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Abstract

If S is a set of colored vertices in a simple graph G, then one may allow
a colored vertex with exactly one non-colored neighbor to force its non-
colored neighbor to become colored. If by iteratively applying this color
change rule, all of the vertices in G become colored, then S is a zero forcing
set of G. The minimum cardinality of a zero forcing set in G, written Z(G),
is the zero forcing number of G. If in addition, S induces a subgraph of G
without isolated vertices, then S is a total forcing set of G. The total forcing
number of G, written Ft(G), is the minimum cardinality of a total forcing
set in G. In this paper we introduce, and study, the notion of graphs for
which all vertices are contained in some minimum zero forcing set, or some
minimum total forcing set; we call such graphs ZF-dense and TF-dense,
respectively. A graph is ZTF-dense if it is both ZF-dense and TF-dense.
We determine various classes of ZTF-dense graphs, including among others,
cycles, complete multipartite graphs of order at least three that are not stars,
wheels, n-dimensional hypercubes, and diamond-necklaces. We show that
no tree of order at least three is ZTF-dense. We show that if G and H are
connected graphs of order at least two that are both ZF-dense, then the join
G+H of G and H is ZF-dense.
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1. Introduction

Coloring the vertices of a graph G and allowing this initial coloring to propagate
throughout the vertex set of G is known as a dynamic coloring of G. In this
paper, we will focus on the dynamic coloring due to the forcing process, which we
recall the definition from [10] as follows. Let G be a finite and simple graph with
vertex set V (G), and let S ⊆ V (G) be a set of initially “colored” vertices, all
remaining vertices being “uncolored”. All vertices contained in S are said to be
S-colored, while all vertices not in S are S-uncolored. At each discrete time step,
if a colored vertex has exactly one uncolored neighbor, then this colored vertex
forces its uncolored neighbor to become colored. If v is such a colored vertex,
then we call v a forcing vertex, and say that v has been played. The initial set
of vertices S is a zero forcing set, if by iteratively applying this forcing process
all of V (G) becomes colored. We call such a set, an S-forcing set. If S is a zero
forcing set of G and v is an S-colored vertex which has been played, then v is
called an S-forcing vertex. The zero forcing number of G, written Z(G), is the
cardinality of a minimum forcing set in G. If S is an S-forcing set of G which
also induces a subgraph without isolated vertices, then S is a total forcing set,
abbreviated TF-set, of G. The total forcing number of G, written Ft(G), is the
cardinality of a minimum TF-set in G.

Zero forcing in graphs was first introduced and studied in an AIM Special
Work Group [3] in 2008, and has subsequently been extensively studied in the
literature; MathSciNet lists over 140 papers to date on the topic. For a small
sample of recent (2020) papers on zero forcing we refer the reader to [4, 12, 15,
16, 20]. The notion of total forcing in graphs was first introduced by Davila [7]
in 2015 as a strengthening of zero forcing in graphs, and has been studied, for
example, in [8–11].

Motivation. There is a close connection between power domination in a graph
and zero forcing in graphs, as discussed, for example, by Benson et al. [5] in 2018.
The power domination process in a graph G can be described as choosing a set S
of vertices in G and applying the zero forcing process to the closed neighborhood
N [S] of S. Indeed, as first observed by Aazemi [1,2], a set S is a power dominating
set of a graph G if and only if N [S] is a zero forcing set of G. Benson et al. [5]
proved that the zero forcing number of a graph is at most its maximum degree
times its power domination number.

There is also a close connection with domination and zero forcing, and with
total domination and total forcing in graphs (see, for example, [11, 13]). A fre-
quently studied problem with domination type parameters is to determine the
set of vertices that belong to every or to some minimum dominating set, as this
is important in obtaining algorithmic and complexity results, as well as bounds
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on the parameters. We refer the reader to [6, 18, 21, 23] for a small sample of
such papers.

In this paper, we study an analogous concept for zero forcing and total forcing
in graph. We call a graph with the property that every vertex is contained in
some minimum zero forcing set (respectively, minimum TF-set) a ZF-dense graph

(respectively, a TF-dense graph). If a graph is both ZF-dense and TF-dense, then
we say that the graph is ZTF-dense.

Definitions and notation. For notation and graph terminology, we will typi-
cally follow the monograph [19]. Specifically, this paper will only consider finite
and simple graphs. Let G be a graph with vertex set V (G) and edge set E(G).
The order and size of G will be denoted by n(G) = |V (G)| and m(G) = |E(G)|,
respectively. A nontrivial graph is a graph of order at least 2. Two vertices
v, w ∈ V (G) are said to be neighbors, or adjacent, if vw ∈ E(G). The open

neighborhood of a vertex v ∈ V (G), written NG(v), is the set of all neighbors
of v, whereas the closed neighborhood of v is NG[v] = NG(v) ∪ {v}. The degree

of a vertex v ∈ V (G), written dG(v), is the number of neighbors of v in G; and
so, dG(v) = |NG(v)|. The complete graph, path, and cycle, on n vertices will be
denoted by Kn, Pn, and Cn, respectively.

