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Abstract

For all positive integers r ≥ 3 and n such that r2 − r divides n and
an affine plane of order r exists, we construct an r-edge colored graph on n
vertices with minimum degree (1− r−2

r
2
−r

)n−2 such that the largest monochro-
matic component has order less than n

r−1
. This generalizes an example of

Guggiari and Scott and, independently, Rahimi for r = 3 and thus disproves
a conjecture of Gyárfás and Sárközy for all integers r ≥ 3 such that an affine
plane of order r exists.
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1. Introduction

An affine plane of order q is a q-uniform hypergraph on q2 vertices (called points),
with q(q + 1) edges (called lines) such that each pair of vertices is contained in
exactly one edge. It is well known that an affine plane of order q exists whenever
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q is a prime power (and it is unknown whether there exists an affine plane of non-
prime power order). Given an affine plane G of order q, there exists a q+1-coloring
of the edges of G such that every color class (called a parallel class) consists of a
collection of q vertex disjoint edges of order q, every vertex is contained in exactly
one edge of each color, and the union of the q+1 edges incident to a given vertex
is all of V (G).

Let H = ({x1, . . . , xt}, E) be a hypergraph which has a proper edge col-
oring with r colors (that is, every color class induces a matching). Let α =
(α1, . . . , αt) ∈ R

t be such that
∑t

i=1 αi = 1 and αi > 0 for all i ∈ [t]. For a
positive integer n, let G be a graph on n vertices obtained by replacing each
xi ∈ V (H) with a set Xi of order ⌈αin⌉ or ⌊αin⌋; for all u ∈ Xi, v ∈ Xj , let uv
be an edge of G if and only if there exists e ∈ E such that {xi, xj} ⊆ e, and color
uv using the color which appears on e (if there are multiple such edges, choose
a color arbitrarily from one such edge). We call G an α-weighted blow-up of H,
and if αi =

1
t for all i ∈ [t], we call G a uniform blow-up of H.

Given a graph G and a positive integer r, let mcr(G) be the largest integer m
such that in every r-edge-coloring of G, there exists a monochromatic component
(i.e., a maximal connected subgraph) of order at least m. For the rest of the
paper, when we speak of an r-coloring of G, we mean an r-coloring of the edges
of G.

Gyárfás [6] proved

mcr(Kn) ≥
n

r − 1

and this is best possible when (r − 1)2 divides n and an affine plane of order
r− 1 exists. To see this, let Kn be a uniform blow-up of the affine plane of order
r − 1. Since every pair of distinct points from the affine plane is contained in
exactly one edge the r-coloring of Kn is well defined, and since each line of the
affine plane has order r − 1 and there are (r − 1)2 points, the size of the largest
monochromatic component in Kn is (r − 1) n

(r−1)2
= n

r−1 .

Gyárfás and Sárközy [7] raised the following interesting question: for a graph
G on n vertices, how large does the minimum degree of G, denoted δ(G), need to
be so that mcr(G) ≥ n

r−1? As noted in [8], the answer is n− 1 for r = 2 because
there is a 2-coloring of any non-complete graph on n vertices such that the largest
monochromatic component has order at most n−1. So it was perhaps surprising
that for all r ≥ 3, they showed there exists εr > 0 such that if G is a graph on
n vertices with n sufficiently large and δ(G) ≥ (1 − εr)n, then mcr(G) ≥ n

r−1 .
The bounds on εr given in [7] were later improved in [3] as follows: for r = 3,

δ(G) ≥ 7n/8 suffices and for r ≥ 4, δ(G) ≥
(

1− 1
3072(r−1)5

)

n suffices.

Gyárfás and Sárközy [7] also gave the following natural construction whenever
an affine plane of order r exists and r2 divides n. Repeat the construction given
above, but instead of an affine plane of order r − 1, take a uniform blow-up
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of an affine plane of order r with one parallel class removed. This gives an r-
colored graph on n vertices with minimum degree

(

1− r−1
r2

)

n−1 where the largest
monochromatic component has order n

r < n
r−1 . They conjectured that the bound

arising from this construction is tight.

