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Abstract

A subset S of vertices of a digraph D is a total 2-dominating set if every
vertex not in S is adjacent from at least two vertices in S, and the subdigraph
induced by S has no isolated vertices. Let D−1 be a digraph obtained by
reversing the direction of every arc of D.

In this work, we investigate this concept which can be considered as an
extension of double domination in graphs G to digraphs D, along with total
2-limited packing (Lt

2
(D)) of digraphs D which has close relationships with

the above-mentioned concept. We prove that the problems of computing
these parameters are NP-hard, even when the digraph is bipartite. We also
give several lower and upper bounds on them. In dealing with these two
parameters our main emphasis is on directed trees, by which we prove that
Lt

2
(D) + Lt

2
(D−1) can be bounded from above by 16n/9 for any digraph D

of order n. Also, we bound the total 2-domination number of a directed tree
from below and characterize the directed trees attaining the bound.
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1. Introduction and Preliminaries

Throughout this paper, we consider D = (V (D), A(D)) as a finite digraph with
vertex set V = V (D) and arc set A = A(D) with neither loops nor multiple arcs
(although pairs of opposite arcs are allowed). Also, G = (V (G), E(G)) stands
for a simple finite graph with vertex set V (G) and edge set E(G). We use [3]
and [26] as references for basic terminology and notation in digraphs and graphs,
respectively, which are not defined here.

For any two vertices u, v ∈ V (D), we write (u, v) as the arc with direction
from u to v, and say u is adjacent to v, or v is adjacent from u. We also say u and
v are adjacent with each other. Given a subset S of vertices of D and a vertex
v ∈ V (D), we write N−

S (v) = {u ∈ S | (u, v) ∈ A(D)} and N+
S (v) = {u ∈ S |

(v, u) ∈ A(D)}. The in-degree (out-degree) of v from (to) S is deg−S (v) = |N−
S (v)|

(deg+S (v) = |N+
S (v)|). Moreover, N−

S [v] = N−
S (v) ∪ {v} and N+

S [v] = N+
S (v) ∪

{v}. In particular, if S = V (D), then we simply write N−
D (v), N+

D (v), N−
D [v],

N+
D [v], deg−D(v) and deg+D(v) instead of N−

V (D)(v), N
+
V (D)(v), N

−
V (D)[v], N

+
V (D)[v],

deg−V (D)(v) and deg+V (D)(v), respectively (we moreover remove the subscript D if

there is no ambiguity with respect to the digraph D).

For a graph G, ∆ = ∆(G) and δ = δ(G) represent the maximum and mini-
mum degrees of G. In addition, for a digraph D, (∆+ = ∆+(D) and δ+ = δ+(D))
∆− = ∆−(D) and δ− = δ−(D) represent the maximum and minimum (out-
degrees) in-degrees of D. Given two subsets A and B of vertices of D, by
(A,B)D we mean the sets of arcs of D going from A to B. Given a subset
S ⊆ V (D), by D〈S〉 we mean the subdigraph of D induced by S. Finally, we let
N [v] = N−[v] ∪N+[v] for each vertex v of D.

We denote the converse of a digraph D by D−1, obtained by reversing the
direction of every arc of D. A vertex v ∈ V (D) with deg+(v) + deg−(v) = 1
is called an end-vertex. A penultimate vertex is a vertex adjacent with an end-
vertex. A digraph D is connected if its underlying graph is connected. A directed

tree is a digraph in which its underlying graph is a tree. A digraph D is bipartite
if it is obtained from a bipartite graph G by replacing each edge xy of G by either
(x, y) or (y, x), or the pair (x, y) and (y, x).

A vertex v ∈ V (D) (v ∈ V (G)) is said to dominate itself and its out-neighbors
(neighbors). A subset S ⊆ V (D) (S ⊆ V (G)) is a dominating set in D (G) if all
vertices are dominated by the vertices in S. The domination number γ(D) (γ(G))
is the minimum cardinality of a dominating set in the digraph D (graph G).

Domination and its related topics in graphs have received a lot of attention
from a large number of researchers over the last few decades because of their
important theoretical aspects a wealth of real-world applications. But the papers
on domination in digraphs are much less common than in graphs despite the fact
that the number of papers on digraphs has grown significantly over the last ten
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years. One reason for this unbalanced situation that exists in the literature could
be the fact that the theory of graphs is significantly more developed than the
theory of digraphs. However, many domination parameters have been investi-
gated in digraphs. For example, the reader can consult the papers [5, 15, 19],
and [6, 7, 21] in recent years. This paper also contributes to decreasing the
unbalanced situation.

The concept of domination in digraphs was introduced by Fu [10] while the
very well-known same topic in graphs was introduced by Berge [4] and Ore [24].
The reader is referred to [18] for more details on this topic. Ouldrabah et al.

[25] defined the concept of k-domination in digraphs, as a transformation of the
same topic in graphs (see [9]), as follows. A subset S of vertices in a digraph D
is a k-dominating set if |N−(v) ∩ S| ≥ k for every vertex v in V (D) \ S. The
k-domination number γk(D) of D is the minimum cardinality of a k-dominating
set in D. Clearly, this concept is a generalization of the concept of domination
in digraphs.

As digraphs are extensions of graphs (note that a graph can be considered as
a symmetric digraph), we can expect that a well-known concept in graph theory
can be extended to digraph theory in different ways. For example, Arumugam et

al. [2] investigated two extensions of the total domination (in graphs) to digraphs
in two different ways, namely, open domination and total domination in digraphs.

The k-tuple domination number γ×k(G) of a graph G with δ(G) ≥ k − 1 is
the minimum cardinality of a subset S ⊆ V (G) such that |N [v] ∩ S| ≥ k, for
each vertex v ∈ V (G). In particular, the 2-tuple domination number is called
a double domination number. This concept was first introduced by Harary and
Haynes in [17]. Gallant et al. [12] introduced the concept of limited packing
in graphs as follows. The k-limited packing number Lk(G) of a graph G is the
maximum cardinality of a subset B ⊆ V (G) such that |N [v] ∩ B| ≤ k, for each
vertex v ∈ V (G). Note that L1(G) = ρ(G) is the well-known packing number in
the graph G.

