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Abstract

For graphs H and F , the generalized Turán number ex(n,H, F ) is the
largest number of copies of H in an F -free graph on n vertices. We consider
this problem when both H and F have at most four vertices. We give sharp
results in almost all cases, and connect the remaining cases to well-known
unsolved problems. Our main new contribution is applying the progressive
induction method of Simonovits for generalized Turán problems.
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1. Introduction

One of the most studied area of extremal combinatorics is Turán theory, which
seeks to determine ex(n, F ), the largest number of edges in an F -free graph
on n vertices. A natural generalization is ex(n,H, F ), the largest number of
copies of H in F -free graphs on n vertices. After several sporadic results (see
e.g. [2, 12, 19, 20, 22, 28]), the systematic study of this problem was initiated by
Alon and Shikhelman [1]. Since then, this problem (most commonly referred to
as generalized Turán problem) has attracted several researchers, see e.g. [4–6,13,
15–18, 21, 23, 27]. Many bounds and exact results have been proved, for several
pairs of graphs.

In this paper, we examine the case when both H and F have at most four
vertices. We collect the known results and prove new results where needed. We
feel it is important to put these results in the proper context, thus we state both
the existing and the new results in the most general form. We even refer to
strong general results when the specific small case we need is trivial. We collect
the results concerning small graphs in Table 1.
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We start with some notation and definition. We denote by N (H,G) the
number of copies of H in G. The generalized Turán function is ex(n,H, F ) :=
max{N (H,G) : G is an F -free graph on n vertices}.

For graphs we use the following notation. Kn is the complete graph on n
vertices, Ka,b is the complete bipartite graph with parts of size a and b, Ka,b,c

is the complete 3-partite graph with parts of size a, b and c. The Turán graph
Tr(n) is a complete r-partite graph on n vertices with each part having size ⌊n/r⌋
or ⌈n/r⌉. Cn denotes the cycle on n vertices, Pn denotes the path on n vertices
(with n−1 edges) and Sn denotes the star on n vertices. Mℓ denotes the matching
with ℓ edges (thus 2ℓ vertices). Bk denotes the book with k pages, i.e., the graph
having an edge uv and k other vertices connected to u and v. In particular, B2

is the graph with 5 edges on four vertices.

We also introduce some less usual notation. Tℓ is a graph on l + 3 vertices
with l+3 edges, that consists of a triangle and ℓ other vertices, connected to the
same vertex of the triangle (T1 is also called sometimes the paw graph). D(k, n) is
the graph consisting of ⌊n/k⌋ copies of Kk and a clique on the remaining vertices.
Ks,t is Ks,t with every pair of vertices inside the part of size s connected by an
edge. We denote by Gn,k,ℓ the graph whose vertex set is partitioned into 3 classes,
A, B and C with |A|= n − k + ℓ, |B|= ℓ, |C|= k − 2ℓ such that vertices of B
have degree n − 1, A is an independent set, C is a clique, and there is no edge
between A and C. F (n) denotes the friendship graph on n vertices, which has a
vertex of degree n− 1 and a largest matching M⌊(n−1)/2⌋ on the other vertices.

Following [17], if F is a k-chromatic graph and H does not contain F , then
we say that H is F -Turán-good, if ex(n,H, F ) = N (H,Tk−1(n)) for every n large
enough. We shorten Kk-Turán-good to k-Turán-good.

Observe that if F contains isolated vertices, then for n ≥ |V (H)|, the same
n-vertex graphs contain F and the graph F ′ we obtain by deleting the isolated
vertices from F . Therefore, ex(n,H, F ) = ex(n,H, F ′). If H contains k isolated
vertices, let H ′ be the graph we obtain by deleting the isolated vertices from H.
Then each copy of H ′ in an n-vertex graph G extends to a copy of H in exactly
(n−|V (H′)|

k

)

ways, thus it is enough to determine ex(n,H ′, F ). Therefore, we can
restrict ourselves to the case neither F nor H contains isolated vertices. With
this restriction there are ten graphs on at most four vertices.

We collect a summary of the results in a 10×10 table. Here we explain what
is in the table. If the column is F and the row is H, the entry summarizes what
we know about ex(n,H, F ). If the entry is 0, that means H contains F , thus
ex(n,H, F ) = 0. Otherwise, the entry does not contain the value of ex(n, F ),
it contains a letter and the number of a theorem (or proposition, corollary or
observation). The letter E means we know ex(n,H, F ) exactly, provided n is
large enough. The letter A means we know the asymptotics, while the letter
B means we only have some bounds and we do not even know the order of
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magnitude. The numbers after the letter refer to a statement that contains the
actual result regarding ex(n,H, F ). Usually it is a more general result.

K2 P3 K3 M2 S4 P4 C4 T1 B2 K4

K2 0 E, 2.4 E, 2.1 E, 2.5 E, 2.3 E, 2.4 A, 2.6 E, 2.2 E, 2.2 E, 2.1
P3 0 0 E, 2.10 E, 3.4 E, 2.15 E, 2.16 E, 3.1 E, 3.16 E, 1.1 E, 2.10
K3 0 0 0 E, 2.19 E, 2.20 E, 2.18 A, 2.22 E, 3.3 B, 2.21 E, 2.7
M2 0 E, 3.5 E, 2.24 0 E, 3.14 E, 3.6 A, 3.7 E, 3.8 E, 3.8 E, 3.8
S4 0 0 E, 2.25 E, 3.4 0 E, 2.17 E, 3.2 E, 3.15 E, 4.4 E, 3.13
P4 0 0 E, 2.10 0 E, 2.15 0 A, 2.23 E, 3.16 E, 2.14 E, 3.17
C4 0 0 E, 2.10 0 E, 3.9 0 0 E, 3.16 E, 2.14 E, 2.12
T1 0 0 0 0 0 0 E, 3.11 0 B, 3.10 E, 2.13
B2 0 0 0 0 0 0 0 0 0 E, 2.10
K4 0 0 0 0 0 0 0 0 0 0

Table 1. Generalized Turán numbers of small graphs.

The exact results here are proved only for n large enough. We are not inter-
ested in small values of n, and we do not mention in the table the cases where
in fact we have exact results for all n. In some cases, the result we state follows
from a more general theorem, stated only for n large enough, and it would not be
hard to obtain the exact value of ex(n,H, F ) for every n in case of the particular
small graphs we study here.

Our main new contribution is applying the progressive induction method of
Simonovits [25] for generalized Turán problems and use it to resolve a problem
of Gerbner and Palmer [17].

Theorem 1.1. If F is a 3-chromatic graph with a color-critical edge, then P3 is

F -Turán-good.

The rest of this paper is organized as follows. In Section 2 we state the
existing results we use. We state them in the most general form, but it is always
immediate how they imply the bounds for our specific cases. In Section 3 we
state and prove most of our new results. In Section 4 we introduce progressive
induction, prove Theorem 1.1 and another result. We finish the paper with some
concluding remarks in Section 5.

2. Earlier Results

In this section we state earlier results that imply some of the bounds. As the
first row of the table corresponds to counting edges, we start with some results
concerning ordinary Turán problems. We shall begin with Turán’s theorem.
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Theorem 2.1 (Turán [26]). We have ex(n,Kk) = |E(Tk−1(n))|, i.e., K2 is k-
Turán-good.

We say that an edge e of a graph G is color-critical if deleting e from G
decreases the chromatic number of the graph. Simonovits [25] showed that the
Turán graph has the largest number of edges if we forbid any k-chromatic graph
with a color-critical edge, provided n is large enough.