A graph G is connected if for all vertices v and w in G, there exists a (v, w)-
path. The length of a shortest (v, w)-path in G is the distance between v and w,
and is written dG(v, w) or simply d(v, w) if G is clear from context.

A tree is a connected graph which contains no cycle as a subgraph. A vertex
of degree 1 in a tree is called a leaf and a vertex with a leaf neighbor is a support

vertex. A strong support vertex is a vertex with at least two leaf neighbors. A
branch vertex of a tree is a vertex of degree at least 3 in the tree. A star is a
non-trivial tree with at most one vertex which is not a leaf, and if the star in
question has n leaves, we denote the star by K1,n.

For k ≥ 2 a graph G is k-partite if its vertex set V (G) can be partitioned into
k subsets V1, V2, . . . , Vk (called partite sets) in such a way that no two vertices of
Vi are adjacent for all i ∈ [k]. Further, if every vertex of Vi is adjacent to every
vertex not in Vi for all i ∈ [k], then G is a complete k-partite graph. A 2-partite
graph is called a bipartite graph. A graph is a multipartite graph if it is a k-partite
graph for some k ≥ 2.

The Cartesian product G2H of two graphs G and H is the graph whose
vertex set is V (G) × V (H). Two vertices (g1, h1) and (g2, h2) are adjacent in
G2H if either g1 = g2 and h1h2 is an edge in H, or h1 = h2 and g1g2 is an edge
in G.

The join graph of two graphs G and H, written G+H (also written G ∨H

or G▽H in the literature), is the graph obtained from the disjoint union of G
and H by joining each vertex of G to every vertex of H.

We use the standard notation [k] = {1, . . . , k}.
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2. Known Results and Preliminary Observations

In this section we provide preliminary observations and results on both ZF-dense
and TF-dense graphs. First, we recall some known elementary result. As defined
earlier, a nontrivial graph is a graph of order at least 2.

Observation 1. If G is a nontrivial connected graph, then Z(G) ≤ Ft(G).

Any initially forcing vertex in the forcing process must be colored along with
all but one of its neighbors. Thus the forcing number of a graph is always bounded
from below by the minimum degree, as first observed in [3].

Observation 2 [3]. If G is a graph with minimum degree δ, then Z(G) ≥ δ(G).

The zero forcing number and total forcing number of paths, cycles, complete
graphs and stars is easy to compute.

Observation 3 [10]. The following holds.

(a) For n ≥ 2, Z(Pn) = 1 and Ft(Pn) = 2.

(b) For n ≥ 3, Z(Cn) = Ft(Cn) = 2.

(c) For n ≥ 3, Z(Kn) = Ft(Kn) = n− 1.

(d) For n ≥ 3, Z(K1,n−1) = n− 2 and Ft(K1,n−1) = n− 1.

By Observation 3, for n ≥ 2, Z(Pn) = 1 and Ft(Pn) = 2. Every minimum
zero forcing set of a path consists of a leaf of the path. In particular for n ≥ 3,
no internal vertex of a path Pn belongs to a minimum zero forcing set of the
path. Thus, Pn is ZF-dense if and only if n ∈ {1, 2}. For n ≥ 2, coloring
any two consecutive vertices on the path Pn produces a minimum TF-set in the
path. Thus, Pn is TF-dense if and only if n ≥ 2. By Observation 3 for n ≥ 3,
Z(Cn) = Ft(Cn) = 2. Coloring any two consecutive vertices of the cycle Cn

results in both a minimum zero forcing set and a minimum TF-set. Thus, Cn is
both ZF-dense and TF-dense.

By Observation 3 for n ≥ 3, Z(Kn) = Ft(Kn) = n−1. Coloring any arbitrary
(n − 1)-element subset of vertices in Kn results in both a minimum forcing set
and a minimum TF-set. Thus, Kn is both ZF-dense and TF-dense.

By Observation 3 for n ≥ 3, Z(K1,n−1) = n− 2. Every minimum forcing set
of the star K1,n−1 consists of n − 2 leaves of the star. Since the central vertex
of such a star does not belong to a minimum forcing set of the star, K1,n−1 is
not ZF-dense. By Observation 3 for n ≥ 3, Ft(K1,n−1) = n − 1. Coloring the
central vertex of K1,n−1 and any combination of n−2 leaves of the star results in
a minimum TF-set. Thus, K1,n−1 is TF-dense. We state the above observations
formally as follows.
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Observation 4. The following holds.