Conjecture 1 (Gyárfás, Sárközy [7]). Let n and r ≥ 3 be positive integers. If G
is a graph on n vertices such that δ(G) ≥

(

1− r−1
r2

)

n, then mcr(G) ≥ n
r−1 .

Recently, Guggiari and Scott, and independently Rahimi, disproved this con-
jecture for r = 3. The combination of their results gives the best possible mini-
mum degree condition.

Theorem 2 (Guggiari, Scott [5], Rahimi [11]). Let G be a graph on n vertices.

If δ(G) ≥ 5
6n− 1, then mc3(G) ≥ n

2 . Moreover, for every n, there exists a graph

G on n vertices with δ(G) =
⌈

5
6n

⌉

− 2 such that mc3(G) < n
2 .

Note that the 3-colorings of graphs with δ(G) =
⌈

5
6n

⌉

− 2 given by Guggiari
and Scott and Rahimi have largest monochromatic components of order just
under n

2 . This is in contrast to the example of Gyárfás and Sárközy above, where
the largest monochromatic components have order n

3 .
The purpose of this note is to generalize the lower bound construction of

Guggiari and Scott and Rahimi which disproves Conjecture 1 whenever an affine
plane of order r exists. (We note that Guggiari and Scott independently gener-
alized this construction in a later version of [5].)

Theorem 3. Let n and r be integers such that r ≥ 3 and n≥ r(r−1)((r−1)(r−2)
+1). If (r2− r) | n and an affine plane of order r exists, then there exists a graph

G on n vertices with

δ(G) =

(

1−
r − 2

r2 − r

)

n− 2 =

(

1−
r − 1

r2
+

1

r2(r − 1)

)

n− 2

such that mcr(G) < n
r−1 .

The construction is based on a blow-up of the following hypergraph Hr which
is derived from an affine plane of order r.

Definition 4 (Hr). Let r ≥ 3 such that an affine plane of order r exists. Let
Gr = (V,L) be an affine plane of order r. Let {L1, . . . , Lr+1} be the partition
of L into parallel classes. Label the vertices of Gr as vi,j with i, j ∈ [r] so that
L1 = {{vi,1, . . . , vi,r} : i ∈ [r]} and Lr+1 = {{v1,i, . . . , vr,i} : i ∈ [r]} (in Figure
1, L1 is represented by the rows and Lr+1 by the columns). Let S = {vr,i : i ∈
[r − 1]} ∪ {vr−1,r}.

Let Hr be the hypergraph obtained from Gr by deleting the lines from Lr+1

and the vertices of S from each of the remaining edges; i.e., let Hr = (V \ S,E)
where E = {e \ S : e ∈ L}.
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S

vr,1 vr,2 · · · vr,r−1 vr,r

vr−1,1 vr−1,2 · · · vr−1,r−1 vr−1,r

vr−2,1 vr−2,2 · · · vr−2,r−1 vr−2,r

vr−3,1 vr−3,2 · · · vr−3,r−1 vr−3,r

...
...

. . .
...

...

v1,1 v1,2 · · · v1,r−1 v1,r

Figure 1. The hypergraph Hr.

Given a hypergraph H = (V,E), the rank of H, denoted r(H), is max{|e| :

e ∈ E} and the proportional rank of H is r(H)
|V | . The edge chromatic number of H

is the minimum number of colors needed to color the edges of H so that each color
class forms a matching. Given a vertex v ∈ V , letN [v] = {u : ∃e ∈ E, {u, v} ⊆ e};
in other words, N [v] is the set of all vertices (including v) which are contained in
an edge with v. Let δ∗(H) = min{|N [v]| : v ∈ V }.

Note the following properties of Hr = (V,E).