The concept of double domination in graphs can be extended to digraphs
in two different ways. One can say a subset S ⊆ V (D) is a double dominating

set in a digraph D with δ−(D) ≥ 1 if every vertex is dominated by at least two
vertices in S. The double domination number γ×2(D) is the minimum cardinality
of a double dominating set in D. But such a parameter cannot be defined for
some important families of digraphs like acyclic digraphs (the digraphs with no
directed cycle), especially directed trees. Indeed, we would rather consider the
following definition.

Definition 1. Let D be a digraph with no isolated vertices. A subset S ⊆ V (D)
is a total 2-dominating set in D if D〈S〉 has no isolated vertices and every vertex
in V (D) \ S is dominated by at least two vertices in S. The total 2-domination

number γt2(D) is the minimum cardinality of a total 2-dominating set in D.
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We remark that the definition of total 2-dominating sets is more general
than that of double dominating sets, as every double dominating set is a total
2-dominating set (so γ(D) ≤ γt2(D) ≤ γ×2(D) for all digraphsD with δ−(D) ≥ 1).

Regarding the 2-limited packing in graphs, we can extend this concept to
digraphs in two different ways. A subset B ⊆ V (D) is a 2-limited packing in the
digraph D if |N+[v] ∩ B| ≤ 2, for every vertex v ∈ V (D). The 2-limited packing

number L2(D) is the maximum cardinality of a 2-limited packing in D. In this
work, we consider the following definition which can be interpreted as the dual
version of Definition 1.

Definition 2. A subset B ⊆ V (D) is a total 2-limited packing in the digraph D
if every vertex in B is adjacent with at most one vertex in B and every vertex in
V (D) \ B is adjacent to at most two vertices in B. The total 2-limited packing

number Lt
2(D) is the maximum cardinality of a total 2-limited packing in D.

Comparing the last two definitions we can readily observe that ρ(D) ≤
Lt
2(D) ≤ L2(D) for all digraphs D, in which ρ(D) is the usual packing number of

D (see [21]). Recall that ρ(D) is the maximum cardinality of subset B ⊆ V (D)
for which |N+[v] ∩B| ≤ 1, for all v ∈ V (D).

Note that, for various reasons, the small values of k (especially k ∈ {1, 2})
regarding the above-mentioned parameters have attracted more attention from
the experts in domination theory rather than the large ones. One reason is that
for the large values of k, we lose some important families of graphs (for example,
the k-tuple domination number cannot be studied for trees when k ≥ 3), or we
deal with a trivial problem (for example, for every graph G with k > ∆(G),
we have Lk(G) = |V (G)|). Another reason is that many results for the case
k ∈ {1, 2} can be easily generalized to the general case k. Moreover, one may
obtain stronger results for the small values of k rather than the large ones. For
more evidences on these pieces of information the reader can be referred to [8, 17]
and [20].

This paper is organized as follows. We initiate the investigation of the pa-
rameters given in Definition 1 and Definition 2. We derive their computational
complexity and give some bounds on these parameters in Section 2 and Section
3. We show that the problems given in Definition 1 and Definition 2 are dual
problems (on the instances of directed trees) in Section 4. Also, we bound the
total 2-domination number of a directed tree from below and characterize the di-
rected trees attaining the bound. In Section 5, with emphasis on directed trees,
we prove that Lt

2(D) + Lt
2(D

−1) can be bounded from above by 16n/9 for any
digraph D of order n.

Given η ∈
{

γt2, L
t
2, γ, ρ

}

, by a η(G)-set in any graph/digraph G, we mean a
total 2-dominating set, total 2-limited packing, dominating set or packing in G
of cardinality η(G), respectively.
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2. Computational complexity

We use the well-known NP-complete EXACT 3-COVER problem (see [13]) in
the proof of the main theorem of this section.

(1)

EXACT 3-COVER (X3C)
INSTANCE: A finite set X of cardinality 3q and a collection C
of 3-element subsets of X.
QUESTION: Is there a subcollection C ′ of C such that every
element of X appears in exactly one element of C ′?

We now consider the following two well-known decision problems in domina-
tion theory.

(2)
DOMINATING SET PROBLEM
INSTANCE: A graph G and a positive integer k.
QUESTION: Is γ(G) ≤ k?

(3)
PACKING PROBLEM
INSTANCE: A graph G and a positive integer k′.
QUESTION: Is ρ(G) ≥ k′?

We make use of these two problems which are known to be NP-complete
from [18] and [14], respectively, in order to study the complexity of the problems
introduced in this paper. Note that DOMINATING SET PROBLEM is NP-
complete even when restricted to bipartite graphs (see [22]).

The directed counterparts of the problems (2) and (3) can be naturally stated
as follows.

(4)
DOMINATING SET PROBLEM for digraphs
INSTANCE: A digraph D and a positive integer k.
QUESTION: Is γ(D) ≤ k?

(5)
PACKING PROBLEM for digraphs
INSTANCE: A digraph D and a positive integer k′.
QUESTION: Is ρ(D) ≥ k′?

We deal with the following decision problems.
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(6)

TOTAL 2-DOMINATING SET PROBLEM
INSTANCE: A digraph D with no isolated vertices and
a positive integer j.
QUESTION: Is γt2(D) ≤ j?

(7)
TOTAL 2-LIMITED PACKING PROBLEM
INSTANCE: A digraph D and a positive integer j′.
QUESTION: Is Lt

2(D) ≥ j′?

We next present NP-completeness results for the digraph problems listed
above. Recall first that for a graph G, the complete biorientation cb(G) of G is
a digraph D obtained from G by replacing each edge xy ∈ E(G) by the pair of
arcs (x, y) and (y, x).

Theorem 3. The problems given in the rectangles (6) and (7) are NP-complete,

even when restricted to bipartite digraphs.

Proof. The problem (6) is clearly in NP since checking that a given set is indeed
a total 2-dominating set of cardinality at most j can be done in polynomial time.