(a) All paths of order at least 3 are TF-dense, but not ZF-dense.

(b) All cycles are ZTF-dense.

(c) All complete graphs on at least three vertices are ZTF-dense.

(d) All stars of order at least 3 are TF-dense, but not ZF-dense.

3. Families of Zero and Total Forcing Dense Graphs

In this section, we present several families of ZTF-dense graphs, such as certain
multipartite graphs, wheel graphs, and the n-dimensional hypercube. If we ex-
clude stars, then all multipartite graphs of order at least 3 are ZTF-dense, as the
following result shows.

Proposition 5. If G is a complete multipartite graph of order n ≥ 3 that is not

a star, then G is ZTF-dense. Moreover, if G 6= Kn, then Z(G) = Ft(G) = n− 2.

Proof. Let G be a complete multipartite graph of order n ≥ 3 that is not a star.
Thus, G is a complete k-partite graph for some k ≥ 2. Let V1, V2, . . . , Vk be the
partite sets of G, where 1 ≤ |V1| ≤ |V2| ≤ · · · ≤ |Vk|. If |Vk| = 1, then n = k

and G = Kk, and by Observation 4, G is ZTF-dense. Further, by Observation 3,
Z(Kn) = Ft(Kn) = n − 1. Hence, we may assume that |Vk| ≥ 2. Since G is not
a star, either k = 2 and |V1| ≥ 2 or k ≥ 3.

We show firstly that Z(G) ≥ n − 2. Suppose, to the contrary, that Z(G) ≤
n− 3. Let S be a minimum forcing set of G, and so |S| = Z(G) ≤ n− 3. If some
partite set of G contains two or more S-uncolored vertices, then it would not be
possible to color these vertices. Hence, every partite set of G contains at most
one S-uncolored vertex. This implies that there are three distinct partite sets of
G, each of which contains an S-uncolored vertex. But then every vertex of G has
at least two S-uncolored neighbors, implying that S is not a forcing set of G, a
contradiction. Therefore, Z(G) ≥ n− 2.

We show next that Z(G) = Ft(G) = n− 2. If u is an arbitrary vertex in Vk

and v is an arbitrary vertex in V (G) \ Vk, then the set S = V (G) \ {u, v} is a
TF-set of G, implying that n− 2 ≤ Z(G) ≤ Ft(G) ≤ |S| = n− 2. Consequently,
Z(G) = Ft(G) = n − 2. Moreover if w is an arbitrary vertex of G, then we can
choose the vertices u and v distinct from w, and therefore we can choose the set
S to contain the vertex w. Thus, every vertex of G belongs to some minimum
forcing set of G and to some minimum TF-set of G. Hence, G is ZTF-dense.

The wheel graph Wn of order n ≥ 4 is the graph obtained from a cycle Cn−1

by adding a new vertex and joining it to every vertex on the cycle. We call
the cycle Cn−1 the outer cycle of the wheel, and we call the new added vertex
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adjacent to every vertex on the outer cycle the central vertex of the wheel. We
show next that all wheel graphs are ZTF-dense.

Proposition 6. If G is a wheel graph of order n ≥ 4, then G is ZTF-dense.
Moreover, Z(G) = Ft(G) = 3.

Proof. Let G be the wheel graph Wn of order n ≥ 4 obtained from a cycle
v1v2 · · · vn−1v1 by adding a new vertex v and joining it to every vertex on the
cycle. Thus, v has degree n−1 in G, while every vertex of the wheel different from
v has degree 3 in G. By Observations 1 and 2, we have Ft(G) ≥ Z(G) ≥ δ(G) = 3.

We show next that Ft(G) ≤ 3. Let S consist of the central vertex v of the
wheel together with any two consecutive vertices on the outer cycle. Renaming
vertices if necessary, we may assume that S = {v, vn−1, v1}. We note that G[S] ∼=
K3, and so S induces a graph without isolated vertices. Further, the set S is a
forcing set of G since if xi = vi for i ∈ [n− 3], then the sequence x1, . . . , xn−3 of
played vertices in the forcing process results in all vertices of G colored, where
xi denotes the forcing vertex played in the ith step of the forcing process. More
precisely, when the vertex xi is played in the forcing process, it forces the vertex
vi+1 to be colored for i ∈ [n− 3]. Therefore, S is a TF-set of G, and so Ft(G) ≤
|S| = 3. Consequently, Ft(G) = Z(G) = 3. Further, since we can choose the set
S to contain the central vertex v of the wheel together with any two consecutive
vertices on the outer cycle, every vertex of G belongs to a minimum forcing
set and a minimum TF-set of G. Thus, the wheel graph G of order n ≥ 4 is
ZTF-dense.