(P1) the edge chromatic number of Hr is r,

(P2) the proportional rank of Hr is r
r2−r

= 1
r−1 ,

(P3) δ∗(Hr) = |V | − (r − 2) =
(

1− r−2
r2−r

)

|V |.

Roughly speaking, we prove Theorem 3 by taking a uniform blow-up of Hr

(which has monochromatic components of order n
r−1) and then slightly “perturb-

ing” the sizes of the blown-up sets so that all the monochromatic components
have order less than n

r−1 . This raises the more general question of when such a
perturbation is possible, which we address in Section 2.

As is elaborated in Section 3.1, the choice of vertices S to delete in the
definition of Hr is to ensure that a uniform blow-up of Hr is “perturbable.”
As an example of a hypergraph which is not “perturbable,” let H′

3 = (V,E)
be obtained from an affine plane of order 3, by deleting one parallel class and
deleting the vertices from one of the remaining edges (say v3,1, v3,2, v3,3 as in
Figure 1). The edge chromatic number of H′

3 is 3, the proportional rank is 1/2,
and δ∗(H′

3) = 5 =
(

1 − 1
6

)

|V |. By taking a uniform blow-up of H′
3 we obtain a

3-colored graph G with δ(G) = 5n
6 − 1, and every monochromatic component has

order at most n/2. However, no matter how we change the sizes of the blown-up
sets, one of the monochromatic components will have order at least n/2.
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2. Perturbable Hypergraphs

It is possible to skip directly to Section 3.2 to see the proof of Theorem 3; however,
to understand where the construction comes from we need to take a slight detour.

The standard simplex of Rn is the set of vectors (w1, . . . , wn) such that wi ≥ 0
for all i ∈ [n] and

∑n
i=1wi = 1. A weight assignment on a hypergraph H = (V,E)

where V = {v1, . . . , vn} is a function w : V → R such that (w(v1), . . . , w(vn)) is
in the standard simplex of Rn. For all S ⊆ V let the weight of S, denoted w(S),
be

∑

v∈S w(v). We say that w : V → R given by w(v) = 1
|V | for all v ∈ V is the

uniform weight assignment.

Definition 5 (Perturbation, perturbable). A perturbation on a hypergraph H =
(V,E) is a function p : V → R such that

∑n
i=1 p(vi) = 0 and for all e ∈ E,

p(e) =
∑

v∈e p(v) < 0. We say H is perturbable if a perturbation on H exists.

Observe that if w is a positive weight assignment on H (meaning w(v) > 0 for
all v ∈ V ) and p is a perturbation on H, then w+ εp is also a weight assignment

on H for sufficiently small ε > 0 (say ε < min
{∣

∣

∣

w(v)
p(v)

∣

∣

∣
: v ∈ V, p(v) 6= 0

}

). Since

p(e) < 0 for every e ∈ E, the weight assignment w + εp is strictly smaller than
w on every edge of H. Thus, if a perturbation on H exists, then we can alter
any weight assignment by at most ε at each vertex (for ε sufficiently small) and
strictly decrease the weights on the edges.

Theorem 6 gives an equivalent condition for the existence of a perturbation,
but first we must recall the following definitions. Given a hypergraph H = (V,E),
a fractional matching is a function m : E → [0, 1] such that for all v ∈ V ,
∑

e∋v m(e) ≤ 1, and a fractional vertex cover is a function t : V → [0, 1] such
that for all e ∈ E,

∑

v∈e t(v) ≥ 1. A fractional matching is called perfect if we
have equality for all v ∈ V . We let

ν∗(H) = max

{

∑

e∈E

m(e) : m is a fractional matching on H

}

and

τ∗(H) = min

{

∑

v∈V

t(v) : t is a fractional vertex cover on H

}

.

It is well known consequence of the duality theorem in linear programming that
τ∗(H) = ν∗(H) for all hypergraphs. When it is clear from context we just write
τ∗ and ν∗ for τ∗(H) and ν∗(H) respectively. Note that if H is k-uniform and has
a perfect fractional matching, then ν∗(H) = n

k .