Theorem 2.2 (Simonovits [25]). If F has chromatic number k and a critical

edge, and n is large enough, then ex(n, F ) = |E(Tk−1(n))|, i.e., K2 is F -Turán-

good. Moreover, Tk−1(n) is the unique extremal graph.

It is trivial to determine the Turán number of stars. We state it here so that
we can refer to it.

Observation 2.3. ex(n, Sk) = ⌊(k − 2)n/2⌋.
Erdős and Gallai [7] studied ex(n, Pk), but obtained the exact value only for

n divisible by k − 1. Faudree and Schelp [9] improved their result and showed
the following.

Theorem 2.4 (Faudree and Schelp [9]). For every n and k we have ex(n, Pk) =
|E(D(k − 1, n))|.
Theorem 2.5 (Erdős and Gallai [7]). If n > 2l, then it holds ex(n,Mℓ) =
∣

∣E(Kk−1,n−k+1)
∣

∣.

Füredi [11] determined the asymptotics of ex(n,K2,t). For infinitely many
values of n, the exact value of ex(n,C4) was also found by Füredi [10].

Theorem 2.6 (Füredi [11]). ex(n,K2,t) = (1 + o(1))12
√
t− 1n3/2.

Let us continue with results concerning generalized Turán problems. The
first such result is due to Zykov [28].

Theorem 2.7 (Zykov [28]). If r < k, then Kr is k-Turán-good.

It was generalized by Ma and Qiu [23] to graphs with a color-critical edge.

Theorem 2.8 (Ma and Qiu [23]). Let F be a graph with a color-critical edge and

chromatic number more than r. Then Kr is F -Turán-good.

Győri, Pach and Simonovits [20] started the study of k-Turán-good graphs.

Theorem 2.9 (Győri, Pach and Simonovits [20]). Let r ≥ 3, and let H be a

(k − 1)-partite graph with m > k − 1 vertices, containing ⌊m/(k − 1)⌋ vertex

disjoint copies of Kk−1. Suppose further that for any two vertices u and v in the

same component of H, there is a sequence A1, . . . , As of (k−1)-cliques in H such

that u ∈ A1, v ∈ As, and for any i < s, Ai and Ai+1 share k − 2 vertices. Then

H is k-Turán-good.
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Corollary 2.10 (Győri, Pach and Simonovits [20]). Paths and even cycles are

3-Turán-good and Tk−1(m) is k-Turán-good.

Proposition 2.11 (Győri, Pach and Simonovits [20]). If H is a complete mul-

tipartite graph, then ex(n,H,Kk) = N (H,G) for some complete (k − 1)-partite
graph G.

Corollary 2.12 (Győri, Pach and Simonovits [20]). C4 and K2,3 are k-Turán-
good.

A result similar to Theorem 2.9 was obtained by Gerbner and Palmer [17].

Theorem 2.13 (Gerbner, Palmer [17]). Let H be a k-Turán-good graph. Let

H ′ be any graph constructed from H in the following way. Choose a complete

subgraph of H with vertex set X, add a vertex-disjoint copy of Kk−1 to H and

join the vertices in X to the vertices of Kk−1 by edges arbitrarily. Then H ′ is

k-Turán-good.

As a single vertex is a complete graph, this implies that T1 is also 4-Turán-
good.

Proposition 2.14 (Gerbner and Palmer [17]). P4 and C4 are B2-Turán-good.

Cambie, de Verclos and Kang [5] studied the case of forbidden stars.

Proposition 2.15 (Cambie, de Verclos and Kang [5]). Let T be a tree on k
vertices and n be large enough. If nr is even, let G be an arbitrary (r − 1)-
regular graph with diameter more than k. If nr is odd, let G be an arbitrary

graph with diameter more than k that has n − 1 vertices of degree r − 1 and

one vertex of degree r − 2. (Note that G exists because n is large enough.) Then

ex(n, T, Sr) = N (T,G).

Győri, Salia, Tompkins and Zamora [21] studied the case of forbidden paths.

Theorem 2.16 (Győri, Salia, Tompkins and Zamora [21]). We have ex(n, P3, Pk)
= N

(

P3, Gn,k−1,⌊(k−2)/2⌋

)

.

Theorem 2.17 (Győri, Salia, Tompkins and Zamora [21]). If k ≥ 4, r ≥ 3 and

n is large enough, then ex(n, Sr, Pk) = N
(

Sr, Gn,k−1,⌊(k−2)/2⌋

)

.

We remark that in case k = 4, Gn,k−1,⌊(k−2)/2⌋ = Sn, thus ex(n, Sk, P4) =
(

n−1
k−1

)

. Instead of using the above theorem, one could easily deduce this from the
fact that every component of a P4-free graph is either a triangle or a star.

Theorem 2.18 (Chakraborti and Chen [4]). For every n, k and r we have

ex(n,Kk, Pr) = N (Kk, D(r − 1, n)).
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Wang [27] showed the following.

Proposition 2.19 (Wang [27]). We have

ex(n,Kk, ℓK2) = max

{(

2ℓ− 1

k

)

,

(

ℓ− 1

k

)

+ (n− ℓ+ 1)

(

ℓ− 1

k − 1

)}

.

The following was shown by Chase [6], proving a conjecture of Gan, Loh and
Sudakov [12].

Theorem 2.20 (Chase [6]). If k > 2, then ex(n,Kk, Sr) = N (Kk, D(r − 1, n)).

Alon and Shikhelman [1] obtained several results. Here we can use the fol-
lowing ones.

Proposition 2.21 (Alon and Shikhelman [1]). n2−o(1)) = ex(n,K3, Bk) = o(n2).

Proposition 2.22 (Alon and Shikhelman [1]). ex(n,K3,K2,t) = (1+ o(1))16(t−
1)3/2n3/2.

Gerbner and Palmer [16] determined the asymptotic number of paths and
cycles of any length in K2,t-free graphs.

Proposition 2.23 (Gerbner and Palmer [16]). ex(n, Pk,K2,t) =
(

1
2 + o(1)

)

(t−
1)(k−1)/2n(k+1)/2.

Gerbner, Methuku and Vizer [15] studied generalized Turán problems when
the forbidden graph is disconnected. They also obtained the following result for
the case the other graph is disconnected.

Proposition 2.24 (Gerbner, Methuku and Vizer [15]). Ml is 3-Turán-good.

The inducibility of a graph H is the largest number of induced copies of H
that an n-vertex graph can contain. Brown and Sidorenko [3] showed that for
H = S4, the most copies ofH are contained in eitherKk,n−k orKk+1,n−k−1, where
k = ⌊n2 −

√

(3n− 4)/2⌋. As in a triangle-free graph (or a T1-free graph) every
copy of a star is induced, this implies the same upper bound for ex(n, S4,K3).
As the constructions are triangle-free, this implies the following (for more on the
connection of inducibility and generalized Turán problems, see [14]).

Corollary 2.25. ex(n, S4,K3) = max {N (S4,Kk,n−k), N (S4,Kk+1,n−k−1)},
where k =

⌊

n
2 −

√

(3n− 4)/2
⌋

.
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3. New Results

In this section we present our new results. We often state them in a more general
form than needed.

Proposition 3.1.

ex(n, P3, C4) = N (P3, F (n)) =

{ (

n
2

)

if n is odd,
(

n
2

)

− 1 if n is even.

