6 3 6
4 28 36 12 12 12
5} 75 70 20 30 20
6 186 120 30 60 30
7 441 189 42 105 42

Table 1. Upper bounds on the order of a graph and of a unicyclic graph for some values
of Xy, (G). In the last columns, n; is the number of vertices of degree i, ¢ € [3], of a
unicyclic graph attaining the specific upper bound. Cases in boldface are not feasible.

Figure 1. (a) The cycle of order 9 is a unicyclic graph of order 9 and NLC-number 3.
(b) An example of unicyclic graph of order 28 and NLC-number 4.

For k > 5, we prove that the bound give in Corollary 4 is tight by means
of some special k-NL-colorings of cycles and comb graphs of certain order. Con-
cretely, cycles of order k(k — 1)(k — 2)/2 and comb graphs of order 2k(k—1). We

denote Lk — 1)k — 2
2
Note that a(k) is the maximum number of vertices of color-degree 2 for a k-NL-

coloring.

Proposition 5. For every k > 3, there is a k-NL-coloring of the cycle of order
a(k) such that every vertex has color-degree 2.

Proof. We proceed by induction on k£ > 3. If £ = 3, then a(3) = 3 and any
bijection from V' (C3) to [3] is a 3-NL-coloring with all vertices having color-degree
2. Let k > 4 and suppose by induction hypothesis that there is a (k — 1)-NL-
coloring f of Cy(;_1) with all vertices having color-degree 2. We extend f to a
k-NL-coloring f” of Ca(r) with all vertices having color-degree 2.
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Since a(k — 1) is the maximum number of vertices of color degree 2 for a
(k — 1)-NL-coloring, for every three distinct elements ¢, j, h € [k — 1], there is a
vertex with color ¢ such that its neighbors are colored with j and h. Therefore,
for every pair of colors i,j € [k — 1], i # j, we can choose an edge e(i,j) with
endpoints colored with ¢ and j. For every one of these (kgl) edges, we proceed
in the following way.

Let e(i,j) = zy with f(z) = i and f(y) = j. Insert three new vertices a2/,
2 and ¢ in the edge zy, so that xzx', 2’2/, 2'y/ and 3’y are edges of the new
cycle, and define f'(2') = j, f'(v') =4, f'(?') = k and f'(u) = f(u), whenever
w € V(Cge1)). Then, FI(N(&')) = {i,h}, F'(N()) = (i}, /(N () = 1.}
and f'(N(u)) = f(N(u)), whenever u € V(Cy(;—1)) (see Figure 2). Notice that
the color, color-degree and the colors of the neighbors remain unchanged for the
vertices belonging to C, ;1) when extending f to 1.

Ty x|z 2 Y|y
000 = 001000 09
a i j b ailj ki|j b

Figure 2. Inserting three new vertices in the edge e(, j) = zy.

By construction, since a(k — 1) + 3(k51) = (kfl)(k;m(k*?’) + 3(k71)2(k72) =

w = a(k), we obtain a proper k-coloring f’ of a cycle of order a(k) with
all vertices having color-degree 2. We claim that f’ is a k-NL-coloring of Cy ).
Indeed, suppose that f'(u) = f'(v), for u,v € V(Cquy), u # v.

If u,v € V(Cq—1)), then f(u) = f'(u) = f'(v) = f(v). Hence, f'(N(u)) =
f(N(u)) # f(N(v)) = f'(N(v)), because f is an NL-coloring of Cyj—1).-

If u € V(Cye—1)) and v ¢ V(Cyp—1y), then f'(v) = f'(u) # k. Hence,
f'(N(v)) # f'(N(u)), because k € f'(N(v)) and k & f(N(u)) = f'(N(u)).

Finally, suppose that u,v ¢ V(Cy—1y). If f'(u) = f'(v), then u and v are
inserted in distinct edges, say e(i,j) and e(i, j'), respectively, with ¢ # j, i’ # j’
and {i,j} £ {i', 7). T f'(u) = ['(v) = b, then f'(N(u) = {7} # {17} =
f/(N()). If f'(u) = f'(v) =h # k, we may assume without loss of generality
that h =i =4'. Then, f'(N(u)) = {j,k} # {j/, k} = f(N(v)). |

An example of the procedure described in the proof of Proposition 5 is shown
in Figure 3 for k = 4, 5.

For every integer m > 3, the comb graph B, is a tree of order 2m obtained
by attaching a leaf at every vertex of a path of order m.