We reduce the problem (2) to the problem (4). Let G be a graph. We then
consider the complete biorientation cb(G) of G. It is easy to check that a set
S ⊆ V (G) is a dominating set in G if and only if S ⊆ V (cb(G)) is a dominating
set in cb(G). This shows that γ(G) = γ(cb(G)). We now deduce from the problem
(2) and fact that it is NP-complete for bipartite graphs that the corresponding
problem (4) is NP-complete for bipartite digraphs, as well.

We now reduce the problem (4) to the problem (6) for bipartite digraphs. We
begin with a bipartite digraph D with V (D) = {v1, . . . , vn}. For each 1 ≤ i ≤ n,
we add new vertices wi and ui, and arcs (wi, ui), (ui, wi) and (ui, vi). We denote
the resulting bipartite digraph by D′. Note that every total 2-dominating set S′

in D′ contains both wi and ui, for each 1 ≤ i ≤ n. Moreover, |S′ ∩ V (D)| must
be at least as large as γ(D) so as to the vertices of D can be total 2-dominated
by S′. On the other hand, for each γ(D)-set S, S ∪

(
⋃n

i=1{wi, ui}
)

is a total
2-dominating set in D′. The above argument shows that γt2(D

′) = 2n + γ(D).
Now by taking j = k + 2n, we have γt2(D

′) ≤ j if and only if γ(D) ≤ k. So, the
problem given in (6) is NP-complete for bipartite digraphs.

From now on, we discuss the NP-completeness of TOTAL 2-LIMITED PACK-
ING PROBLEM. The problem belongs to NP as it can be readily checked in
polynomial time that a given set is indeed a total 2-limited packing of cardinality
at least j′. We first check the NP-completeness of PACKING PROBLEM for
bipartite graphs. In order to complete the proof, we need the following claim.
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Claim A. PACKING PROBLEM is NP-complete even for bipartite graphs.

Proof. It is clear that PACKING PROBLEM belongs to NP as we can check, in
polynomial time, a subset B of vertices is a packing of cardinality at least k′. We
make use of a reduction of X3C to PACKING PROBLEM. Let X = {x1, . . . , x3q}
and C = {C1, . . . , Cm} be an arbitrary instance of X3C. For any element xi, we
consider a 3-path xiyizi. Corresponding to each 3-set Cj , we associate a 4-path
cjdjejfj . Now to obtain the graph G, we add edges xicj if xi ∈ Cj . It is easily
checked that G is bipartite and that its construction can be accomplished in
polynomial time. We set k′ = 4q +m.

Let B be a ρ(G)-set of cardinality at least k′. Since B is a maximum packing
in G, it follows that B contains precisely one vertex in {xi, yi, zi} for any 1 ≤
i ≤ 3q. We may assume, without loss of generality, that B ∩ {xi, yi, zi} = {zi}
for each 1 ≤ i ≤ 3q. Since every vertex in B ∩ {c1, . . . , cm} is adjacent to three
vertices in X, and no two vertices of B ∩ {c1, . . . , cm} have a common neighbor,
we deduce that |B ∩{c1, . . . , cm}| ≤ q. If |B ∩{c1, . . . , cm}| ≤ q− 1, then at least
m + 1 vertices in

⋃m
j=1{dj , ej , fj} belong to B. Therefore, |B ∩ {dj , ej , fj}| ≥ 2

for some 1 ≤ j ≤ m, which contradicts the definition of the packing B. Hence,
|B ∩ {c1, . . . , cm}| = q. Consequently, C ′ = {Cj | cj ∈ B} is a solution for the
problem X3C.

Conversely, suppose that the problem X3C has a solution C ′ with |C ′| = q. It
is then straightforward to see that B = {zi}

3q
i=1∪{cj , fj | cj ∈ C ′}∪{fj | cj /∈ C ′}

is a packing of cardinality 4q +m. Therefore, ρ(G) ≥ 4q +m = k′. �

Similarly to the equality γ(G) = γ(cb(G)) we can see that ρ(G) = ρ(cb(G))
for any graph G. Therefore, Claim A implies that the problem (5) is NP-complete
for bipartite digraphs.

We now construct a bipartite digraph D′′ from any bipartite digraph D with
V (D) = {v1, . . . , vn} by adding a new vertex xi and a new arc (vi, xi), for each
1 ≤ i ≤ n. It is easy to check that B ∪{xi}

n
i=1 is a total 2-limited packing in D′′,

in which B is a ρ(D)-set. Therefore, Lt
2(D

′′) ≥ n+ ρ(D).

Finally, we reduce the problem (5) to TOTAL 2-LIMITED PACKING PROB-
LEM for bipartite digraphs. Let B′′ be an Lt

2(D
′′)-set. Let xi /∈ B′′, for some

1 ≤ i ≤ n. If vi /∈ B′′, then it must be adjacent to precisely two vertices in B′′, for
otherwise B′′ ∪ {xi} would be a total 2-limited packing in D′′ which contradicts
the maximality of B′′. Then (B′′ \{wi})∪{xi} is an Lt

2(D
′′)-set containing xi, in

which wi ∈ N+(vi)∩B′′. Now if vi ∈ B′′, we easily observe that (B′′ \{vi})∪{xi}
is also an Lt

2(D
′′)-set. Therefore, we may assume that xi ∈ B′′ for all 1 ≤ i ≤ n.

We then note that |B′′ ∩ V (D)| must be less than or equal to ρ(D). If this
is not true, then it is not hard to see that B′′ is not a total 2-limited packing
in D′′, a contradiction. Therefore, Lt

2(D
′′) ≤ n + ρ(D). It now follows that

Lt
2(D

′′) = n+ ρ(D). Now by taking j′ = k′ + n, we have Lt
2(D

′′) ≥ j′ if and only
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if ρ(D) ≥ k′. So, the problem given in (7) is NP-complete for bipartite digraphs.
This completes the proof.