Proof. The lower bounds are given by the friendship graph F (n). Recall that
it has a vertex v of degree n − 1, and a matching of ⌊(n − 1)/2⌋ edges on the
remaining vertices. Then for any two vertices different from v, they are endpoints
of a P3 with v in the middle. For v and another vertex u, if u is connected to u′

in the matching, then uu′v is a P3 with u and v as endpoints. Thus every pair of
vertices, except {v, w} forms the endpoints of a P3, where w is the vertex not in
the matching in case n is even.

For the upper bound, let G be a C4-free graph. We count the copies of P3 by
their endpoints; obviously any two vertices have at most one common neighbor
by the C4-free property, thus N (P3, G) ≤

(

n
2

)

.

Let n be even, G be a C4-free graph on n vertices and assume indirectly that
N (P3, G) =

(

n
2

)

, i.e., every pair of vertices has a common neighbor. Let v be
an arbitrary vertex and U be its neighborhood. Observe that any vertex of U
has a common neighbor with v only if there is a perfect matching in U , thus |U |
is even. Also, there cannot be any other edges inside U because of the C4-free
property.

Let U ′ be the set of n − |U |−1 vertices not connected to and different from
v, thus |U ′| is odd. Each vertex of U ′ is connected to exactly one vertex in U ; at
least one because that is the common neighbor with v, and at most one because
of the C4-free property. Thus there is an odd number of edges between U and
U ′. As each vertex of U has two neighbors outside U ′, it means the sum of
the degrees of vertices in U is odd. Thus there is a vertex of odd degree in U .
But we have obtained that an arbitrary vertex of G has to be of even degree, a
contradiction.

Proposition 3.2. If r ≥ 4, then ex(n, Sr, C4) =
(

n−1
r−1

)

.

Proof. The lower bound is given by the star Sn. For the upper bound, let G be
a C4-free graph with maximum degree ∆ and consider two of its vertices u and
v. Let us consider the copies of Sr where u and v are leaves. They have at most
one common neighbor, that has to be a center of the Sr, and then we have at
most

(

∆−2
r−3

)

ways to choose the other leaves. This way we count every copy of
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Sr

(

r−1
2

)

times, thus N (Sr, G) ≤ 1

(r−1

2
)

(

n
2

)(

∆−2
r−3

)

. If ∆ ≤ n − 3, this finishes the

proof.

If ∆ = n − 1 and w has degree n − 1, then no other vertex can have degree
more than 2, thus w is the only center of copies of Sr and N (Sr, G) =

(

n−1
r−1

)

. If
∆ = n − 2 and w has degree n − 2, let x be the only vertex not adjacent to w.
Then the degree of x is at most one, as it has at most one common neighbor y
with w. Observe that the degree of y is at most 3 and the degree of any other
vertex is at most 2, thus N (Sr, G) ≤

(

n−2
r−1

)

+1 (where the +1 term appears only
if r = 4), finishing the proof.

Observation 3.3. ex(n,K3, T1) = ex(n,K3, P4) = N (K3, D(3, n)) = ⌊n/3⌋.

Proof. Obviously, in a T1-free or P4-free graph, the vertices of a triangle are not
connected to any other vertex, thus the triangles are vertex disjoint.

The following observations are simple consequences of the facts that an M2-
free graph is a star or a triangle and a P3-free graph is a matching.

Observation 3.4. If k ≥ 3, then ex(n, Sk,M2) =
(

n−1
k−1

)

. For k = 2, we have

ex(n, S2,M2)) =

{

n if 3 divides n,
n− 1 otherwise.

Observation 3.5. ex(n,Mk, P3) =
(⌊n/2⌋

k

)

.

Proposition 3.6. ex(n,M2, P4) = N (M2, D(3, n)) if n 6= 4 and ex(4,M2, P4)
= 1.

Proof. We prove the statement by induction on n, it is trivial if n ≤ 4. Consider
n ≥ 5. Observe that every connected component of a P4-free graph is either
a triangle or a star. Let G be a P4-free graph with the maximum number of
copies of M2. Let G′ be the graph obtained by removing a star component
Sr from G (we are done if there is no such component). Then N (M2, G) =
N (M2, G

′) + (r − 1)|E(G′)|.
Assume first G′ = D(3, n − r). If r ≥ 3, then we can remove three vertices

from Sr and place a triangle on those vertices. It is easy to see that the number
of copies of M2 increases this way, a contradiction. If r = 1 or r = 2, we are
done if n− r is divisible by 3 (as in that case the union of D(3, n− r) and Sr is
D(3, n)).

Otherwise, we have an S1 or S2 component in G′. We unite the two star
components. If they were two isolated vertices, then we add an edge connecting
them, if they were an isolated vertex and an edge, we place a triangle there. In
these cases the number of copies of M2 clearly increases. If they were two edges,
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we delete them and place a triangle on three of these vertices. In this case we
removed a copy of M2, but increased the number of edges. As there is at least
one triangle component in G, this increases the number of copies of M2 by at
least three, thus the total number of copies of M2 increases, a contradiction.

Assume now G′ 6= D(3, n − r). Note that we can assume n − r = 4 and
G′ = M2. Indeed, otherwise both the number of copies of M2 and the number
of edges are maximized by D(3, n − r) (using Theorem 2.4 and induction). If
r = n− 4 ≥ 3, just as in the other case above, we can remove three vertices from
Sr and place a triangle on those vertices to increase the number of copies of M2,
a contradiction. If r = 1, G consists of two edges and an isolated vertex, but
an edge and a triangle contains more copies of M2, a contradiction. If r = 2,
then G = M3, and 2K3 contains more copies of M2, a contradiction finishing the
proof.

Using the well-known fact that ex(n, F ) = O(n) only if F is a forest, we can
prove an asymptotic result for ex(n,Mk, F ) in case F contains a cycle and we
know ex(n, F ) asymptotically.

Observation 3.7. If F is not a forest, then ex(n,Mk, F ) = (1+o(1))ex(n, F )k/k!.

Proof. Consider an F -free graph. We can pick each of the k edges at most
ex(n, F ) ways, and we count each copy of Mk exactly k! times.

Let us consider now an F -free graph G with ex(n, F ) edges. We claim that
it contains (1 + o(1))ex(n, F )k/k! copies of Mk. We prove it by induction on k.
The base case k = 1 is immediate. Assume that the statement holds for k − 1
and prove it for k. Consider an arbitrary copy of Mk−1. Then it can be extended
to an Mk by any edge not incident to its 2k−2 vertices. Thus we can choose any
of at least ex(n, F ) − (2k − 2)n = (1 + o(1))ex(n, F ) edges. This way we obtain
ex(n, F )k/(k − 1)!, but count each copy of Mk exactly k times.

Theorem 3.8. Mℓ is F -Turán-good for every F with a color-critical edge.

Proof. We use induction on ℓ, the base case ℓ = 1 is Theorem 2.2. Recall that
by Observation 3.7 we have ex(n,Mℓ, F ) = Θ(n2l). Let n be large enough, G be
an F -free graph on n vertices with the largest number of copies of Mℓ, and let
χ(F ) = k + 1.

Case 1. G has chromatic number more than k. We will show that |E(Tk(n))|
N (Mℓ−1, Tk(n−2))−N (Mℓ, G) = Ω

(

n2ℓ−1
)

and |E(Tk(n))|N (Mℓ−1, Tk(n−2))−
N (Mℓ, Tk(n)) = O

(

n2ℓ−2
)

, which implies that Tk(n) contains more copies of Mℓ

than G, a contradiction.