Proposition 6. For every k > 5, there is a k-NL-coloring of the comb graph
Bi(k—1)-
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Proof. Let k > 5. Consider the comb By ;1) obtained by hanging a leaf to
each vertex of a path P of order k(k — 1). We assign the color 1 to the leaves
hanging from the first k — 1 vertices of the path P; color 2 to the leaves hanging
from the following k — 1 vertices of P; and so on. For every r € [k]|, consider
the set M, containing the k — 1 vertices of P adjacent to the leaves with color
r. We define a bijection between the vertices of M, and the k — 1 colors of the
set L = [k]\ {r}. Set M, = {a7,...,2},_,} so that x{zj , € E(P) for every
i € [k—2], and 2}_ 2™ € E(P), whenever r < k.

Cs

Figure 3. Obtaining a k-NL-coloring of Cy1), k € {4,5} with all vertices of color degree
2 from a (k — 1)-NL-coloring of C,;—1) satisfying the same condition. In this case,
a(3) =3, a(4) = 12 and a(5) = 30. For k = 4,5 we insert 3 new vertices to the selected
edges with endpoints colored with 4, j, for every i,j € [k — 1], i # j.

We assign the colors of L, in cyclically decreasing order to the vertices
xy,..., 7 _, beginning with a concrete color according to the following rules:
1) If r is even, then we begin with r + 1 modulo k. Therefore, 27 and zj are

colored respectively with » + 1 and » — 1 modulo k.

(2) If r is odd and r < k, then we begin with 7 — 2 modulo k. Therefore, zj,_,
and zj_, are colored respectively with r + 1 and r — 1 modulo k.

(3) If r is odd and r = k, then we proceed as in the case r odd and r < k, but
we switch the colors of the last three vertices so that x,’:_?’, xﬁ_Q and x,’:_l
have color k — 1, 1 and 2, respectively.

See the defined k-NL-coloring of the comb By 1y for k € {5,6,7} in Figure 4.
Notice that the colors of two consecutive vertices of M, differ by one unit

modulo k, except for the first two vertices, when r is even, and for the last two

vertices, when r is odd. Besides, the first vertex of M, is always colored with an
odd number and the last vertex of M, is colored with an even number, whenever

k is even or when k is odd and r ¢ {1,k — 1,k}. We claim that this procedure

gives a k-NL-coloring of the comb By ;,_1).

By construction, only the leaves have color-degree 1. Hence, it only remains
to prove that for every pair of non-leaves with the same color, the sets of colors
of their neighborhoods are different.
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4325 3154 1542 5321 3412
Bay
1111 2222 3333 4444 5555
54326 31654 16542 53216 32164 15432
Bsy
11111 22222 33333 44444 55555 66666
654327 317654 176542 532176 321764 754321 543612

B42
111111 222222 333333 444444 555555 666666 777777

r+3 r+2 r—1 r-2 r+1 r—1 r+2 r
r r r+1 r+1 r r r+1 r+1
7 even rodd, r#k

Figure 4. A 5-NL-coloring of the comb Bsg, a 6-NL-coloring of the comb B3y and a
7-NL-coloring of the comb Byy. In white, adjacent vertices of M, with no consecutive
colors modulo k. In Byy and in By, we have shifted the colors of the vertices in gray
with respect to the general rule used to the vertices of M,., when r is odd. Below, the
general rule for coloring adjacent vertices of consecutive groups M, and M, ; and the
leaves hanging from them. In all cases, the colors involved are r — 1, 7, 7 + 1 and r + 2.

Let [ € [k]. There are exactly k — 1 non-leaves colored with [, and exactly
one of them belongs to M., for every r € [k]\ {l}. Let v] denote the vertex in M,
colored with [. Notice that the colors of the neighbors of vj are {r,i — 1,14 1},
except when v; occupies the first or the last position in M,. Concretely, this
happens for r € {{ —2,1— 1,1+ 1}, if [ is even, and for r € {I{ — 1,1+ 1,1+ 2}, if [
is odd, whenever [ # {1,2,3,k — 1,k}. Those last cases are analysed separately.

In Table 2, the colors of the neighbors of v}, r # [, are summarized. Observe
that, for a fixed value of [, the sets of colors of the neighbors of the vertices v;,
r # [, are pairwise different in all cases, so that we have a k-NL-coloring for each
case. ]

Theorem 7. For every k > 5, there is a unicyclic graph Uy, of order %(k:?’ + k% —
2k) such that x , (Ug) = k.