As a consequence of the result above, we conclude that the problems of
computing the parameters given in Definition 1 and Definition 2 are NP-hard
even when restricted to bipartite digraphs. Taking into account this fact, it is
desirable to bound their values with respect to several different invariants of the
digraph. In the next two sections we exhibit such results.

3. Bounding γt2(D) and Lt
2(D) for General Digraphs

In this section, we discuss some results about the digraph parameters γt2(D) and
Lt
2(D). We first bound the total 2-limited packing number of a digraph from

above just in terms of its order and minimum in-degree. We introduce a family
of digraphs in order to characterize all digraphs attaining the upper bound. Let
D′ be a complete biorientation of a 1-factor with V (D′) = {v1, . . . , vn′}. Let p =
(r− 1)n′ where r ≥ 1 is an integer. Add a set of new vertices U = {u1, . . . , up/2}
and new arcs (ui, vj) such that

(i) every vertex ui is incident with precisely two such arcs, and

(ii) deg−(vj) = r for all 1 ≤ j ≤ n′.

Now add some arcs among the vertices ui and some arcs from V (D′) to U , such
that r is the minimum in-degree of the constructed digraph. Let Ω be the family
of digraphs D constructed as above.

Theorem 4. Let D be a digraph of order n with δ− ≥ 1. Then Lt
2(D) ≤ 2n

δ−+1
with equality if and only if D ∈ Ω.

Proof. Let B be an Lt
2(D)-set. By the definition, every vertex in V (D) \B has

at most two out-neighbors in B. Thus,

(8) |(V (D) \B,B)D| ≤ 2(n− |B|).

On the other hand, since every vertex in B is adjacent with at most one
vertex in B, we have

(9)

|B|(δ− − 1) ≤
∑

v∈B

deg−(v)−
∑

v∈B

deg−B(v) =
∑

v∈B

(deg−(v)− deg−B(v))

=
∑

v∈B

deg−V (D)\B(v) = |(V (D) \B,B)D|.

Together inequalities (8) and (9) imply the desired upper bound.
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Suppose that D ∈ Ω. It is easily seen that V (D′) is a total 2-limited packing
in D. Moreover, δ−(D) = r and n = n′ + p/2. Therefore, |V (D′)| = n′ =
2n/(δ− + 1). We now have L2(D) ≥ 2n/(δ− + 1), implying the desired equality.

Let the upper bound hold with equality. Then both (8) and (9) hold with
equality, necessarily. The equality in (9) shows that

∑

v∈B deg−B(v) = |B|. More-
over, since every vertex in B is adjacent with at most one vertex in B, D〈B〉
is a complete biorientation of a 1-factor. Also, all vertices in B have in-degree
δ− since

∑

v∈B deg−(v) = δ−|B|. The equality in (8) shows that every vertex in
V (D) \B is adjacent to precisely two vertives in B. Thus, the membership D in
Ω easily follows by choosing D〈B〉, δ− and V (D)\B for D′, r and U , respectively,
in the description of Ω.

We conclude this section by bounding the total 2-domination number of a
digraph from below in terms of its order and maximum out-degree. Indeed, the
following theorem for total 2-domination can be considered as a result analogous
to Theorem 4 for total 2-limited packing. Similarly to that for Theorem 4, we
introduce a family of digraphs so as to characterize all digraphs attaining the
lower bound given in the next theorem. We begin with a directed 1-factor D′

with V (D′) = {v1, . . . , vn′}. Choose r ≥ 1 such that q = (r − 1/2)n′ ≡ 0 (mod
2). Add a set of new vertices U = {u1, . . . , uq/2} and new arcs (vi, uj) such that

(i) every vertex uj is incident with precisely two such arcs, and

(ii) deg+(vi) = r for all 1 ≤ i ≤ n′.

Now add some arcs among the vertices uj and some arcs from U to V (D′), such
that r is the maximum out-degree of the constructed digraph. Let Θ be the
family of digraphs D constructed as above.

Theorem 5. For any digraph D of order n with no isolated vertices of maximum

out-degree ∆+, γt2(D) ≥ 2n
∆++3/2

. Furthermore, the equality holds if and only if

D ∈ Θ.

Proof. Let S be a γt2(D)-set. Every vertex in V (D) \S is adjacent from at least
two vertices in S, by the definition. Hence,

(10) 2(n− |S|) ≤ |(S, V (D) \ S)D|.

On the other hand, every vertex in S is adjacent with at least one vertex
in S. Therefore,

(11)

|(S, V (D) \ S)D| =
∑

v∈S

deg+V (D)\S(v) =
∑

v∈S

(deg+(v)− deg+S (v))

=
∑

v∈S

deg+(v)−
∑

v∈S

deg+S (v) ≤ (∆+ − 1/2)|S|.



596 D.A. Mojdeh and B. Samadi

The desired lower bound now follows by the inequalities (10) and (11).

Suppose that D ∈ Θ. Clearly, r = ∆+(D) and n = n′ + q/2. Moreover,
V (D′) is a double dominating set in D. Since |V (D′)| = n′ = 2n/(∆+ + 3/2), it
follows that γt2(D) ≤ 2n/(∆+ + 3/2), implying the equality in the lower bound.

Conversely, let the equality hold in the lower bound. Then both (10) and
(11) hold with equality, necessarily. Therefore, every vertex in S is adjacent with
exactly one vertex in S. This shows that D〈S〉 is a directed 1-factor. Also,
the equality

∑

v∈S deg+(v) = ∆+|S| implies that every vertex of D〈S〉 has the
out-degree ∆+. On the other hand, the equality in (10) shows that every vertex
in V (D) \ S is adjacent from exactly two vertices in S. That the digraph D is
in Ω can be easily seen by choosing D〈S〉, ∆+ and V (D) \ S for D′, r and U ,
respectively, in the description of Θ.

4. Directed Trees

We first recall that a maximization problem M and a minimization problem N,
defined on the same instances (such as graphs or digraphs), are dual problems if
the value of every candidate solution M to M is less than or equal to the value of
every candidate solution N to N. Often the “value” is cardinality. Analogously
to many well known pairs of dual (graph or digraph) problems like matching

and vertex covering, packing and domination, etc. the following theorem shows
that the problems “total 2-domination” and “total 2-limited packing”, on the
instances of directed trees, are dual problems.