We next consider the n-dimensional hypercube Qn. From our perspective it
is important that Qn can be represented as the nth power of K2 with respect
to the Cartesian product operation 2, that is, Q1 = K2 and Qn = Qn−12K2

for n ≥ 2. The 4-dimensional hypercube Q4 is illustrated in Figure 1, where
the darkened vertices form a TF-set of Q4. Peters [22] determined the forcing
number of the hypercube Qn, and showed that Z(Qn) = 2n−1. We show next
that all hypercubes Qn are ZTF-dense.

Figure 1. Total forcing (and zero forcing) in the hypercube Q4.

Proposition 7. For n ≥ 3, if G is the n-dimensional hypercube Qn, then G is

ZTF-dense. Moreover, Z(G) = Ft(G) = 2n−1.
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Proof. For n ≥ 3, let G be the n-dimensional hypercube Qn. Thus, G =
Qn−12K2. By Peters’s result (see [22]), Z(Qn) = 2n−1. Let S be the set of
initially colored vertices obtained by coloring one of the copies of Qn−1 in the
product Qn−12K2. We note that G[S] ∼= Qn−1, and so since n ≥ 3, the set S

induces a subgraph without isolated vertices. Each vertex in S is adjacent with
exactly one vertex outside of S, and thus, each S-colored vertex is S-forcing.
Allowing these vertices to force results in all of V (Qn) becoming colored. Thus,
S is a TF-set with |S| = 2n−1. Hence, Z(G) ≤ Ft(G) ≤ 2n−1 = Z(Qn). Conse-
quently, we must have equality throughout this inequality chain. In particular,
Z(G) = Ft(G) = 2n−1. Further, since we can choose the set S to contain the
vertices from either copy of Qn−1 in G, every vertex of G belongs to a minimum
forcing set and a minimum TF-set of G. Thus, the hypercube Qn is ZTF-dense
for all n ≥ 3.

We remark that the ZTF-dense graphs described in the statements of Propo-
sitions 5, 6, and 7 all have equal forcing number and total forcing numbers. How-
ever in general, if G is a ZTF-dense graph, then it is possible that Z(G) < Ft(G).
We illustrate this with the family of cubic graphs known as diamond-necklaces.
Following the notation in [17], for k ≥ 2 an integer, let Nk be the connected
cubic graph constructed as follows. Take k disjoint copies D1, D2, . . . , Dk of a
diamond, where V (Di) = {ai, bi, ci, di} and where aibi is the missing edge in Di.
Let Nk be obtained from the disjoint union of these k diamonds by adding the
edges {biai+1 | i ∈ [k − 1]} and adding the edge bka1. Let A = {a1, a2, . . . , ak},
B = {b1, b2, . . . , bk}, C = {c1, c2, . . . , ck} and D = {d1, d2, . . . , dk}. We call Nk

a diamond-necklace with k diamonds. Let Ncubic = {Nk | k ≥ 2}. A diamond-
necklace, N6, with six diamonds is illustrated in Figure 2, where the darkened
vertices form a TF-set in the graph.

Figure 2. A diamond-necklace N6.

The authors in [9] determined the forcing and total forcing numbers of a
diamond-necklace

Proposition 8. If G ∈ Ncubic has order n, then Ft(G) = 1

2
n and Z(G) = 1

4
n+2.
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We show next that all diamond-necklaces are ZTF-dense. In the proof of
the following result, we adopt our earlier notation for a diamond-necklace. This
result shows that there exist ZTF-dense graphsG with the difference Ft(G)−Z(G)
arbitrarily large.

Proposition 9. If G ∈ Ncubic, then G is ZTF-dense.

Proof. Let G ∈ Ncubic have order n. Thus, G = Nk is a diamond-necklace with
k diamonds for some k ≥ 2, where n = 4k. By Proposition 8, Ft(G) = 2k.
As observed in [9], the set S1 = (A \ {ak}) ∪ C ∪ {bk} is a TF-set of G since
the sequence x1, x2, . . . , x2k of played vertices in the forcing process result in all
vertices of G colored, where xi denotes the forcing vertex played in the ith step
of the process and where x2i−1 = ai and x2i = di for i ∈ [k − 1] and where
x2k−1 = bk−1 and x2k = ak; that is, the sequence of played vertices is given
by a1, d1, a2, d2, . . . , ak−1, dk−1, bk−1, ak. Since |S1| = 2k = Ft(G), the set S1 is a
minimum TF-set of G. Analogously, for all i ∈ [k] the set Si = (A\{ai})∪C∪{bi}
is a minimum TF-set of G, as is the set S′

i = (A \ {ai}) ∪D ∪ {bi}. Thus, every
vertex of G belongs to some minimum TF-set of G. Hence, G is TF-dense.