A theorem of Erdős and Simonovits [8] states that if F is (k+1)-chromatic and

has a color-critical edge, then there is a vertex v of degree at most
(

1− 1
k−4/3

)

n
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in every n-vertex F -free graph with chromatic number more than k. We claim
that |E(Tk(n))|−|E(G)|= Ω(n). Indeed, by deleting v we obtain a graph with
at most |E(Tk(n − 1))| edges, and we can delete a vertex from Tk(n) to obtain
Tk(n − 1). As we delete Ω(n) more edges in the second case, we are done with
the claim.

We count the copies of Mℓ by picking an edge and then picking Mℓ−1 inde-
pendently from it. In G, this can be done at most (|E(Tk(n))|−Ω(n))N (Mℓ−1,
Tk(n− 2)) ways. Compared to |E(Tk(n))|N (Mℓ−1, Tk(n− 2)), this is smaller by
Θ
(

n2ℓ−1
)

.

We claim that |E(Tk(n))|N (Mℓ−1, Tk(n− 2))− |N (Mℓ, Tk(n))|= O
(

n2ℓ−2
)

,
which finishes the proof. In fact we show the stronger statement |E(Tk(n))|
|E(Tk(n − 2))|· · · |E(Tk(n − 2ℓ + 2))|−|N (Mℓ, Tk(n))|= O

(

n2ℓ−2
)

. Indeed, we
can pick the first edge |E(Tk(n))| ways. Then we pick the remaining edges
one by one. To pick the ith edge, we have to pick an edge from the graph
Gi we obtain by deleting the endpoints of the edges picked earlier. Gi is a com-
plete k-partite graph on n − 2i + 2 vertices with parts of size at most ⌈n/k⌉
and at least ⌊n/k⌋ − i + 1, as we removed at most i − 1 vertices from each
part. Therefore, we could obtain Tk(n − 2i + 2) from Gi by moving a constant
ci number of vertices from some parts to other parts. It is easy to see that
each such move decreases the number of edges by a constant, therefore we have
|E(Gi)|= |E(Tk(n − 2i + 2))|−c′i for some constant c′i. Hence |N (Mℓ, Tk(n))|=
|E(Tk(n))|(|E(Tk(n−2))|−c′1) · · ·

(

|E(Tk(n− 2ℓ+ 2))|−c′ℓ−1

)

. Each term we sub-
tract from |E(Tk(n))||E(Tk(n− 2))|· · · |E(Tk(n− 2ℓ+ 2))| has a constant c′i and
at most ℓ− 1 terms that are quadratic, thus the difference is O

(

n2ℓ−2
)

.

Case 2. G has chromatic number at most k. Then we can assume that G is a
complete k-partite graph, as adding edges do not decrease the number of copies
of Mℓ and this way we cannot violate the F -free property. We show that making
the graph more balanced does not decrease (in fact it increases) the number of
copies of Mℓ. More precisely, assume that part A has size a− 1 and part B has
size at least a + 1, and let G′ be G restricted to the other parts. Let us move
a vertex v from B to A. This means we delete the edges from v to the a − 1
vertices u1, . . . , ua−1 of A, and add edges from v to the other (at least) a vertices
w1, . . . , wa of B. We claim that the resulting graph has more copies of Mℓ. We
show this by induction on ℓ, the base case ℓ = 1 is well-known and trivial.

When deleting the edge vui, we deleted the copies of Mℓ that contained this
edge and an Mℓ−1 on the other vertices. The graph Gi on those other vertices
consists of G′ and a part of size a − 2 and a part of size b ≥ a. Altogether we
removed

∑a−1
i=1 N (Mℓ−1, Gi) copies of Mℓ.

When adding the edge vwi, we added copies of Mℓ that contained this edge
and an Mℓ−1 on the other vertices. The graph G′

i on those other vertices consists
of G′, a part of size a−1, and a part of size b−1 ≥ a−1. Altogether we added at
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least
∑a

i=1N (Mℓ−1, G
′
i) copies of Mℓ. By induction, G′

i has more copies of Mℓ−1

than Gi, finishing the proof (as it shows that we added more copies of Mℓ, than
what was deleted, even without using the edge vwa).

Observation 3.9. If H is (k − 2)-regular, then ex(n,H, Sk) = ⌊n/|V (H)|⌋.

Proof. Let G be an Sk-free graph. Obviously for any copy of H in G, there are
no further edges incident to its vertices, thus copies of H are vertex-disjoint. On
the other hand, one can take ⌊n/|V (H)|⌋ vertex disjoint copies of H, and the
resulting graph is Sk-free.

Proposition 3.10. nℓ+2−o(1) ≤ ex(n, Tℓ, Bk) = o
(

nℓ+2
)

.

Proof. The upper bound easily follows from Proposition 2.21: there are o(n2)
triangles in a G-free graph, and O(nℓ) ways to choose the ℓ additional leaves.
For the lower bound, we use the same construction that gives the lower bound
in Proposition 2.21. It is a construction by Ruzsa and Szemerédi [24], a graph G
with n2−o(1) edges where every edge is contained in exactly one triangle. Observe
that a vertex with degree d is contained in exactly d/2 triangles.

We have that G contains n2−o(1) triangles. Observe that the number of copies
of Tℓ in G is

∑

v∈V (G)
d(v)
2

(d(v)−2
ℓ

)

. Indeed, we pick a vertex v, pick a neighbor
of v di ways, that determines a triangle. We count every triangle containing v
twice. Then we pick l other neighbors of v to be added as leaves.

By the power mean inequality, we have

n2−o(1) ≤
∑

v∈V (G)

d(v) ≤ n

(
∑

v∈V (G) d(v)
ℓ+1

n

)1/ℓ+1

,

which implies
∑

v∈V (G) d(v)
ℓ+1 ≥ nℓ+2−o(1) and finishes the proof.

Theorem 3.11. If n is large enough, then

ex(n, T1, C4) = N (T1, F (n)) =

{
(

n
2

)

− 3(n−1)
2 if n is odd,

(

n
2

)

− 2n− 3 if n is even.

Proof. Assume indirectly that there exists an n-vertex C4-free graph G with
more than N (T1, F (n)) copies of T1. We will count the copies of T1 the following
way. Consider an unordered pair {u, v} of vertices. We count the copies of T1

where one of u and v corresponds to the vertex of degree 1 in T1, and the other
corresponds to a vertex of degree two in T1. In G, u and v have at most one
common neighbor w, that has to correspond to the vertex of degree three in T1.
Then the last vertex of the T1 is a common neighbor of either u and w or v and
w. Thus there are at most two copies of T1 obtained this way, and we count
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every T1 twice this way. We say that these copies of T1 belong to the pair {u, v},
thus every copy of T1 belongs to at most two pairs of vertices. Note that this
argument immediately gives the upper bound ex(n, T1, C4) ≤

(

n
2

)

.

Claim 3.12. There is a vertex of G with degree at least n− 8.

Proof. Let us consider an auxiliary graph H on the same vertex set V (G), where
u and v are connected in H if no T1 belongs to them in G. Obviously, H has less
than 2n−3 edges by our indirect assumption, thus there is a vertex x with degree
at most 3 in H. Let {x1, x2, x3} contain all the neighbors of x in H. Observe that
G is a subgraph of H. Indeed, if uv ∈ E(G), and w is their common neighbor,
they form a triangle, and uw and vw both have a common neighbor in the triangle.
Thus neither the pair (u,w), nor the pair (v, w) has another common neighbor,
that could correspond to the fourth vertex of T1. Thus no copy of T1 belongs to
{u, v}, hence uv ∈ E(H). This implies that x has degree at most 3 in G.