Proof. Consider the k-NL-coloring of the cycle Cy) with all vertices having
color-degree 2 constructed in the proof of Proposition 5. There is an edge xy
with its endpoints x and y colored respectively with 2 and k£ — 1. Consider the
k-NL-coloring of the comb By, ;_1) given in the proof of Proposition 6. Let 2" and
1y’ be the vertices of degree 2 of the comb B (x—1)- These vertices are colored with
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leven, | #2,k—1,k lodd, 1 #1,3,k—1,k
T ‘colors of N(v]) T ‘colors of N(v])
@201+l —1.0+1) |re{l_LTitLit2y|{nl_10+1}
-1 {I—=2,1-1,1+1}||l—-1 {I-3,1-2,1-1}
I+ 1 +10+2.0+3)|1+1 (—1,0+1,1+2}
=2 (0—31-2,0+1}|[i+2 (—1,0+2,1+3)
=1 =2
T ‘colors of N(vf) T ‘colors of N(v)
r¢{2,3,4} {r,2,k} ré¢{1,3,k} {r,1,3}
2 (2,3, k} 1 (1,3, k}
3 (3,4, k) 3 (3,4,5)
k even {k—=2,k—1,k} k even {3, k}
k odd {2,k —2,k—1} k odd {1, k}
=3,k >6even [l=3,k>7o0dd
T ‘colors of N(vj) T ‘colors of N(vj)
ré¢{2,4,5k—1,k}|{r2,4} ré{2,4,5,k—1,k}|{r 2,4}
2 {1,2,k} 2 {1,2,k}
1 (2,45} 1 {2,4,5}
5 (2,5,6) 5 (2,5,6)
k-1 2,4k -1} k-1 2.k~ 1,k
k (2,4, %} k (Lk— 1k}
l=k—1, keven l=k—1, kodd
T ‘colors of N(vj_q) ||r ‘colors of N(vj,_4)
ré{l,k—2k} {r,k—2,k} ré{l,k—3k—2k}|{rk—2k}
1 {1,k —2} 1 {1,k -2}
k—2 (k—4,k—3k—2}|[k—3 (k—4,k—3,k)
k {1,k —2,k} k—2 {k—3,k—2,k}
k {1,3,k}
| =k, even =k, odd
r [ colors of N(v}) r [ colors of N(vp)
re¢{l,k—2,k—1}|{r,1,k—1} re¢{l,k—1} {r,1,k—1}
1 {1,2,3} 1 {1,2,3}
k=2 M k—3.k_2] k-1 k—3.k_2k_1
E—1 (k-2 k—1}

Table 2. Colors of the neighborhoods of non-leaves of the comb By, _1)-
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k—1 and 2, respectively. Consider the unicyclic graph Uy, obtained from the union
of the cycle and the comb, by deleting the edge zy from the cycle C, ;) and adding
the edges za’ and yy' (see in Figure 5 the case k = 6). Notice that the order of U
is n(Uk) = n(C’a(k)) + n(Bk(k,l)) = w + Qk(/{: - 1) = %(k‘?’ + k2 — Qk).
We claim that the considered k-NL-colorings of the cycle and the comb induce
a k-NL-coloring in Uy. We have only changed the colors of the neighborhoods of
z' and y'. On the one hand 2z’ has color k — 1 and the colors of its neighbors are
{1,2,k —2}. On the other hand, y has color 2 and the colors of its neighbors are
{3,k —1,k} if k is even, and {1,k — 1, k}, if k is odd. We can check in the tables
given in the proof of Proposition 6 that any other vertex of the comb By;_1) has
different color or different set of colors in their neighborhoods from those of 2’
and y'. Hence, we have a k-NL-coloring of Uy,. [

341541641351651361324524624254

060

12412|15126123623563526523463456

/54326 31654 16542 53216 32164 154329

Bsy
11111 22222 33333 44444 55555 66666

Figure 5. A 6-NL-coloring of the unicyclic graph Ug of order 120.

Corollary 8. For every k > 5, the bound given in Theorem 4 is tight.

4. TREES

In this section, some relations between the NLC-number and other parameters
for trees are approached. An upper bound on the order of a tree in terms of its
NLC-number follows from Theorem 3 taking into account that the cycle rank of
trees is equal to 0.

Corollary 9. Let T' be a nontrivial tree. If x, (1) =k > 3, then
Los 2
n(T) < 5(lc + k% —2k) — 2.