Recall that in a tree a support vertex is called a weak (strong) support vertex
if it is adjacent to (more than) one leaf. Also, a double star Sa,b is a tree with
exactly two non-leaf vertices in which one support vertex is adjacent to a leaves
and the other to b leaves.

Theorem 6. For any directed tree T of order n ≥ 2, Lt
2(T ) ≤ γt2(T ).

Proof. We proceed by induction on the order n. The result is obvious for n = 2.
Let T̃ be the underlying tree of T . It is easy to check that the result is true when
diam(T̃ ) ≤ 3. In such a case, we have Lt

2(T ) ≤ γt2(T ) = n. So, we may assume
that diam(T̃ ) ≥ 4. This implies that n ≥ 5. Assume that the inequality holds
for all directed trees T ′ of order 3 ≤ n′ < n. Let T be a directed tree of order
n ≥ 5. Suppose that r and x are two leaves of T̃ with d(r, x) = diam(T̃ ). We
root T̃ at r. Let x be adjacent with y. Note that the choice of x shows that
all children of y in T̃ are leaves. Let B and S be an Lt

2(T )-set and a γt2(T )-set
in T , respectively. Note that all end-vertices and penultimate vertices belong to
every total 2-dominating set in T . Suppose that y is a strong support vertex in
T̃ . Then S \ {x} is a total 2-dominating set in T ′ = T − x. Moreover, it is easy
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to see that B \ {x} is a total 2-limited packing in T ′. Using now the induction
hypothesis we have

Lt
2(T )− 1 ≤ |B \ {x}| ≤ Lt

2(T
′) ≤ γt2(T

′) ≤ |S| − 1 = γt2(T )− 1.

From now on, we assume that y is a weak support vertex of T̃ . Hence, x is
a sink or source (that is, deg+(v) = 0 or deg−(v) = 0 respectively) of T and y
is the unique vertex adjacent with x. We consider two cases depending on the
behavior of x.

Case 1. Suppose that S \ {x} is a total 2-dominating set in the directed tree
T ′ = T − x. Moreover, B \ {x} is a total 2-limited packing in T ′. Then, by using
the induction hypothesis, we have again

Lt
2(T )− 1 ≤ |B \ {x}| ≤ Lt

2(T
′) ≤ γt2(T

′) ≤ |S| − 1 = γt2(T )− 1.

Case 2. Suppose that S \ {x} is not a total 2-dominating set in T ′. This
shows that y is not adjacent with any vertex in S \{x}. Here we need to consider
two more possibilities.

Subcase 2.1. Suppose that S′′ = S \ {x, y} is a total 2-dominating set in
T ′′ = T − x − y. On the other hand, it is clear that B′′ = B \ {x, y} is a total
2-limited packing in T ′′. We then have

Lt
2(T )− 2 ≤ |B′′| ≤ Lt

2(T
′′) ≤ γt2(T

′′) ≤ |S′′| = γt2(T )− 2.

Subcase 2.2. Suppose now that S′′ = S \ {x, y} is not a total 2-dominating
set in T ′′. This assumption along with the fact that y is not adjacent with any
vertex in S \ {x} imply that there exists a vertex z ∈ V (T ′′) \ S′′ such that
|N−

T ′′(z) ∩ S′′| ≤ 1. This shows that |N−
T (z) ∩ S| = 2 and y ∈ N−(z), necessarily.

Note that by our choice of x, all children of z in T̃ are leaves or support vertices.
If z is adjacent with an end-vertex, then we have contradiction to the fact that y
is not adjacent with any vertex in S \ {x}. Therefore, all children of z in T̃ are
support vertices. Let T̃z be the subtree of T̃ rooted at z consisting of z and its
descendants in T̃ . Now consider the directed tree T ′′′ = T − V (T̃z) (our choice
of x and diam(T̃ ) ≥ 4 imply that |V (T ′′′)| ≥ 2). Let z have k children in T̃ .
It is easy to see that S′′′ = S \ V (T̃z) is a total 2-dominating set in T ′′′ with
|S′′′| = γt2(T ) − 2k. On the other hand, B′′′ = B \ V (T̃z) is a total 2-limited
packing in T ′′′ with |B′′′| ≥ Lt

2(T )− 2k. Therefore,

Lt
2(T )− 2k ≤ |B′′′| ≤ Lt

2(T
′′′) ≤ γt2(T

′′′) ≤ |S′′′| = γt2(T )− 2k.

This completes the proof.

In what follows we construct a family of directed trees in order to characterize
those ones attaining the lower bound in the next theorem.
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Let F = F0 be a directed forest containing r copies of the directed path
P2 with arcs (v11, v12), . . . , (vr1, vr2) and r′ copies of directed stars H1, . . . , Hr′ of
order at least 3 with central vertices u1, . . . , ur′ , respectively. Let q = r+r′−1. We
construct the sequence F0, F1, . . . , Fq of digraphs as follows. Let F1 be obtained
from F0 by adding a vertex w1 and two arcs (x1, w1) and (y1, w1) for some x1, y1 ∈
A = {vi1, vi2}

r
i=1∪{ui}

r′
i=1 such that x1 and y1 are not vertices of a same P2-copy.

We now obtain F2 from F1 by adding a vertex w2 and two arcs (x2, w2) and
(y2, w2) such that x2, y2 ∈ A, x2 ∈ NF0

[{x1, y1}] and y2 ∈ V (F0) \ NF0
[{x1, y1}]

(note that {x1, y1} = N−
F1
(w1)). We now suppose that Fj is obtained from Fj−1

by adding a vertex wj with two arcs (xj , wj) and (yj , wj) such that (i) xj , yj ∈ A,
and (ii) precisely one of them belongs to Bj−1 = NF0

[N−
Fj−1

({w1, . . . , wj−1})]. We
define Γ as the family of all digraphs Fq constructed as above. In what follows,
we first need to show that the above construction is well-defined. Moreover, Γ is
a family of directed trees (Figure 1 depicts a representative member of Γ).