Assume first that x is connected to x1, x2, x3 in G. Then for every other
vertex y, there is a P3 in G from x to y, because they are not connected to x in
H. Therefore, y is connected to x1, x2 or x3 in G, but only one of them, as they
have another common neighbor x. Let Xi be the set of neighbors of xi in G, that
are different from x, x1, x2, x3. A vertex in Xi can be connected in G to at most
one vertex of X1, X2, X3, thus has degree at most 4 in G.

A vertex in X1 is connected in G by a P3 to every vertex in X1, but in
X2 to at most three vertices. Indeed, its only neighbors in X1, X2, X3 are each
connected to at most one vertex in X2. Therefore in the auxiliary graph H at
least |X1|(|X2|−3+ |X3|−3) edges go from X1 to X2∪X3. By the same reasoning
for X2 and X3, we obtain that

|E(H)| ≥ |X1|(|X2|+|X3|−6)+|X2|(|X1|+|X3|−6)+|X3|(|X2|+|X1|−6)
2

= |X1||X2|+|X1||X3|+|X2||X3|−3(|X1|+|X2|+|X3|)

= |X1||X2|+|X1||X3|+|X2||X3|−3n+ 12.

In particular, this is greater than 2n−3 (which is a contradiction) unless the
sum of the two smallest set, say |X2|+|X3| is at most 5 (if n is large enough),
which implies that x1 has degree at least n− 8.

If the degree of x is 2 in G, let without loss of generality x1 and x2 be its
neighbors, and similarly to the previous case let Xi be the set of neighbors of
xi in G that are different from x, x1, x2. Then all but at most one of the other
vertices (x3) is in X1 ∪X2, as they are connected to x by a P3 in G. A vertex in
Xi is connected by a P3 in G to every vertex in X1, but at most three vertices in
X2 (through its neighbors in X1 and X2, and z). Therefore, we have

2n− 3 ≥ |E(H)| ≥ |X1|(|X2 − 3) + |X2|(|X1|−3)

2
= |X1||X2|−3(n− 3)/2,
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which implies that either |X1| or |X2| is at most 3, hence either x1 or x2 has
degree at least n− 6.

Finally, if x has degree 1 in G, its neighbor is connected in G to all but two
of the other vertices, thus has degree at least n− 3.

Let u have degree at least n− 8 in G. Let U be the set of at most 7 vertices
not connected to u and different from u. We claim that vertices in U are in at
most 7 + 15

(

7
3

)

= 532 copies of T1. Indeed, each of those vertices is connected to
V (G) \ U by at most one edge, thus the triangle in T1 is totally inside or totally
outside U . Let us consider first the triangles totally outside U . Every neighbor
v of u is in at most one such triangle (that consists of v, u and their at most one
common neighbor). At most 7 edges go from U to the neighborhood of u, and
there is only one way any one of those edges can extend a triangle outside U to
a copy of T1. Thus there are at most 7 copies of T1 where the triangle is totally
outside U .

There are at most
(

7
3

)

triangles inside U (obviously there are even fewer,
because of the C4-free property). They each have three endpoints, and those
points have degree at most 7, thus there are at most 5 ways to extend the triangle
to a copy of T1 from that endpoint.

Let us now delete the vertices of U from G to obtain G′. On the n′ = n−|U |
vertices of G′, we have a vertex u of degree n′ − 1 in G′. Obviously, there can
only be a matching on the other vertices of G′, thus G′ is a subgraph of Fn′ and
N (T1, G

′) ≤ N (T1, Fn′). Therefore, N (T1, G) ≤ N (T1, Fn′)+532 < N (T1, F (n)),
a contradiction. For the last inequality, observe that if we add |U | vertices as
neighbors of u, then each newly added vertex is in Ω(n) copies of T1.

Proposition 3.13. S4 is 4-Turán-good.

Proof. Let G be the n-vertex K4-free graph with the most number of copies of
S4. By Proposition 2.11, we can assume G = Ka,b,c, we just have to optimize

a, b, c. The number of S4’s is a
(

b+c
3

)

+b
(

a+c
3

)

+c
(

a+b
3

)

. Let us consider a fixed a, and

choose b. The first term is a constant, the other terms are b
(

n−b
3

)

+(n−a−b)
(

a+b
3

)

.
This is maximized at b = (n− a)/2, thus we have that b and c differ by at most
one. Similarly a differs from them by at most one, finishing the proof.

Observation 3.14. If n ≥ 3, then ex(n,M2, S4) = n(n− 3)/2.

Proof. The lower bound is given by any 2-regular graph, as we can pick an edge,
and it has n − 3 edges independent from it. We count every copy of M2 twice
this way.

For the upper bound, observe that an S4-free graph G has at most n edges,
and if it has n edges, then it is 2-regular. If G has at most n− 1 edges, then we
can pick an edge at most n− 1 ways, and another edge at most n− 2 ways. This
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gives the upper bound (n−1)(n−2)/2, which is one larger than what we claimed.
Thus we obtain the desired bound unless above we have equality everywhere, in
particular G has n − 1 edges, and each is independent from all the n − 2 other
edges. But then G = Mn−1, thus has more than n vertices, a contradiction.

Proposition 3.15. Let F be obtained from Kr by adding a new vertex and con-

necting it to one of the vertices of the Kr. Let H 6= Kr be a connected graph and

n be large enough. Then ex(n,H, F ) = ex(n,H,Kr). On the other hand, we have

ex(n,Kr, F ) = N (Kr, D(r, n)) = ⌊n/r⌋.
Proof. Note first that ex(n,H, F ) ≥ ex(n,H,Kr), as Kr is a subgraph of F .

Let G be an F -free graph on n vertices. If there is a Kr in G, no other vertex
is connected to its vertices. This shows the statement about ex(n,Kr, F ).

Assume first that H has more than r vertices. If there is a Kr in G, then
its edges cannot be in any copy of H. Thus, we can delete all the edges of
every Kr from G to obtain a Kr-free graph G′ with N (H,G′) = N (H,G). As
N (H,G′) ≤ ex(n,H,Kr), this finishes the proof.

Assume now H 6= Kr has p ≤ r vertices, then it has chromatic number at
most r − 1. Therefore, N (H,Tr−1(n)) = Ω(np), hence ex(n,H, F ) = Ω(np). If
p = 1, then the statement is trivial, hence we assume p > 1 from now on.

Let G be an F -free graph on n vertices and assume again that there is a
Kr in G. Again, no other vertex is connected to its vertices. Let n be large
enough in this case. Let G′ be the graph we obtain by deleting a copy of Kr. We
can assume N (H,G′) = ex(n − r,H, F ), otherwise we could replace G′ with an
extremal graph to obtain more than N (H,G) copies of H on n vertices. We have
N (H,G) = N (H,G′) + c for a constant c = N (H,Kr).

As ex(n,H, F ) is super-linear and n − r is large enough, there is a vertex v
of G′ appearing in more than c copies of H. Then v is not in any copy of Kr (as
in that case its component would be a Kr with only c copies of H). Let us add r
twins of v to G′, i.e., r new vertices connected to exactly the same vertices as v.
We claim that the resulting graph G0 is F -free. Indeed, assume there is an F in
G0, and consider the Kr in it, which we denote by K. If K does not contain any
new vertices, then the additional leaf is a new vertex, but it could be replaced
by v to find a copy of F in G, a contradiction (recall that v cannot be in K). If
K contains a new vertex v′, then it contains only one new vertex and does not
contain v, as the new vertices with v form an independent set. But then we could
replace v′ with v in K, to obtain a Kr containing v in G′, a contradiction.