Theorem 6. Let H = (V,E) be a hypergraph. H is perturbable if and only if H
does not have a perfect fractional matching.
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Proof. Let n := |V | and e := |E| and let A be the n-by-e incidence matrix of H
(with rows indexed by vertices and columns by edges). Let 1 be the n-dimensional
vector of all 1’s. Note that in this language, a perfect fractional matching m is a
solution to the system Am = 1, m ≥ 0, and a perturbation p is a solution to the
system AT p < 0, 1T p = 0.

Recall Farkas’ Lemma (see [9]), which states for an n-by-e matrix A and
n-dimensional vector b, there is no m ≥ 0 such that Am = b if and only if there
exists w such that ATw ≤ 0 and bTw > 0.

We claim that for the given A, the solvability of ATw ≤ 0, 1Tw > 0 is
equivalent to the solvability of AT p < 0, 1T p = 0. So by Farkas’ lemma, the
result will follow by establishing this claim.

First suppose there exists w such that ATw ≤ 0 and 1Tw > 0. Letting
p = w− 1

Tw
n 1, we have 1T p = 0 and p < w. Since A has only nonnegative entries,

and it has at least one positive entry in each column, we have AT p < ATw ≤ 0,
so p is a perturbation for H.

For the other direction, suppose there exists p such that AT p < 0 and 1T p =
0. Let α > 0 be the absolute value of the largest entry of AT p (smallest in
absolute value), and let w = p+ α

n1. Then 1Tw = α > 0 and the largest entry of
ATw = AT p+ α

nA
T1 is −α+ α

nn ≤ 0, since the largest entry of AT1 is the rank
of H which is at most n.

3. When an Affine Plane of Order r Exists

Given a hypergraph H = (V,E) and a weight assignment w, the top-level of
H, denoted H, is the hypergraph (V,E′) where E′ ⊆ E is the set of edges of
maximum weight.

3.1. Rough construction

Let Hr = (V,E) be the hypergraph from Definition 4. We first show that under
the uniform weight assignment, the top-level of Hr = (V,E) is perturbable. This
together with properties (P1), (P2), and (P3), imply that for all sufficiently large
n we can use Hr to define a graph G on n vertices with δ(G) ≥

(

1− r−2
r2−r

)

n−O(1)
and mcr(G) < n

r−1 .

Observation 7. Let r ≥ 3 be an integer such that an affine plane of order r
exists. Under the uniform weight assignment, the top-level of Hr = (V,E) is

perturbable.

Proof. Given the uniform weight assignment on Hr, let Hr = (V,E′) be the
top-level of Hr (which is just the edges of order r in this case). Let t : V → R

given by t(v) = 1
r−1 if v ∈ {vr,r} ∪ {vi,j : i ∈ [r − 2], j ∈ [r − 1]} and t(v) = 0
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otherwise (see Figure 2). We first claim that t is a fractional vertex cover of Hr.
Indeed, every edge of E′ either comes from L1 or contains vr,r, and consequently
intersects {vr−1,i : i ∈ [r − 1]} ∪ {vi,r : i ∈ [r − 2]} in at most one vertex. So we
have

ν∗ = τ∗ ≤
∑

v∈V

t(v) = (r − 1)(r − 2)
1

r − 1
+

1

r − 1
= r − 2 +

1

r − 1
< r − 1 =

|V |

r
,

and thus Hr does not have a perfect fractional matching. By Theorem 6, Hr is
perturbable.

S

• • · · · • 1
r−1

0 0 · · · 0 •

1
r−1

1
r−1 · · · 1

r−1 0

1
r−1

1
r−1 · · · 1

r−1 0

...
...

. . .
...

...

1
r−1

1
r−1 · · · 1

r−1 0

Figure 2. The fractional vertex cover of Hr.