Figure 1. A member of Γ.

Proposition 7. The following statements hold.

(a) If F0 is neither the directed path P2 nor a directed star on at least three

vertices, then there always exist two arcs (xj , wj) and (yj , wj) with the given

properties (i) and (ii), for all 1 ≤ j ≤ q.

(b) Fq is a directed tree.

Proof. (a) Let F0 be neither the directed path P2 nor a directed star on at least
three vertices. Therefore, r + r′ ≥ 2. Clearly, there are such arcs for the vertex
w1. Let 2 ≤ i ≤ q be the smallest index for which there is not a pair of arcs
(xi, wi) and (yi, wi) with the properties (i) and (ii). Now, consider the digraph
Fi−1. We then add the vertex wi. Since i ≤ q = r + r′ − 1, it follows that there
exists a vertex yi ∈ A\Bi−1. Thus, we have the arcs (xi, wi) and (yi, wi) in which
xi is a vertex in Bi−1. This contradicts our choice of i.

(b) It is easy to see that F1 is a directed forest. Assume now that Fi, i ≥ 1,
is a directed forest. It follows from the way we construct Fi+1 from Fi that the
underlying graph of Fi+1 has no cycle as a subgraph. So, Fi+1 is a directed forest
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as well. In particular, Fq is a directed forest. Now let H1, . . . , Hr′ be those r′

directed stars in the definition of F = F0 of order t1, . . . , tr′ ≥ 3, respectively.
Then, |A(Fq)| = 3r+ r′ + t1 + · · ·+ tr′ − 2 = |V (Fq)| − 1. This implies that Fq is
a directed tree.

We are now in a position to present the main theorem of this section.

Theorem 8. Let T be a directed tree of order n with e end-vertices and p penul-

timate vertices. Then

γt2(T ) ≥
2n+ e− p+ 2

3
.

The equality holds if and only if T ∈ Γ.

Proof. Let S = {v1, . . . , v|S|} be a γt2(T )-set. Note that all end-vertices and
penultimate vertices belong to S, necessarily. Therefore, all pendant arcs belong
to A(T 〈S〉). Since every vertex in V (T ) \S is adjacent from at least two vertices
in S and T 〈S〉 has no isolated vertices, it follows that

(12)
deg+(v1) + · · ·+ deg+(v|S|) = |(S, V (T ) \ S)T |+ |A(T 〈S〉)|

≥ 2(n− |S|) + e+ |S|−e−p
2 .

On the other hand,

(13) deg+(v1) + · · ·+ deg+(v|S|) ≤ n− 1.

The desired lower bound now follows from (12) and (13).
Let T ∈ Γ. Let S′ be the set of vertices of the copies P2 and Hi, 1 ≤ i ≤ r′. It

is easy to see that S′ is a total 2-dominating set in T of cardinality 2r+t1+· · ·+tr′ ,
in which ti = |V (Hi)| for 1 ≤ i ≤ r′. Moreover, n = 2r+ t1 + · · ·+ tr′ + r+ r′ − 1
and e− p = t1+ · · ·+ tr′ − 2r′. So, γt2(T ) ≤ 2r+ t1+ · · ·+ tr′ = (2n+ e− p+2)/3
which implies the equality in the lower bound.

Suppose now that we have the equality in the lower bound of theorem. Then
both the inequalities in (12) and (13) hold with equality, necessarily. In particular,

deg+(v1) + · · ·+ deg+(v|S|) = n− 1 =
∑

v∈V (T )

deg+(v)

shows that V (T ) \ S is independent. Moreover, the equalities |(S, V (T ) \ S)T | =
2(n−|S|) and |A(T 〈S〉)| = e+(|S|−e−p)/2 imply that every vertex in V (T )\S is
adjacent from precisely two vertices in S, and T 〈S〉 is a disjoint union of digraphs
which are isomorphic to the directed paths P2 and the directed stars Ht of orders
at least three whose end-vertices are not adjacent with the vertices in V (T ) \ S.
Choose a vertex w1 ∈ V (T )\S. Then w1 is adjacent from two vertices in S which
do not belong to a same component of T ′ = T 〈S〉, for otherwise the underlying
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graph of T contains a cycle. Since T is connected and its underlying graph has
no cycle, there exists a vertex w2 ∈ V (T ) \ S which is adjacent from exactly one
vertex in NT ′ [N−(w1)]. In general, by choosing the vertex wj−1 in such a way,
we find the vertex wj for which exactly one of its two in-neighbors belongs to
NT ′ [N−({wi}i<j)]. The above argument shows that T ∈ Γ.

5. Sum and Product of Ψ(D) and Ψ(D−1) when Ψ ∈ {γt2, L
t
2}

For the rest of the paper, we study the sum and product of Ψ ∈ {γt2, L
t
2} of a

digraph and its converse. In order to obtain such inequalities concerning the total
2-limited packing number, we make use of the structures of directed trees. Note
that the study of these kinds of inequalities was first presented by Chartrand
et al. [5] for the domination number. Since then bounds on Ψ(D) + Ψ(D−1)
or Ψ(D)Ψ(D−1) appeared in literature, in which Ψ is a digraph parameter. For
example, the reader can be referred to the papers [11, 15] and [16].

Nordhaus and Gaddum [23] in 1956, gave lower and upper bounds on the
sum and product of the chromatic numbers of a graph G and its complement G
in terms of the order of G. Since then, bounds on Θ(G) + Θ(G) or Θ(G)Θ(G)
are called Nordhaus-Gaddum inequalities, where Θ is any graph parameter. The
search of the Nordhaus-Gaddum type inequalities has centered the attention of a
large number of investigations, and in domination theory, this has probably been
even more emphasized. For more information about this subject the reader can
consult [1].

Indeed, the above-mentioned inequalities concerning digraphs and their con-
verse can be interpreted as modified Nordhaus-Gaddum theorems for digraphs,
where the converse of a digraph replaces the complement of a graph.