Let G ∈ Ncubic have order n. Thus, G = Nk is a diamond-necklace with k

diamonds for some k ≥ 2, where n = 4k. By Proposition 8, Ft(G) = 2k. As
observed in [9], the set S1 = (A \ {a1}) ∪ C ∪ {b1} is a TF-set of G since the
sequence x1, x2, . . . , x2k of played vertices in the forcing process result in all ver-
tices of G colored, where xi denotes the forcing vertex played in the ith step of the
process and where x1 = b1, x2 = d1, and x2i+1 = ai+1 and x2i+2 = di+1 for i ∈
[k− 1]; that is, the sequence of played vertices is given by b1, d1, a2, d2, . . . , ak, bk.
Since |S1| = 2k = Ft(G), the set S1 is a minimum TF-set of G. Analogously, for
all i ∈ [k] the set Si = (A \ {ai}) ∪ C ∪ {bi} is a minimum TF-set of G, as is the
set S′

i = (A\{ai})∪D∪{bi}. Thus, every vertex of G belongs to some minimum
TF-set of G. Hence, G is TF-dense.

We show next that G is ZF-dense. By Proposition 8, Z(G) = k + 2. As
observed in [9], the set D1 = C ∪ {b1, a2} is a forcing set of G since the sequence
x1, x2, . . . , x3k−2 of played vertices in the forcing process result in all vertices
of G colored, where xi denotes the forcing vertex played in the ith step of the
process and where x3i−2 = ai+1, x3i−1 = di+1, and x3i = bi+1 for i ∈ [k − 1],
and where x3k−2 = a1; that is, the sequence of played vertices is given by a2, d2,

b2, a3, d3, b3, . . . , ak, dk, bk, a1. Since |D1| = k+2 = Z(G), the setD1 is a minimum
forcing set of G. Analogously, for all i ∈ [k] the set Di = C ∪ {bi, ai+1} is a
minimum forcing set of G, as is the set D′

i = D ∪ {bi, ai+1}, where ak+1 = a1.
Thus, every vertex of G belongs to some minimum forcing set of G. Hence, G is
ZF-dense. As observed earlier, G is TF-dense. Therefore, G is ZTF-dense.
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4. ZTF-Dense Trees

Recall that by Observation 4, no path of order at least 3 and no star of order at
least 3 is ZF-dense. In this section, we show that the only ZF-dense trees are K1

and K2. For this purpose, we first prove the following lemma.

Lemma 10. If T is a ZF-dense tree, then the following holds.

(a) T has no strong support vertex.

(b) There is no path P : v1v2v3v4 in T where dT (vi) = dP (vi) for i ∈ {1, 2, 4}.

(c) There is no path P : v1v2v3v4v5 in T where dT (vi) = dP (vi) for i ∈ {1, 2, 4, 5}.

(d) If v1v2v3 is a path in T where dT (v1) = 1 and dT (v2) = 2, then dT (v3) ≥ 3.

Proof. Let T be a ZF-dense tree. For an arbitrary vertex v of T , let Sv be a
minimum zero forcing set of T that contains the vertex v. Thus, |Sv| = Z(T )
and v ∈ Sv. Further, let S

′
v = Sv \ {v}.

(a) Suppose, to the contrary, that T has a strong support vertex v. Let v1
and v2 be two distinct leaf neighbors of v. Since Sv is a zero forcing set, at least
one of v1 and v2 belong to the set Sv. Renaming v1 and v2, if necessary, we may
assume that v1 ∈ Sv. But then the set S′

v is a zero forcing set, noting that as
the first vertex played in the forcing process starting with the set S′

v we play
the vertex v1, which results in the set Sv of colored vertices after the first step.
Thereafter, we continue with the exact same sequence of vertices in the forcing
process starting with the zero forcing set Sv to color the remaining uncolored
vertices of T . Thus contradicts the minimality of the zero forcing set Sv.

(b) Suppose, to the contrary, that P : v1v2v3v4 is a path in T where dT (v1) =
dT (v4) = 1 and dT (v2) = 2. We note that dT (v3) ≥ 2 = dP (v3). Let v = v3 and
consider the minimum zero forcing set Sv of T that contains the vertex v. Since
Sv is a zero forcing set, at least one of v1, v2 and v4 belong to the set Sv. If
v4 ∈ Sv, then analogously as in the proof of part (a), the set S′

v is a zero forcing
set, noting that as the first vertex played in the forcing process starting with the
set S′

v we play the vertex v4. If v2 ∈ Sv, then the set S′′
v = (S′

v \ {v2}) ∪ {v1}
is a zero forcing set, noting that as the first vertex played in the forcing process
starting with the set S′′

v we play the vertex v1. If v1 ∈ Sv, then the set S′
v is a zero

forcing set, noting that as the first vertex played in the forcing process starting
with the set S′

v we play the vertex v1. In all three cases, we produce a zero forcing
set of T of cardinality strictly less than |Sv|, contradicting the minimality of the
zero forcing set Sv.