Moreover, if the equality holds, then T has maximum degree 3 and it contains
exactly k(k — 1) leaves, w vertices of degree 2, and k(k — 1) — 2 vertices

of degree 3.
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Xn.(G) || general bound trees
k k(2F1—1) | 3(B*+k2—2k)—2 | n1  n2  ng
3 9 13 6 3 4
4 28 34 12 12 10
5 75 68 20 30 18
6 186 118 30 60 28
7 441 187 42 105 40

Table 3. Upper bounds on the order of a graph and of a tree for some values of x,, (G).
In the last columns, n; is the number of vertices of degree 4, i € [3], of a tree attaining
the specific upper bound for trees. Cases in boldface are not feasible.

Table 3 summarizes the different upper bounds on the order of a graph in
terms of the NLC-number, k, for general graphs and trees. The cases in bold
are not feasible because the bound for general graphs (see Theorem 2) is smaller
than the specific bound for trees given in Corollary 9. The last column shows the
number of vertices of degree 1 (n;), of degree 2 (n2) and of degree 3 (ng) that
has a tree attaining the upper bound, as shown in Corollary 9.

For k = 3, the path Py is an example of a tree attaining the general upper
bound. For k = 4, a tree attaining the general upper bound is displayed in
Figure 6 (left). For k = 5, the upper bound given for trees is 68. Figure 6 (right)
shows a tree on 66 vertices and NLC-number 5. Determining if there exists a
tree with NLC-number 5 and 67 or 68 vertices remains as an open problem. Next
proposition shows that there is a tree attaining the specific upper bound for trees
whenever k£ > 6.

1 2 3 4
zm sm 4(]} 1%]}
36 46 26 16 36 46 16 26 46 36 18 2

Figure 6. A tree Ty of order 28 with x,, (T1) = 4 (left) and a tree Ty of order 66 with
Xnz (T2) =5 (right).

251351452352453451231

531541542532

11122223333444505

=)

Theorem 10. For every k > 6, there is a tree Ty, of order %(kS + k% — 2k) — 2
such that x y, (Tk) = k.

Proof. Consider the k-NL-coloring of the unicyclic graph U of order %(k?’ +
k% — 2k) described in Theorem 7. Consider the leaf of color 2 hanging from the
vertex x colored with k£ — 1. Delete both vertices and add the edge joining the
remaining neighbors of . Do the same with the leaf colored with £ — 1 hanging
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from the vertex y of color 2. Remove the edge joining the vertex u of degree 2
and color 2 with the vertex v of degree 3 and color k — 1. Attach a leaf colored
with & — 1 to vertex u and a leaf colored with 2 to vertex v. We obtain a tree T},
of order (k% + k* — 2k) — 2 (see an example in Figure 7).

341541641351651361324524624254

5126123623563526523463456

16542 53216 3Wl164 15432

54326 316(=)

11111 222 2 33333 44444 5 555 66666

Figure 7. A 6-NL-coloring of a tree of order 118 constructed from a 6-NL-coloring of a
unicyclic graph of order 120.

We claim that in such a way we have a k-NL-coloring of Tj. Indeed, we have
only changed the colors of the neighborhoods of the vertices adjacent to x and to

y in Tj. Following the notations of the proof of Proposition 6, we have x = ”1%—1
k—1

and y = vy, and, if £ > 6, the vertices adjacent to them in My and Mj_; are
respectively U,%_Q, fu,% and v’f_l, v§_1. After deleting the vertices x and y from

the comb, the colors of their neighborhoods are given in Table 4.

k-1 k-1 2 22
i vy U3 Uk—2 Uk

color of z 1 3 k—2 k

colors of N(2) in T || {3,k —1,k} | {1,4,k — 1} ﬁ,/;g}?y,k:}, ﬁ;i%g {1,2,k — 2}

Table 4. Set of colors of the neighborhoods of v§ ™1 v5~ v? , and v3.

Using Tables 2 and 4, we check that vertices in T, with the same color, have

different sets of colors in their neighborhoods. Therefore, we have a k-NL-coloring
of Tj,. |

Finally, some other results involving the NLC-number of trees are shown.

Proposition 11. Let T be a tree of order at least 5. If T is a star, then x (1) =
n(T); otherwise x, (T) < n(T) — 2.

Proof. 1f diam(T) = 2, then T' is a star, and x,, (T) = n(T) (see [1]).

If diam(7") = 3, then T is a double star, that is, 7" has exactly two adjacent
vertices u and v which are not leaves; u is adjacent to r leaves and v is adjacent
to s leaves, with 1 < r < s < n(T) — 3. Consider a coloring f such that
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flw)=1,{f(z):zue E(T)} ={2,3,...,r+ 1}, f(v) =s+1and {f(z) : zv €
E(T)} ={1,2,...,s}. It is easy to check that f is an NL-coloring of T". Hence,
Xnr(T) <s4+1<n(T) - 2.