Proposition 9. Let D be a connected digraph of order n ≥ 2. Then γt2(D) = n
if and only if deg−(v) ≤ 1 for each vertex v which is neither a penultimate vertex

nor an end vertex.

Proof. The sufficiency of the condition is clear. Now let γt2(D) = n. Suppose
that there exists a vertex v with deg−(v) ≥ 2 which is neither a penultimate
vertex nor an end vertex. We can deduce that V (D)\{v} is a total 2-dominating
set in D, which is impossible.

As an immediate consequence of Proposition 9, we have the following result.

Corollary 10. For any connected digraph D of order n ≥ 2, γt2(D)+ γt2(D
−1) =

2n
(

γt2(D)γt2(D
−1) = n2

)

if and only if deg−(v), deg+(v) ≤ 1 for each vertex v
which is neither a penultimate vertex nor an end vertex.
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We now turn our attention to the total 2-limited packing number. Let D be
a connected digraph of order n. Then Lt

2(D)+Lt
2(D

−1) = 2n when n = 1, 2. So,
in what follows we may assume that n ≥ 3.

Theorem 11. For any connected digraph D of order n ≥ 3,

Lt
2(D) + Lt

2(D
−1) ≤

16n

9
.

This bound is sharp.

Proof. We first prove that the inequality holds for all directed stars on n ≥ 3
vertices.

Claim B. For any directed star S of order n ≥ 3, Lt
2(S) + Lt

2(S
−1) ≤ 16n/9.

Proof. Let u be the central vertex of S, deg+(u) = a and deg−(u) = b. We have,
(14)

Lt
2(S)+Lt

2(S
−1) =























a+ b+ 2 = n+ 1, if a = 0 or b = 0,

a+ b+ 2 = n+ 1, if a = b = 1,

a+ b+ 3 = n+ 2, if min{a, b} = 1 and max{a, b} ≥ 2,

a+ b+ 4 = n+ 3, if a, b ≥ 2.

We now have Lt
2(S) + Lt

2(S
−1) ≤ 16n/9 in all four possible values for Lt

2(S) +
Lt
2(S

−1). �

We are now able to extend the inequality in Claim B to directed trees on at
least three vertices as follows. Indeed, we prove that

(15) Lt
2(T ) + Lt

2(T
−1) ≤ 16n/9,

by induction on the order n ≥ 3 of directed tree T . If n = 3, then the result
follows from Claim B. Suppose now that the result is true for all directed trees
T ′ of order 3 ≤ n′ < n. Let T be a directed tree of order n. If T is a directed
star, then the result again follows by Claim B. So, we assume that T is not a
directed star. Therefore, T has an arc (x, y) such that T − (x, y) is the union of
two non-trivial directed trees T1 and T2 of order n1 < n and n2 < n, respectively.
Moreover, by the symmetry between T and T−1, we may assume that x ∈ V (T1)
and y ∈ V (T2). If n1 = n2 = 2, then T is obtained from orienting the edges of a
path on four vertices. It follows that Lt

2(T )+Lt
2(T

−1) ≤ 6 ≤ 16 ·4/9. So, in what
follows we may assume that n1 ≥ 3. We now distinguish two cases depending
on n2.

Case 1. n2 ≥ 3. By the induction hypothesis, we have Lt
2(T1) + Lt

2(T
−1
1 ) ≤

16n1/9 and Lt
2(T2) + Lt

2(T
−1
2 ) ≤ 16n2/9. The inequality (15) now follows from

the fact that Lt
2(T ) ≤ Lt

2(T1) + Lt
2(T2) and Lt

2(T
−1) ≤ Lt

2(T
−1
1 ) + Lt

2(T
−1
2 ).
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Case 2. n2 = 2. Let V (T2) = {y, z}. We now consider two subcases.

Subcase 2.1. Suppose that there exist an Lt
2(T )-set B and an Lt

2(T
−1)-

set B−1 such that {y, z} * B ∩ B−1. By the induction hypothesis, we have
Lt
2(T1) + Lt

2(T
−1
1 ) ≤ 16n1/9 = 16(n− 2)/9. Therefore,

(16)

Lt
2(T ) + Lt

2(T
−1) ≤ Lt

2(T1) + |B ∩ {y, z}|+ Lt
2(T

−1
1 ) +

∣

∣B−1 ∩ {y, z}
∣

∣

≤
16(n− 2)

9
+ 3 <

16n

9
.

Subcase 2.2. Suppose now that {y, z} ⊆ B ∩ B−1 for all Lt
2(T )-sets B and

Lt
2(T

−1)-sets B−1. This implies that x /∈ B ∪ B−1. We have, T1 = T − {y, z}.
Suppose that T11, . . . , T1p are the components of T1 − x. If |V (T11)|, . . . , |V (T1p)|
≥ 3, we have Lt

2(T1i)+Lt
2(T

−1
1i ) ≤ 16|V (T1i)|/9 for all 1 ≤ i ≤ p, by the induction

hypothesis. Therefore,

(17)

Lt
2(T ) + Lt

2(T
−1) ≤

p
∑

i=1

(Lt
2(T1i) + Lt

2(T
−1
1i )) + |B ∩ {x, y, z}|

+ |B−1 ∩ {x, y, z}| ≤
16

9

p
∑

i=1

|V (T1i)|+ 4

=
16

9
(n− 3) + 4 <

16n

9
.

So, we assume that |V (T1i)| ≤ 2 for some 1 ≤ i ≤ p. Without loss of generality,
we assume that |V (T11)|, . . . , |V (T1q)| ≤ 2 for 1 ≤ q ≤ p. By the induction
hypothesis, we have

(18) Lt
2(T1i) + Lt

2(T
−1
1i ) ≤ 16|V (T1i)|/9,

for all q + 1 ≤ i ≤ p (if there is such an index i).
Let x1, . . . , xq be the unique vertices in V (T11), . . . , V (T1q), respectively,

which are adjacent with x. We now present the following claim.

Claim C. If q ≥ 4, then at least one of the vertices x1, . . . , xq does not belong to

B ∩B−1.