One may wonder if other choices of S in the definition of Hr would yield a
perturbable hypergraph satisfying properties (P1), (P2), and (P3). An exhaustive
search shows that there are no other choices of S (up to isomorphism) for r = 3
and r = 4, but there are other choices for say r = 5. While it would be interesting
to characterize the possible choices of S, doing so would not improve the given
construction.

3.2. Fine tuning

Theorem 8. Let n, r, c be integers such that r ≥ 3, c ≥ 1, and n ≥ r(r − 1)
((r − 1)(r − 2) + 1)c. If (r2 − r) | n and an affine plane of order r exists, then

there exists a graph G on n vertices with δ(G) =
(

1 − r−2
r2−r

)

n − c − 1 such that

mcr(G) ≤ n
r−1 − c.

Note that the main case of interest is when c = 1, but phrasing the result
in general as we do shows that by lowering the minimum degree further, one can
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further decrease the size of the largest monochromatic component. Also note
that our construction only addresses the case (r2 − r) | n for simplicity. It is
possible that in the case when r2−r does not divide n, by slightly modifying this
construction (as was done in [5] for the case r = 3), one can construct a graph G
with δ(G) =

⌈(

1− r−2
r2−r

)

n
⌉

− 2 such that mcr(G) ≤
⌈

n
r−1

⌉

− 1.

Proof. Let Hr = (V,E) be the hypergraph from Definition 4 and let G be a
uniform blow-up of Hr where v ∈ V becomes Xv in G (with |Xv| =

n
r2−r

).
Let A = {vr−1,i : i ∈ [r − 1]} ∪ {vr−2,r}. We now adjust the size of each Xv

as follows

|Xv| :=

{

n
r2−r

− c, if v ∈ V (Hr) \A,
n

r2−r
+ (r − 2)c, if v ∈ A.

S

A

• • · · · • −c

+(r − 2)c +(r − 2)c · · · +(r − 2)c •

−c −c · · · −c +(r − 2)c

−c −c · · · −c −c

...
...

. . .
...

...

−c −c · · · −c −c

Figure 3. The adjustment of the sizes of the sets in a uniform blow-up of Hr. Each
number corresponds to a vertex ofHr, with the rows corresponding to L1 and the columns
corresponding to Lr+1. The number at a vertex v is the amount in which we adjusted
the size of Xv, i.e., |Xv| −

n

r
2
−r

.

First note that
∑

v∈V |Xv| = n (since each column sums to 0 in Figure 3).
Now we check the minimum degree condition. Let v ∈ V (Hr), let ℓv ∈ Lr+1

such that v ∈ ℓv, and let u ∈ Xv. We have (see Figure 3 in which each vertex is
adjacent to everything except the distinct members of its own column)

d(u) = (n− 1)−
∑

w∈ℓv\{v}

|Xw|

=

{

(n− 1)− (r − 3)
(

n
r2−r

− c
)

−
(

n
r2−r

+ (r − 2)c
)

, if v ∈ V (Hr) \A,

(n− 1)− (r − 2)
(

n
r2−r

− c
)

, if v ∈ A,

and thus δ(G) = (n− 1)− (r − 2) n
r2−r

− c =
(

1− r−2
r2−r

)

n− c− 1.
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Finally we check that every monochromatic component of G, each of which
corresponds to an edge ℓ from Hr, has order at most n

r−1 − c. Since c ≤
n

r(r−1)((r−1)(r−2)+1) , we have (r − 1)
(

n
r2−r

+ (r − 2)c
)

≤ n
r−1 − c and thus we

need only consider the edges ℓ of Hr of order r; that is, when ℓ ∩ S = ∅. Since
every edge from Hr of order r intersects A in at most one vertex, the order of
the largest monochromatic component in G will be at most

(r − 1)

(

n

r2 − r
− c

)

+
n

r2 − r
+ (r − 2)c =

n

r − 1
− c.