Observe that every new vertex u is in more than c copies of H that contains
only vertices from V (G′)\{v} besides u. Therefore, N (H,G0) ≥ cr+N (H,G′) >
N (H,G), a contradiction.

Using that P3, P4 and C4 are 3-Turán-good by Corollary 2.10, we have the
following.
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Corollary 3.16. P3, P4 and C4 are T1-Turán-good.

Proposition 3.17. P4 is 4-Turán-good.

Proof. Let G be a K4-free graph on n vertices. We count the copies of P4 by
picking the first and last edge, which are two independent edges. There are at
most ex(n,M2,K4) ways to do this, which is N (M2, T3(n)) by Theorem 3.8.

After picking these two edges, there are five possibilities for the subgraph of
G induced on the four vertices of the two edges picked. Either there is a B2 on
the four vertices, or a C4, or a T1, or a P4, or an M2. A B2 contains 6 copies
of P4 and this way it is counted twice. A C4 contains 4 copies, and is counted
twice. A T1 contains 2 copies and is counted once. A P4 contains one copy and
is counted once, while an M2 contains no copy and is counted once.

Let N ∗(H,F ) denote the number of induced copies of H in F , and let a =
N ∗(B2, G), b = N ∗(C4, G), c = N ∗(T1, G), d = N ∗(P4, G) and e = N ∗(M2, G).
Then by the above argument we have N (M2, G) = 2a + 2b + c + d + e, and
N (P4, G) = 6a + 4b + 2c + d, which implies N (P4, G) ≤ 2N (M2, G) + 2a.
Similar equations hold for T3(n), but no T1, P4 or M2 are induced there, so
we have N (M2, T3(n)) = 2N ∗(B2, T3(n)) + 2N ∗(C4, T3(n)) and N (P4, T3(n)) =
6N ∗(B2, T3(n)) + 4N ∗(C4, T3(n))

Observe that every B2 is induced in a K4-free graph, thus a = N ∗(B2, G) =
N (B2, G) ≤ ex(n,B2,K4) = N (B2, T3(n)), where the last equality follows from
Corollary 2.10. We have N (P4, G) ≤ 2N (M2, G)+2a = 2N (M2, G)+2N (B2, G)
≤ 2N (M2, T3(n)) + 2N (B2, T3(n)) = 6N ∗(B2, T3(n)) + 4N ∗(C4, T3(n)) = N (P4,
T3(n)).

4. Progressive Induction

The progressive induction was introduced by Simonovits [25]. It is a method to
prove statements that hold only for n large enough. In case of ordinary induction,
one usually proves the base case easily, as it is on a very small graph, and the
induction step is more complicated. However, in case the statement only holds
for large n, even if the induction step can be proved, the base case might be more
complicated.

This is where progressive induction can be used. Let us describe it informally
first. Assume we want to prove that an integer valued quantity α(G) on n-vertex
graphs takes its maximum on a graph Gn (or on a family of graphs). Ordinary
induction assumes that this statement holds for some n′, and for larger n it proves
that α increases by at most α(Gn)−α(Gn′). Progressive induction does not have
the assumption. In this case one has to prove that α increases by strictly less
than α(Gn) − α(Gn′) (unless the n-vertex graph is Gn). This means that for
small values of n, α(G) may be larger on an n-vertex graph than α(Gn), but this
surplus starts decreasing after a while, and eventually vanishes.
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Now we state the key lemma more formally. The actual method works for
more than just graphs, but for simplicity, we state the lemma only for graphs.

Lemma 1 (Simonovits [25]). Let A ⊃ B be families of graphs. Let f be a function

on graphs in A such that f(G) is a non-negative integer, and if G is in B, then
f(G) = 0. Assume there is an n0 such that if n > n0 and G ∈ A has n vertices,

then either G ∈ B, or there exist an n′ and a G′ ∈ A such that n/2 < n′ < n, G′

has n′ vertices and f(G) < f(G′). Then there exists n1 such that every graph in

A on more than n1 vertices is in B.

We remark that typically here we want to maximize α on F -free graphs, and
we conjecture that the extremal graphs belong to a family B0. Then A is the
family of F -free graphs that maximize α, B = A∩B0, and f(G) = α(G)−α(H),
where H maximizes α in B0.

We also use a simple result of Alon and Shikhelman [1] and the removal
lemma.

Proposition 4.1 (Alon and Shikhelman [1]). We have ex(n,H, F ) = Ω
(

n|V (H)|
)

if and only if F is not a subgraph of a blow-up of H.

Lemma 2 (Removal lemma). If a graph G contains o
(

n|V (H)|
)

copies of H, then

there are o(n2) edges of G, such that deleting them makes the resulting graph

H-free.

We also use a simple extension of Proposition 2.11. Recall that it states that
for a Kk-free graph G on n vertices and a complete multipartite graph H, there
is a complete (k − 1)-partite G′ on n vertices with N (H,G) ≤ N (H,G′).

Proposition 4.2. Let G be a Kk-free graph on n vertices, with an independent

set A of size a, and H be a complete multipartite graph. Then there is a complete

(k − 1)-partite G′ on n vertices with N (H,G) ≤ N (H,G′) such that one of the

parts of G′ has size at least a.

Proof. The proof goes similarly the proof of Proposition 2.11 in [20]. We apply
the symmetrization process due to Zykov [28]. Given two non-adjacent vertices
u and v in G, we say that we symmetrize u to v if we delete all the edges incident
to u, and then connect u to the neighbors of v. It is well-known that the resulting
graph is also Kk-free [28], and either symmetrizing u to v, or symmetrizing v to u
does not decrease the number of copies ofH [20], thus we can go through the pairs
of non-adjacent vertices and symmetrize one to the other. It is also clear that
if symmetrizing does not change anything, then non-adjacent vertices have the
same neighborhood, thus G is complete multipartite. To prove Proposition 2.11,
one only has to show that we arrive to such a situation after some symmetrizing,
i.e., show that the process terminates after finitely many steps. This is done
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in [20] by showing that either the number of copies of H, or the number of pairs
with the exact same neighborhood increases.

We will show that by choosing carefully the pairs to symmetrize, we can
make sure A is always independent, which will finish the proof. Let us apply
the symmetrization first on pairs with both vertices in A. This way after finitely
many steps we arrive to a graph G1 where all the vertices in A have the same
neighborhood B. Then we apply symmetrization anywhere, with the additional
condition, that we always symmetrize inside A, whenever two vertices of A have
different neighborhood. Indeed, it is possible that we symmetrize u ∈ A to
v ∈ V \ A, and this way after this step u has a neighborhood that is different
from the neighborhood of the other vertices in A. However, in this case v is not
connected to u, thus it is not connected to any vertex of A. This way we never
add any edge inside A.

Corollary 4.3. Let γ < 1, F be a 3-chromatic graph with a critical edge, G
be an F -free graph on n vertices, with an independent set A of size a < γn with

a = Θ(n), and H be a complete bipartite graph. Then there is a complete bipartite

graph G′ on n vertices with N (H,G) ≤ (1− o(1))N (H,G′) such that one of the

parts of G′ has size at least a.