Proof. Suppose that q ≥ 4. Suppose to the contrary that x1, . . . , xq ∈ B ∩B−1.
Since T is a directed tree, the subdigraph H induced by {y, x, x1, . . . , x4} is a
directed star on six vertices. In fact, H is isomorphic to one of the directed stars
depicted in Figure 2. In the first three directed stars (from left to right) we have
contradiction with the fact that B is a 2-limited packing in D, and in the last
two directed stars we have contradiction with the fact that B−1 is a 2-limited
packing in D−1. Thus, at least one of the vertices x1, . . . , xq does not belong to
B ∩B−1. �
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x y x y x y x y x y

Figure 2. All the possible directed stars on six vertices with the center x and fixed arc
(x, y).

Let q ≥ 4. We now assume, without loss of generality, that x1 /∈ B ∩B−1. If
V (T11) = {x1}, then

Lt
2(T ) + Lt

2(T
−1) ≤ |B ∩ {y, z}|+ |B−1 ∩ {y, z}|+ |B ∩ {x1}|+ |B−1 ∩ {x1}|

+ |B ∩ V (T − {y, z, x1})|+ |B−1 ∩ V (T−1 − {y, z, x1})|

≤ 4 + 1 + Lt
2(T − {y, z, x1}) + Lt

2(T
−1 − {y, z, x1})(19)

≤ 5 + 16(n− 3)/9 < 16n/9.

If V (T11) = {x1, x
′
1} for some vertex x′1, then

Lt
2(T ) + Lt

2(T
−1) ≤ 4 + |B ∩ {x1, x

′
1}|+ |B−1 ∩ {x1, x

′
1}|

+ |B ∩ V (T − {y, z, x1, x
′
1})|

+ |B−1 ∩ V (T−1 − {y, z, x1, x
′
1})|(20)

≤ 4 + 3 + Lt
2(T − {y, z, x1, x

′
1}) + Lt

2(T
−1 − {y, z, x1, x

′
1})

≤ 7 + 16(n− 4)/9 < 16n/9.

It remains for us to prove the desired inequality when q ≤ 3. We consider
two subcases depending on p and q.

Subcase 2.2.1. Let p = q. If q = 1, then we deal with a directed tree whose
underlying graph is a path on four or five vertices. Clearly, in such cases the
desired inequality holds. If q = 2 or 3, then the directed tree T is obtained from
the orientation of a tree of order n ∈ {5, 6, 7} or n ∈ {6, 7, 8, 9}, respectively. In
all the possible cases, we have Lt

2(T ) + Lt
2(T

−1) ≤ 16n/9.

Subcase 2.2.2. q < p. Let xp be the unique vertex of T1p which is adjacent
with the vertex x. Since both T1p and T − V (T1p) have at least three vertices, it
follows by the induction hypothesis that Lt

2(T1p) + Lt
2(T

−1
1p ) ≤ 16|V (T1p)|/9 and

Lt
2(T − V (T1p)) + Lt

2(T
−1 − V (T1p)) ≤ 16(n− |V (T1p)|)/9. Therefore,

(21)

Lt
2(T ) + Lt

2(T
−1) ≤ Lt

2(T1p) + Lt
2(T − V (T1p)) + Lt

2

(

T−1
1p

)

+Lt
2

(

T−1 − V (T1p)
)

≤
16n

9
.

Indeed, in all possible cases we have proved the inequality (15) for a directed
tree T .
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Since D is connected, it has a spanning directed tree T . Moreover, Lt
2(D) ≤

Lt
2(T ) and Lt

2(D
−1) ≤ Lt

2(T
−1). We now have

(22) Lt
2(D) + Lt

2(D
−1) ≤ Lt

2(T ) + Lt
2(T

−1) ≤
16n

9

by (15), as desired.
In what follows, we show that the upper bound is sharp. Let D′ be an

arbitrary connected digraph on the set of vertices V (D′) = {v1, . . . , vn′}. For
every 1 ≤ i ≤ n′, we add four directed paths Pi1 : xi11, x

i
12, Pi2 : xi21, x

i
22,

Pi3 : x
i
31, x

i
32 and Pi4 : xi41, x

i
42, and four arcs (vi, x

i
11), (vi, x

i
21), (x

i
31, vi), (x

i
41, vi).

Let R be the obtained digraph. It is easy to observe that |V (R)| = 9n′ and
B = {xi11, x

i
12, . . . , x

i
41, x

i
42}

n′

i=1 is both an Lt
2(R)-set and an Lt

2(R
−1)-set. Thus,

Lt
2(R) + Lt

2(R
−1) = 16n′ = 16|V (R)|/9. This completes the proof.

Maximizing Lt
2(D)Lt

2(D
−1) subject to Lt

2(D) + Lt
2(D

−1) = 16n/9, we have
Lt
2(D) = Lt

2(D
−1) = 8n/9. Therefore, we have the following upper bound for the

product of Lt
2(D) and Lt

2(D
−1). Furthermore, the bound is sharp for the digraph

R defined in the proof of Theorem 11.

Corollary 12. For any connected digraph D of order n ≥ 3, Lt
2(D)Lt

2(D
−1) ≤

64n2/81.

6. Concluding Remarks

Note that the digraph parameters Lt
2 and γt2 are the same for both the complete

biorientation cb(Kn) of the complete graph Kn of order n ≥ 2 and the digraph R
introduced in the proof of Theorem 11. Moreover, we proved that Lt

2(T ) ≤ γt2(T )
for all nontrivial directed tree T . So, it is natural to present the following open
problem.

Problem 1. Does the inequality Lt
2(D) ≤ γt2(D) hold for any digraph D with

no isolated vertices?

Mojdeh et al. [21] proved that ρ(T ) = γ(T ), for all directed trees T . Although
such a result does not hold for Lt

2(T ) and γt2(T ), one can ask for the family of all
directed trees for which these two parameters are the same. Indeed, we pose the
following problem.

Problem 2. Characterize the directed trees T for which Lt
2(T ) = γt2(T ).
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