(c) Suppose, to the contrary, that P : v1v2v3v4v5 is a path in T where dT (v1) =
dT (v5) = 1 and dT (v2) = dT (v4) = 2. We note that dT (v3) ≥ 2 = dP (v3). Let
v = v3 and consider the minimum zero forcing set Sv of T . Since Sv is a zero
forcing set, at least one of v1, v2, v4 and v5 belong to the set Sv. If v1 ∈ Sv, then
the set S′

v is a zero forcing set, noting that as the first vertex played in the forcing



628 R. Davila, M.A. Henning and R. Pepper

process starting with the set S′
v we play the vertex v1. Analogously, if v5 ∈ Sv,

then the set S′
v is a zero forcing set. If v2 ∈ Sv, then the set S′′

v = (S′
v\{v2})∪{v1}

is a zero forcing set, noting that as the first vertex played in the forcing process
starting with the set S′′

v we play the vertex v1. Analogously, if v4 ∈ Sv, then the
set (S′

v \ {v4}) ∪ {v5} is a zero forcing set. In all four cases, we produce a zero
forcing set of T of cardinality strictly less than |Sv|, contradicting the minimality
of the zero forcing set Sv.

(d) Let v1v2v3 be a path in T where dT (v1) = 1 and dT (v2) = 2, and suppose,
to the contrary, that dT (v3) ≤ 2. By Observation 4, the tree T is not a path,
since no path of order at least 3 is ZF-dense. This implies that dT (v3) = 2 and
there exists a vertex of degree at least 3 in T . Let w be the vertex of degree at
least 3 in T that is at minimum distance from v1 in T . Further, let dT (v1, w) = k,
and so k ≥ 3 and let Q : v1v2v3 · · · vk+1 be the path from v1 to w in T , where
w = vk+1. We now consider the vertex v = v2. If vi ∈ Sv for some i ∈ [k+1]\{2},
then the set S′′

v = (S′
v \ {vi}) ∪ {v1} is a zero forcing set, noting that as the first

vertex played in the forcing process starting with the set S′′
v we play the vertex

v1. Thus, v = v2 is the only vertex of Q that belongs to the set Sv. This implies
that the set S′

v ⊆ V (T )\V (Q) is necessarily a zero forcing set of T , contradicting
the minimality of the set Sv. This completes the proof of Lemma 10.

We are now in a position to prove that the only ZF-dense trees areK1 andK2.

Theorem 11. The only ZF-dense trees are K1 and K2.

Proof. Let T be a ZF-dense tree. We show firstly that T is a path. Suppose, to
the contrary, that T is not a path. Let P : v1v2v3 · · · vd be a longest path in T ,
where d ≥ 3. Necessarily, v1 is a leaf in T . If d = 3, then T is a star, contradicting
Observation 4. Hence, d ≥ 4. If dT (v2) ≥ 3, then by the maximality of the path
P every neighbor of v2 different from v3 is a leaf, implying that v2 is a strong
support vertex, contradicting Lemma 10(a). Thus, dT (v2) = 2. By Lemma 10(d),
dT (v3) ≥ 3. Let u2 be a neighbor of v3 not on P . By Lemma 10(b), u2 is not a
leaf, and so dT (u2) ≥ 2. By the maximality of the path P , every neighbor of u2
different from v3 is a leaf. Thus if dT (u2) ≥ 3, then u2 is a strong support vertex
of T , contradicting Lemma 10(a). Hence, dT (u2) = 2. Let u1 be the neighbor
of u2 different from v3. Thus, u1 is a leaf of T . Hence, u1u2v3v2v1 is a path
in T , where u1 and v1 are leaves of T and u2 and v2 are support vertices of T
of degree 2, contradicting Lemma 10(c). Therefore, T is a path. As observed
earlier, a path Pn is ZF-dense if and only if n ∈ {1, 2}. Hence, T ∈ {K1,K2}.

Recall that a nontrivial graph is a graph of order at least 2. As an immediate
consequence of Observation 4(a) and Theorem 11, the only non-trivial tree that
is ZTF-dense is the tree K2.
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5. The Join of Two Graphs

In this section we study ZF-dense and ZTF-dense graphs under the join operation.
We remark that Theorem 12(a) appears in the Ph.D. Dissertation of Taklimi [24].
Acknowledging this result, we also present a proof of this result as it helps clarify
the proof of Theorem 12(b).