Proof. G contains o(n3) triangles by Proposition 4.1, thus we can delete o(n2)
edges to delete all the triangles in G by the removal lemma. This way we re-
moved o(n|V (H)|) copies of H. Let G0 be the resulting graph. Now we can apply
Proposition 4.2 to find a complete bipartite graph G1 with at least N (H,G0)
copies of H, and a part of size at least a. Let G′ be either G1, or Ka,n−a, the
one with more copies of H. Then N (H,G′) = Ω(n|V (H)|). Therefore, we have
N (H,G) ≤ N (H,G0) + o(n|V (H)|) ≤ (1− o(1))N (H,G′).

Lemma 3. Let H be a bipartite graph and an < n/2 be integers such that for

every n we have an − an−1 ≤ 1. Let Gn = Kan,n−an and assume that for every

t there is nt such that for n > nt, ex(n,H,Bt) = N (H,Gn). Then for any

3-chromatic graph F with a color-critical edge, if n is large enough, we have

ex(n,H, F ) = N (H,Gn).

Proof. Observe first that it is enough to prove the statement for F = K∗
s,t, which

denotes Ks,t with an edge added inside the part of size s. We will use induction
on s. Note that K∗

2,t = Bt, thus the base case s = 2 is the assumption in the
statement.

Assume now that s > 2 and we know that the statement holds for K∗
s−1,t′ for

any t′. Let us fix an integer q that is large enough (depending on s, t and H), and
let G be a K∗

s,t-free graph on n vertices, where n is large enough (depending on
s, t, q and H). If G does not contain K∗

s−1,qt, then it contains at most N (H,Gn)
copies of H by the induction hypothesis and we are done. Let us assume there
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is a copy of K of K∗
s−1,qt in G. Observe that every other vertex u is connected

to at most t− 1 of the vertices in the part of size qt of K, otherwise u with its t
neighbors in that part and the s−1 vertices on the other part would form a K∗

s,t.
That means that there are at most (n − s + 1 − qt)(s − 1 + t − 1) edges

from the other vertices to K. This implies that there is a vertex v in K that has
degree at most (s+ t− 2)n/qt in G. Thus, for any ε > 0, we can choose a q large
enough so that v is in at most εn|V (H)|−1 copies of H. Then we apply progressive
induction. Let A denote the family of extremal graphs for ex(n,H,K∗

s,t), i.e., for
every n, those n-vertex graphs which are K∗

s,t-free, and contain the most copies
of H among such graphs on n vertices. Let B denote those elements of A that
are also K3-free and let f(G) := N (H,G) − N (H,Gn). Let n′ = n − 1 and G′

obtained by deleting v from G. Let G′′ be an F -free graph on n− 1 vertices with
ex(n− 1, H, F ) copies of H, thus G′′ ∈ B. Then f(G)− f(G′′) ≤ f(G)− f(G′) ≤
N (H,Gn−1)−N (H,Gn) + εn|V (H)|−1.

To apply Lemma 1 and finish the proof, we need to show that this number
is negative, i.e., every vertex in Gn is in more than εn|V (H)|−1 copies of H for
some ε > 0, finishing the proof (observe that we can obtain Gn−1 from Gn

by deleting a vertex). Indeed, every vertex in the same part of Gn is in the
same number of copies of H. If they are in o(n|V (H)| − 1) copies, then there are
o(n|V (H)|) < ex(n,H, T2(n)) copies of H in Gn, a contradiction to our assumption
that Gn is the extremal graph for ex(n,H, F ).

Now we are ready to prove Theorem 1.1, that we restate here for convenience.

Theorem. If F is a 3-chromatic graph with a color-critical edge, then P3 is F -

Turán-good.

Proof. By Lemma 3, it is enough to prove the statement for F = Bt. Let G be a
Bt-free graph on n vertices. First we show that the degrees in G cannot be much
larger than n/2. Let c = 0.51 and assume there is a vertex with degree at least cn.
Observe that every neighbor of v is connected to at most t−1 neighbors of v. Let
G0 be the graph we obtain by deleting all the edges between neighbors of v. Then
G0 has an independent set of size cn. We can apply Corollary 4.3 to show that
G0 has at most (1+o(1))N (P3,Kcn,(1−c)n) copies of P3 (here we also use the fact
that making the complete bipartite graph more unbalanced would decrease the
number of copies of P3, which follows from a simple calculation). Observe that G
has at most N (P3, G0) +O(n2) copies of P3, as the deleted edges all are in O(n)
copies of P3. Therefore, N (P3, G) ≤ (1 + o(1))N (P3,Kcn,(1−c)n) < N (T2(n)).

Assume now that G contains a triangle with vertices u, v and w. Observe that
at most t− 2 other vertices are connected to both u and v, and similarly to both
u and w or to both v and w. Therefore, we have d(u)+ d(v)+ d(w) ≤ n+3t− 3.
Let U be the set of the at most 3t− 3 vertices connected to more than one of u,
v and w (thus u, v, w ∈ U).
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Let G1 be the graph we obtain by deleting u, v, w. Let us examine the
copies of P3 in G. The number of copies containing none of u, v, w is at most
ex(n− 3, P3, Bt). There are 3 copies of P3 inside the triangle.

The other copies of P3 have vertices in both G1 and in the triangle. The
number of those copies having their center in V (G1) \ U is at most twice the
number of edges in G1, as their endpoint has at most one neighbor among u, v, w.
The number of copies having their center in U and another vertex in the triangle
is at most three times the number of edges incident to U , thus at most (9t− 9)n.
Finally, the number of copies having their center in the triangle and the other
vertices in G1 is

(

d(u)−2
2

)

+
(

d(v)−2
2

)

+
(

d(w)−2
2

)

.
Now we will use progressive induction. A contains the extremal graphs for

ex(n, P3, Bt), i.e., for every n the Bt-free graphs on n vertices with the most
number of copies of P3. B consists of those elements of A that are K3-free
(note that this implies that they are also extremal graphs for ex(n, P3,K3)). Let
f(G) = N (P3, G) − ex(n, P3,K3). As N (P3, G) = ex(n, P3, Bt), we have that
f(G) is a non-negative integer, and obviously f(G) = 0 if G ∈ B.

Let n′ = n−3 and G′ be a Bt-free graph on n−3 vertices with ex(n, P3, B2) ≥
N (P3, G1) copies of P3. Then f(G) − f(G′) is at most the number of copies of
P3 containing u, v or w, plus ex(n− 3, P3,K3)− ex(n, P3,K3). By the above, the
number of copies of P3 containing u, v or w is at most

(1) 3 + 2|E(G′)|+(9t− 9)n+

(

d(u)− 2

2

)

+

(

d(v)− 2

2

)

+

(

d(w)− 2

2

)

.

On the other hand,

(2) ex(n, P3,K3)− ex(n− 3, P3,K3) ≥ 3

((⌊n/2⌋
2

)

+
⌊

(n− 2)2/4
⌋

− ⌈n/2⌉
)

.

Indeed, in the Turán graph that is extremal for ex(n, P3,K3), every vertex
is in at least

(

⌊n/2⌋
2

)

+ ⌊(n− 2)2/4⌋ copies of P3 and for three vertices, we count
at most 3⌈n/2⌉ copies of P3 twice. We need to show that (1) is smaller than
(2). Observe that by Theorem 2.2 we have |E(G′)|≤ ⌊(n − 3)2/4⌋, as G′ is Bt-
free and n is large enough. We will show that

(

d(u)−2
2

)

+
(

d(v)−2
2

)

+
(

d(w)−2
2

)

<

3
(

⌊n/2⌋
2

)

− 3⌈n/2⌉ − 3 − (9t − 9)n. Recall that each degree is at most cn, and

d(u)+ d(v)+ d(w) ≤ n+3t− 3. Thus
(

d(u)−2
2

)

+
(

d(v)−2
2

)

+
(

d(w)−2
2

)

is maximized
when the three degrees are distributed as unbalanced as possible, implying this
sum is at most 2

(

cn
2

)

, which is smaller than < 3
(

⌊n/2⌋
2

)

− 3⌈n/2⌉ − 3 − (9t − 9)n
if n is large enough. This completes the proof.