4. When an Affine Plane of Order r Does Not Exist

It is known that there is no affine plane of order 6, so r = 6 is the first case for
which the construction of the previous section does not apply. An example of a
graph G with δ(G) = 5n

7 − 1 such that mc6(G) < n
5 (in fact, mc6(G) ≤ n

7 < n
5 ) is

a uniform blow-up of an affine plane of order 7 with two parallel classes removed.

Problem 9. Construct an example of a graph G with large minimum degree
such that mc6(G) < n

5 . In particular, for some α > 0 and all n, construct a graph
G on n vertices with δ(G) ≥

(

5
7 + α

)

n such that mc6(G) < n
5 .

In light of Section 2, it would suffice to construct a hypergraph H = (V,E)
with edge chromatic number 6, proportional rank at most 1

5 , δ
∗(H) > 5

7 |V | such
that if the proportional rank of H is equal to 1

5 , then the top-level of H with
respect to the uniform weight assignment (the edges of maximum rank) has no
perfect fractional matching.

In general, when an affine plane of order r does not exist, trying to produce an
example of an r-colored graph G with large minimum degree for which mcr(G) <
n

r−1 leads us back to the original problem for complete graphs. The purpose
of this section is mostly to collect what is known in one place and make a few
observations. These observations have consequences for the original problem for
complete graphs and may be useful for extending our construction in the case
when an affine plane of order r does not exist.

Recall that Gyárfás [6] proved mcr(Kn) ≥ n
r−1 and this is best possible

when (r − 1)2 divides n and an affine plane of order r − 1 exists. For all r
such that affine plane of order r − 1 does not exist, the problem of determining
mcr(Kn) (even asymptotically) is still open. A hypergraph H is r-partite if
V (H) can be partitioned into r parts so that every edge intersects every part in
at most one vertex; H is intersecting if every pair of edges in E(H) has non-
empty intersection; and we let ν∗r be the largest fractional matching over all
r-partite intersecting hypergraphs. A result of Füredi [4, Theorem 3.3] implies
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that 1
nmcr(Kn) → 1

ν∗r
as n → ∞; thus determining mcr(Kn) asymptotically is

equivalent to determining the value of ν∗r . As for the value of ν
∗
r , Füredi proved [4,

Theorem 2.1] that ν∗r ≤ r−1− 1
r−1 unless a truncated projective plane of order r−1

exists (equivalently, an affine plane of order r−1 exists), in which case ν∗r = r−1.
Combining these two results shows that one can improve Gyárfás’ lower bound
on mcr(Kn) whenever there is no affine plane of order r−1. (Note that the upper
bound comes from the construction mentioned in the introduction.)

Theorem 10 (Füredi [4]). Let r ≥ 3 be an integer, let q be the largest integer

at most r − 1 such that there exists an affine plane of order q, and let n ≥ q2

be an integer. If an affine plane of order r − 1 does not exist, then n
r−1− 1

r−1

≤

mcr(Kn) ≤
⌈

n
q

⌉

.

Since an affine plane is a hypergraph in which every pair of distinct vertices is
contained in exactly one edge and the edges of the hypergraph can be decomposed
into perfect matchings (and thus has the smallest possible edge chromatic num-
ber), a natural place to look for examples which improve the upper bound (when
an affine plane of order r − 1 does not exist) are resolvable balanced incomplete
block designs.

A (v, k, 1)-resolvable balanced incomplete block design, a (v, k, 1)-RBIBD for
short, is a k-uniform hypergraph H on v vertices such that each pair of vertices
is contained in exactly one edge and the edges of H can be decomposed into
(v
2
)/(k

2
)

v/k = v−1
k−1 perfect matchings. A necessary condition for the existence of a

(v, k, 1)-RBIBD is that v ≡ k mod k(k − 1). Ray-Chaudhuri and Wilson [12]
proved that for all k ≥ 3 there exists a constant C(k) such that if v ≥ C(k) and
v ≡ k mod k(k − 1), then a (v, k, 1)-RBIBD exists. Later Chang [2] proved that
C(k) = exp(exp(k12k

2

)) suffices. There are some other sporadic results for small
k (see [1]), but in general, the existence of (v, k, 1)-RBIBDs is open.