Theorem 12. If G and H are non-trivial connected graphs, then the following

holds.

(a) Z(G+H) = min{n(G) + Z(H), n(H) + Z(G)}.

(b) If both G and H are ZF-dense, then G+H is ZF-dense.

Proof. Let S be an arbitrary minimum zero forcing set of G + H. Starting
with the colored set S, let x1, . . . , xt be the sequence of played vertices in the
forcing process that results in all vertices of G + H colored, where xi denotes
the forcing vertex played in the ith step of the process. Let X be the resulting
of played vertices, and so X = {x1, . . . , xt}. We proceed further by establishing
some properties of the set X.

Claim 13. We can choose the set X so that X ⊆ V (G) or X ⊆ V (H).

Proof. Suppose that X contains vertices from both G and H. Renaming G and
H if necessary, we may assume that x1 ∈ V (G). Let xi be the vertex in X with
smallest subscript that belongs to H; that is, xi ∈ V (H) and i ∈ [t] \ {1}. By
definition, the first vertex x1 played in the sequence of played vertices has exactly
one uncolored neighbor immediately before it is played. This implies that all
vertices of H, except possibly for one vertex, are S-colored (and therefore belong
to the set S). After the vertex x1 is played, all vertices of H are colored. When
the vertex xi ∈ V (H) is played in the ith step of the forcing process, all vertices
of G, except for exactly one vertex, say v, are colored. This implies that after the
vertex xi is played, all vertices of G+H are colored. Thus, xi is the final vertex
played, and so xi = xt. By our choice of the index i, we note therefore that xt
is the only vertex in X that belongs to H. However, replacing xt in X with an
arbitrary neighbor, v′ say, of v in G produces a new sequence x1, . . . , xt−1, v

′ of
played vertices in the forcing process that results in all vertices of G+H colored.
The resulting set (X \ {xt}) ∪ {v′} of played vertices in this sequence belong
entirely to the graph G.

Let SG = S ∩ V (G) and SH = S ∩ V (H).

Claim 14. Z(G+H) ≥ min{n(G) + Z(H), n(H) + Z(G)}.

Proof. By Claim 13, we can choose the set X so that X ⊆ V (G) or X ⊆ V (H).
Renaming the graphs G and H if necessary, we may assume that X ⊆ V (G). As
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observed in the proof of Claim 13, immediately before the first vertex x1 ∈ X

is played, all vertices of H, except possibly for one vertex, belong to the set S.
Thus, SH = V (H) or SH = V (H) \ {v} for some vertex v ∈ V (H).

Suppose that all SH = V (H). In this case, the set SG is a zero forcing
set of G and x1, . . . , xt is a sequence of played vertices in the forcing process in
the graph G that results in all vertices of G colored. Thus, Z(G) ≤ |SG|, and so
Z(G+H) = |S| = |SG|+|SH | ≥ Z(G)+n(H) ≥ min{n(G)+Z(H), n(H)+Z(G)}.
Hence, we may assume that SH = V (H) \ {v} for some vertex v ∈ V (H), for
otherwise the desired result hold.

With this assumption, immediately before the first vertex x1 is played in the
forcing sequence in G +H, all neighbors of x1 in G +H are colored, except for
the vertex v ∈ V (H) which becomes colored when the vertex x1 is played. In
particular, we note that in this case all neighbors of x1 in G belong to the set S;
that is, NG(x1) ⊆ SG.

We now consider the set S′ = SG \ {x1}. If S′ is a zero forcing set in G, then
Z(G) ≤ |S′| = |SG| − 1. Thus, Z(G + H) = |S| = |SG| + |SH | = (|S′| + 1) +
(n(H) − 1) = |S′| + n(H) ≥ Z(G) + n(H) ≥ min{n(G) + Z(H), n(H) + Z(G)}.
Hence we may assume that S′ is not a zero forcing set in G. This implies that
at least one vertex of X is a neighbor of x1 in G. Let xj be a vertex of X of
smallest subscript such that xj is a neighbor of x1 in G; that is, xj ∈ NG(x1) and
j ∈ [t] \ {1}.