It is likely that the above proof can be slightly modified to show ex(n,H,Bt) =
ex(n,H,K3) for many other bipartite graphs H in place of P3. I believe it
should hold for every complete bipartite graph H = Ka,b. However, in this
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case ex(n,H,K3) = N (H,Km,n−m), where n and m might be far apart. When
one counts the copies of Ka,b having a vertex in the triangle uvw, one needs to
count the copies of Ka−1,b in G1. But, if we use the bound N (Ka−1,b, G1) ≤
ex(n − 3,Ka−1,b, Bt), as in the above proof, we need to deal with the problem,
that the Bt-free graph with the most number of copies of H might be a complete
bipartite graph where the ratio of the parts is far from m/(n −m). This makes
the calculations much more complicated. Here we do not attempt to prove a
general statement, but we need to deal with ex(n, S4, B2). The following result,
combined with Corollary 2.25 gives an exact result.

Proposition 4.4. If F is 3-chromatic with a color-critical edge, then ex(n, S4, F )
= ex(n, S4,K3).

We only give a sketch, and point out the differences to the proof of Theo-
rem 1.1.

Proof. First observe that it is enough to deal with the case F = Bt. Indeed, if
ex(n, S4, Bt) = ex(n, S4,K3), then there is a complete bipartite extremal graph
by Proposition 2.11, and then Lemma 3 finishes the proof.

By Corollary 2.25, the complete bipartite graph with ex(n, S4,K3) copies of
S4 has two parts of size

(

1
2 + o(1)

)

n. Therefore, as in the proof of Theorem
1.1, we can obtain that every degree is at most cn, for c = 0.51. Again, we
pick a triangle with vertices u, v, w and obtain G1 by deleting them. There
is a set U of at most 3t − 3 vertices connected to more than one of u, v and
w. The number of copies of S4 is at most ex(n − 3, S4, Bt) in G1 and at most
N (P3, G1) +

(

d(u)−2
3

)

+
(

d(v)−2
3

)

+
(

d(w)−2
3

)

+O(n2) additionally, where the O(n2)
term contains those copies that have at least two vertices in U∪{u, v, w}. Observe
thatN (P3, G1) ≤ ex(n−3, P3, Bt) = n3/8+o(n3) and

(

d(u)−2
3

)

+
(

d(v)−2
3

)

+
(

d(w)−2
3

)

is again maximized if they are as unbalanced as possible, thus is at most 2
(

cn
3

)

.
We have ex(n, S4,K3) = N (S4,Kk,n−k) for some k by Corollary 2.25 and

ex(n−3, S4,K3) = N (S4,Kℓ,n−3−ℓ). It is easy to see that ℓ is either k−1 or k−2,
thus there are three vertices x, y, z of Kk,n−k such that deleting them we obtain
Kℓ,n−3−ℓ. Hence ex(n, S4,K3) − ex(n − 3, S4,K3) is the number of copies of S4

containing x, y or z. For each of them, there are 3
(

n/2
3

)

+o(n3) copies of S4 where
it is the center, and n3/16+ o(n3) where it is a leaf. There are o(n3) copies of S4

that are counted multiple times, thus we have ex(n, S4,K3)− ex(n− 3, S4,K3) ≥
3
(

n/2
3

)

+ n3/16+ o(n3). We use progressive induction as in the proof of Theorem
1.1. It is again obvious that f(G) < f(G′), which finishes the proof.

5. Concluding Remarks

• We have studied generalized Turán problems for graphs having at most four
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vertices. In two cases, we were unable to determine even the order of magnitude
of ex(n,H, F ). However, in those cases it would be a major breakthrough in
combinatorics to find the order of magnitude, due to the connection to the Ruzsa-
Szemerédi theorem.

In some other cases, we could obtain the asymptotics, but not an exact
result. One of them is the ordinary Turán problem for C4, which has received
a considerable attention, and the exact value of ex(n,C4) has been found for
infinitely many n, as we have mentioned. In case we forbid C4 and count other
graphs, we have obtained some exact results, where the friendship graph was
the extremal one. This is not the case when counting K3, M2 or P4. Still, one
could hope that there is another C4-free graph that has few edges (thus is not
considered when dealing with ordinary Turán problems), but many copies of one
of the above mentioned graphs. We show that this is not the case.

We claim that if G is C4-free, then N (P4, G) ≤ n|E(G)|/2 and N (K3, G) ≤
|E(G)|/3. Indeed, let us choose an edge uv and a vertex w. There is at most one
common neighbor of u and w and another one of v and w, and we count every
copy of P4 twice this way. Similarly, for an edge uv, u and v have at most one
common neighbor. Proposition 2.23 shows that N (M2, G) ≤ |E(G)|2. On the
other hand, we have shown ex(n, P4, C4) = (1+o(1))nex(n,C4)/2, ex(n,K3, C4) =
(1 + o(1))ex(n,C4)/3 and ex(n,M2, C4) = (1 + o(1))ex(n,C4)

2. Thus in all these
cases, for the extremal graph G we have |E(G)|= (1 + o(1))ex(n,C4). It means
determining ex(n,K3, C4), ex(n, P4, C4) or ex(n,M2, C4) exactly is likely as hard
as determining ex(n,C4). It is possible that one can obtain exact results for
infinitely many n, using the same ideas as in the ordinary Turán case.

• In each other case we have determined ex(n,H, F ) for n large enough. We did
not deal with the case n is small, but probably it is not very hard. Another way
to extend these results is to determine all the extremal graphs.

• Another possible direction of future research is to consider graphs on at most
five vertices. There are 23 graphs without isolated vertices on five vertices, thus
the 10× 10 table would be replaced by a 33× 33 table, with more than 10 times
more entries. Also, all the graphs studied in this paper but T1 belong to at least
one well-studied class of graphs, with several results concerning them. There are
more exceptions in case of graphs on five vertices, and presumably there are less
known results concerning those graphs.

• It is worth checking what graphs were extremal (or close to extremal) for a given
forbidden graph, as they might be also extremal in case we count other graphs.
For K2, P3 and M2 there are not many graphs avoiding them. For K3, the
extremal graph was always a complete bipartite graph, and it was balanced with
one exception. For S4, the extremal graph was sometimes an arbitrary 2-regular
graph, but in case of K3 and C4, the extremal graph consisted of vertex-disjoint
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copies of those graphs (thus it had 2-regular components and potentially some
isolated vertices). For P4, the extremal graph was either Sn or D(3, n). For C4,
the lower bound was given by either the well-known construction for the ordinary
Turán problem concerning C4, or the friendship graph F (n) (in case of counting
S4, the lower bound was given by the star Sn, which is a subgraph of F (n) and
has the same number of copies of S4). In case of T1, the extremal graph was either
D(3, n) or a complete bipartite graph, which was balanced with one exception.
In case of B2, the lower bound was given by either the construction of Ruzsa and
Szemerédi, where every edge is in exactly one triangle, or by a complete bipartite
graph, which was again balanced with one exception. For K4, in each case the
extremal graph was the Turán graph T3(n).
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