Note that an affine plane of order k is a (k2, k, 1)-RBIBD and by the necessary
condition above, k2 is the smallest v for which a non-trivial (v, k, 1)-RBIBD exists.
Because of this, we parameterize v in terms of k and a non-negative integer t,
and speak of (k2 + tk(k − 1), k, 1)-RBIBDs.

Given a hypergraph H, let v(H) be the number of vertices in H and recall
that r(H) is the rank of H.

Fact 11. Let k ≥ 2, t ≥ 0, and n ≥ k2 + tk(k − 1) be integers such that

k2+ tk(k− 1) divides n. If there exists a (k2+ tk(k− 1), k, 1)-RBIBD, then there

is a ((t+ 1)k+ 1)-coloring of Kn such that every monochromatic component has

order at most n
(t+1)k−t .

In particular, when t = 0 this means that if there exists an affine plane of

order k, then there exists (k + 1)-coloring of Kn such that every monochromatic

component has order at most n
k .
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Proof. This follows from the fact that the proportional rank of a (k2+ tk(k−1),
k, 1)-RBIBD is

k

k2 + tk(k − 1)
=

1

(t+ 1)k − t

and a (k2 + tk(k − 1), k, 1)-RBIBD has

(

k2+tk(k−1)
2

)

/
(

k
2

)

(k2 + tk(k − 1))/k
=

k2 + tk(k − 1)− 1

k − 1
= (t+ 1)k + 1

parallel classes. Taking a uniform blow-up gives the desired conclusion.

The point of Fact 11 is that, for instance when r = 23, Theorem 10 implies
that n

22−1/22 ≤ mc23(Kn) ≤
n
19 (if no affine plane of order 20, 21, or 22 exists).

But by Fact 11, if a (231, 11, 1)-RBIBD exists (k = 11, t = 1), then n
22−1/22 ≤

mc23(Kn) ≤
n
21 .

Also note that for r = 7, Theorem 10 implies that 6n
35 ≤ mc7(Kn) ≤

7n
35 = n

5 .
It is well known that a (15, 3, 1)-RBIBD exists; this is the original Kirkman
schoolgirls problem (in fact, four out of the 80 Steiner triple systems on 15 ver-
tices are resolvable – see [10]). So Fact 11 implies that there are at least four
other examples which show that mc7(Kn) ≤

n
5 . Note that in light of the discus-

sion before Theorem 10, improving the upper bound on mc7(Kn) is equivalent
to finding a 7-partite intersecting hypergraph with fractional matching number
greater than 5.

5. Conclusion

The main open problem is to prove an analogue of Theorem 2 for r ≥ 4 colors
(the lack of additional evidence prevents us from calling it a conjecture). Note
that the following is true for r = 2, 3.

Problem 12. Let n and r ≥ 2 be positive integers. Prove that if G is a graph
on n vertices with δ(G) ≥

(

1 − r−2
r2−r

)

n − 1 and an affine plane of order r exists,
then mcr(G) ≥ n

r−1 .

When r = 7, Theorem 3 says that when 42|n, there exists a graph G on n
vertices with δ(G) =

(

1 − 5
42

)

n − 2, such that mc7(G) < n
6 . However, Theorem

10 says mc7(Kn) ≥
6n
35 > n

6 (and it is even conceivable that mc7(Kn) =
n
5 ).

So we can ask a modified version of the original question of Gyárfás and
Sárközy which is different whenever an affine plane of order r− 1 does not exist.

Problem 13. If G is a graph on n vertices, how large does the minimum degree
of G need to be so that mcr(G) = mcr(Kn)?
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