We now consider the set S∗ = SG \ {xj}. We show that S∗ is a zero forcing
set in G by showing that the sequence of vertices x1, . . . , xt in the forcing process
colors all vertices of G. When we play the vertex x1, its unique S∗-uncolored
neighbor, namely the vertex xj , becomes colored. After the vertex x1 is played,
the set of colored vertices in G with respect to the coloring S∗ is exactly the same
as the set of colored vertices in G with respect to the coloring SG. We note that
after the vertex x1 is played in G + H all vertices in H are colored, implying
that each vertex xi where i ∈ [t] \ {1} forces an unique vertex in G to be colored.
These observations imply that once the vertex x1 is played in the set S∗, we may
proceed exactly as before by playing the vertices x2, . . . , xt in turn in the forcing
process to color all vertices of G. Thus, S∗ is a zero forcing set in G, and so
Z(G) ≤ |S∗| = |SG| − 1. Therefore, Z(G+H) = |S| = |SG|+ |SH | = (|S∗|+1)+
(n(H)− 1) = |S∗|+ n(H) ≥ Z(G) + n(H) ≥ min{n(G) + Z(H), n(H) + Z(G)}.
This completes the proof of Claim 14.

Claim 15. Z(G+H) ≤ min{n(G) + Z(H), n(H) + Z(G)}.

Proof. Coloring all vertices in G and coloring the vertices in a minimum zero
forcing set in H we form a zero forcing set in G +H. Analogously, coloring all
vertices in H and coloring the vertices in a minimum zero forcing set in G we form
a zero forcing set inG+H. Thus, Z(G+H) ≤ min{n(G)+Z(H), n(H)+Z(G)}.
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As an immediate consequence of Claims 14 and 15, the zero forcing number
of the join G+H of G and H is determined, and is given by

Z(G+H) = min{n(G) + Z(H), n(H) + Z(G)}.

This completes the proof of part (a). To prove part (b), suppose that both
G and H are ZF-dense. Renaming G and H if necessary, we may assume that
n(H)+Z(G) = min{n(G)+Z(H), n(H)+Z(G)}. Coloring all vertices in H and
coloring the vertices in a minimum zero forcing set in G we form a minimum zero
forcing set in G + H of cardinality n(H) + Z(G). Since G is ZF-dense, we can
choose the minimum zero forcing set in G to contain any specified vertex in G.
Therefore, there exists a minimum zero forcing set in G + H that contains any
specified vertex in G+H, implying that G+H is ZF-dense. This completes the
proof of part (b), and completes the proof of Theorem 12.

We close with the following result.

Theorem 16. If G and H are non-trivial connected graphs, then the following

holds.

(a) Ft(G+H) = min{n(G) + Z(H), n(H) + Z(G)}.

(b) If both G and H are ZF-dense, then G+H is TF-dense.

Proof. In view of Theorem 12, we may assume, renaming the graphs G and
H if necessary, that Z(G + H) = n(G) + Z(H). Notice that V (G) ∪ SH is a
zero forcing set of G + H, where SH denotes a minimum zero forcing set of
H. By definition of the join operation, the set V (G) ∪ SH induces a subgraph
of G +H without isolated vertices, and is therefore a TF-set of G +H. Hence,
Ft(G+H) ≤ Z(G+H). By Observation 1, Ft(G+H) ≤ Z(G+H). Consequently,
Ft(G+H) = Z(G+H) = min{n(G)+Z(H), n(H)+Z(G)}. This proves part (a).
Part (b) follows readily.

As an immediate consequence of Theorems 12 and 16, we have the following
result.

Corollary 17. Let G and H be non-trivial connected graphs. If both G and H

are ZF-dense, then G+H is ZTF-dense.

6. Concluding Remarks

In this paper, several classes of ZTF-dense graphs are given, such as complete
multipartite graphs, wheels, n-dimensional hypercubes, diamond-necklaces, as
well as constructions to build ZF-dense graphs. It would be interesting to obtain
other classes of ZTF-dense or ZF-dense graphs.
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As mentioned in the introductory section, vertices that belong to every or to
some minimum dominating set of a graph are well studied, and such sets are often
useful in obtaining algorithmic and complexity results, as well as bounds on dom-
ination type parameters. Since there is a connection between domination type
parameters and zero forcing, it would be interesting to obtain algorithmic and
complexity results, and to determine upper bounds on the zero forcing number
in classes of ZTF-dense or ZF-dense or TF-dense graphs.

For r ≥ 3, let Gr be the class of connected r-regular graphs. If G ∈ Gr is a
ZF-dense graph of sufficiently large order, determine or estimate the best possible
constant ar such that Z(G) ≤ ar × n(G), and if G ∈ Gr is a TF-dense graph of
sufficiently large order, determine or estimate the best possible constant br such
that Ft(G) ≤ br × n(G). These constants are given by

ar = sup
G∈Gr

Z(G)

n(G)
and br = sup

G∈Gr

Ft(G)

n(G)
.

As shown in Propositions 8 and 9 we know that a3 ≥
1

4
and b3 ≥

1

2
. It would

be interesting to determine the exact values of a3 and b3.
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