Otherwise, diam(7') > 4. Then, let =,y be two vertices at distance 4, and
let a,b,c be three vertices such that za,ab, bc, cy are edges of T. Consider a
coloring f such that {f(u) : w € V(T) \ {z,b,y}} = {1,2,...,n(T) — 3}, and
f(z) = f(b) = f(y) = n(T) — 2. It is easy to check that f is an NL-coloring of
T. Thus, x,(T) <n(T) — 2. |

Proposition 12. Let T be a tree. If x, (T) =k, then A(T) < (k —1)? + &5L.

Proof. Suppose to the contrary that x,, (T) = k and A(T) > (k — 1)2 + &L

Consider a k-NL-coloring of T'. We claim that if u is a vertex of degree A(T),
then u has at most (k — 1)? neighbors of degree at most 2. Indeed, assume that
u has color k, then the neighbors of u are colored with some i € [k — 1]. Besides,
the neighbors of v with degree at most 2 have color-degree at most 2, but they all
have u as a neighbor. Hence, there are at most k£ — 1 neighbors of u with degree
at most 2 and colored with ¢, for each i € [k — 1], implying that there are at most
(k — 1)? neighbors of u with degree at most 2.

Thus, v must have more than % neighbors of degree at least 3. Therefore,
the number n; of leaves satisfies ny > A(T) + 551 > (b —1)2 + 2551 = k(k —1).
But, by Remark 1, T" has at most k(k — 1) leaves, a contradiction. ]

5. CONCLUSIONS AND OPEN PROBLEMS

In [1], the order of a graph is bounded from above by a function of its NLC-
number. In the present paper, we provide an upper bound that is better for
both unicyclic graphs (see Corollary 4) and trees (see Corollary 9). Moreover,
we show that these new bounds are tight for NLC-number k£ > 5 in the case
of unicyclic graphs (see Theorem 7) and for NLC-number k£ > 6 in the case of
trees (see Theorem 10). In this last case, the given tree attaining the bound is a
caterpillar. For trees with NLC-number 5, the maximum order according to our
bound is 68, but we have obtained trees with order at most 66. The existence of
trees with NLC-number 5 and order 67 or 68 is an open problem.

According to Theorem 2, an upper bound on the order of a graph G with
fixed maximum degree A and NLC-number k satisfying A <k —1 is

(3) n(G)Siji(kj1>.

As we have already pointed out in Section 2, the family of cycles provides exam-
ples of graphs attaining the bound for A = 2 and k > 3 (see [4]). Nevertheless, it
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is an open problem to determine if this bound is tight whenever 3 < A(G) < k—1.
At the moment, if G is either a tree or a unicyclic graph then, by Theorem 3,

n(G) < - (K + k* — 2k)

N

and it can be easily checked that this value is smaller than the considered bound
when either A =3 and k£ > 6 or A > 4 and £ > 5. Hence, the bound can be
achieved neither by trees nor by unicyclic graphs in these cases. For A = 3 and
k =5, the unicyclic graph Us of order 70 described in Section 3 attains the bound.
For A = 3 and k = 4, the unicyclic graph of order 28 depicted in Figure 1(b)
attains the bound. For A > k, and taking into account that (7’;) = 0 whenever
m > n, the bound given in equation (3) turns out to be

and it is attained for a graph with A = (k —1)2*=2 (see [1]). It remains an open
problem to determine if it is tight for other values of A such that A > k.

In Proposition 12 we give an upper bound on the maximum degree in terms
of the NLC-number. However, this bound is not tight. Indeed, for a tree T
with NLC-number 3, this proposition states that A(7T") < 5. However, by Theo-
rem 2(1), we have n(T') <9 in this case, and it is easy to verify that x,, (T) =3
and n(7T) < 9 imply A(T) < 4. In general, we think that the maximum degree
of a tree is bounded in terms of the XNL-number as follows.

3 ki 2 141 k 2 k-1

Figure 8. Tree T' with A(T) = (k — 1)? and x,, (T) = k.

Conjecture 13. Let k > 2. If T is a tree with X, (T) = k, then A(T) < (k—1)2,
and this bound is tight for every integer k > 2.

An example of a tree T' with x,, (T) = k and A(T) = (k — 1)? is given in
Figure 8.

Finally, if G is a connected graph such that diam(G) = d < 23, then it is
possible verify that x,, (G) > X, (Pi+1). We propose the following conjecture.
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Conjecture 14. Let G be a graph of diameter d. Then, X, (G) > Xy, (Pit+1)-
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