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Abstract

We introduce the Burnside chromatic polynomial of a graph that is in-
variant under a group action. This is a generalization of the Q-chromatic
function Zaslavsky introduced for gain graphs. Given a group G acting on a
graph G and a G-set X, a proper X-coloring is a function with no monochro-
matic edge orbit. The set of proper colorings is a G-set which induces a
polynomial function from the Burnside ring of G to itself. In this paper,
we study many properties of the Burnside chromatic polynomial, answering
some questions of Zaslavsky.
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1. Introduction

In [11], Zaslavsky introduces the Q-chromatic function of a gain graph. Given a
gain graph Σ with gain group G, suppose that G acts on a finite set Q on the
right. A Q-coloring is a coloring f : V → Q such that there is no edge e = (u, v)
with f(u) = f(v)g, where g is the gain on the edge e. Then the Q-chromatic
function, which we denote by P (Σ, Q), counts the number of Q-colorings. At the
end of [11], Zaslavsky asks for an interpretation when we evaluate P (Σ, Q) at
‘negative numbers’, noting that it is not clear what the correct generalization of
‘negative number’ should be. In this paper we answer Zaslavsky’s question. We
also generalize Zaslavsky’s results from gain graphs to G-invariant graphs and to
a more general notion of coloring.

https://doi.org/10.7151/dmgt.2385
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The first key insight is to view the Q-chromatic function as a polynomial
function between two rings. The codomain is the ring of integers. The domain
of the Q-chromatic function is the Burnside ring of a group G, which is defined
as follows. If G acts on a pair of sets X and X ′ on the right, then we say X and
X ′ are equivalent if there is a bijection f : X → X ′ such that f(x)g = f(x)g for
all g ∈ G and x ∈ X. Then the Burnside ring is the set of formal differences
of equivalence classes of the resulting equivalence relation. We show that the
function P (Σ, Q) can be extended in a unique way to a polynomial function
on the entire Burnside ring. Thus we can define the notion of ‘evaluating at a
negative argument’ for the Q-chromatic function.

Moreover, there is a combinatorial interpretation for P (Σ,−Q): up to sign
it counts the number of acyclic colorings from V (Σ) to Q. An orientation of an
ordinary graph is acyclic if it has no directed cycle. Given a function f : V (Σ) →
Q, an edge e is satisfied if f(u) = f(v)g. An acyclic coloring is a pair (f,O),
where f : V (Σ) → Q is a coloring, and O is an acyclic orientation of the satisfied

edges of Σ with respect to f .

Theorem 1. Let Σ be a gain graph on n vertices with finite gain group G, and let

Q be a finite set that G acts on. Then (−1)nP (Σ,−Q) is the number of acyclic

Q-colorings.

We know that there is a natural ring homomorphism Fix from the Burnside
ring to the integers (for the precise definition see Section 2). Is there a polynomial
function B from the Burnside ring to itself, such that Fix ◦B is the Q-chromatic
function? Is there a generalization of ‘coloring’ where the set of colorings also
comes with a group action, and where we recover the usual proper colorings as
fixed points? The goal of this paper is to introduce such a generalization.

This leads to our second key insight: replace gain graphs with their derived
covers. The derived cover [1, 3] is a G-invariant graph Σ̃ that is naturally as-
sociated to a given gain graph Σ. Derived covers arise in the study of universal
covers, as described in [4]. Since G acts on the vertices of Σ̃ and on Q, we can
construct a group action on the set of functions from V (Σ̃) to Q.

Let G be a graph which is equipped with a group action by a finite group
G. Fix a G-set X of colors on which G acts. Given a function f : V → X, an
edge orbit O is monochrome if f(u) = f(v) for every edge (u, v) ∈ O. A proper
X-coloring is a function f : V → X for which there is no monochrome edge orbit.
The group G also acts on the set C(G,X) of all X-colorings. If X and X ′ are
equivalent, C(G,X) and C(G,X ′) are also equivalent. Therefore we can view
the map X 7→ C(G,X) as a function BG(G, x) from the Burnside ring of G to
itself. We call this function the Burnside chromatic polynomial of G. This new
invariant is the central character in this article.

We can obtain the Q-chromatic function from the Burnside chromatic poly-
nomial of Σ̃ by applying a linear map. Given any set X on which G acts, we let
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fix(X) be the number of elements of X fixed by every element of G. This gives
rise to a linear map from the Burnside ring to Z. Then for any gain graph Σ

we have P (Σ, Q) = Fix ◦BG(Σ̃−1, Q). Here Σ−1 is the gain graph obtained by
inverting all the gains.

We review the necessary terminology about group actions, the Burnside ring,
and polynomial functions in Section 2. In Section 3 we discuss some of the theory
of G-invariant graphs and gain graphs. We prove our results regarding derived
covers. In Section 4, we define the Burnside chromatic polynomial. We prove
that it satisfies a deletion and contraction recurrence. We also prove an inclusion-
exclusion formula in Theorem 11 which generalizes one part of Theorem 4 of
Zaslavsky [11]. We hold off on the exact formula until that section, as the terms
on the right hand side involve generalizations of power functions.

Zaslavsky [11] also introduces fundamentally closed subgraphs of a gain
graph, and uses this notion to define the lattice of flats for a gain graph. He
notes that almost nothing is known about the lattice of fundamentally closed
subgraphs. We define a closure operator for subsets of vertices of a G-invariant
graph G. We refer to the closed elements as G-flats. The G-flats form a lattice.
We prove a Möbius-inversion formula in Theorem 13 which generalizes another
part of Theorem 4 of Zaslavsky [11]. We also show in Theorem 14 that the lat-
tice of fundamentally closed subgraphs of a gain graph Σ is isomorphic to the
lattice of G-flats of Σ̃. We investigate these lattices and show that there are
examples where G is a cyclic group and the lattices fail to be atomic, graded, or
semi-modular.

Finally in Section 6, we prove a combinatorial reciprocity result regarding
Fix ◦BG(Σ, Q). Recall that an acyclic orientation of an ordinary graph G is an
orientation O that does not contain a directed cycle. Given a set X that G acts
on, we define an acyclic X-coloring to be a pair (κ,O) where κ : V → X is a
G-invariant function and O is a G-invariant acyclic orientation of the subgraph
of monochrome edges.

Theorem 2. Let G be a G-invariant graph, and let X be a G-set. Then we have

(−1)|V |Binv
G (G,−X) is the number of acyclic X-colorings.

2. Group Actions and the Burnside Ring

Let G be a finite group. If G acts on a set X, then we refer to X as a G-set. We
focus on left group actions for this section. The orbit of a point x under G is the
set {gx : g ∈ G}. We let G(x) be the orbit of x under G. We let X/G be the
collection of orbits of X under the action of G. Given x ∈ X, the stabilizer of x is
the group {g ∈ G : gx = x}. Given g ∈ G, we let Fix(g) be the set of fixed points
of X under g. A group action is free if all of the stabilizer subgroups are trivial.
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Finally, a subset T ⊆ X is a transversal if |O ∩ T | = 1 for every O ∈ X/G.
Let G be a group and let X and Y be finite G-sets. A function f : X → Y

is an equivariant map if f(gx) = gf(x) for all x ∈ X. Then f is an isomorphism
if it is an equivariant bijection.

We discuss how group actions lift to multisubsets. These facts are used when

we define G-invariant graphs. Let
((

X
2

))
be the collection of multisubsets of

X of size two. If G acts on X, then G acts on
((

X
2

))
via g{a, b} = {ga, gb}.

Also, given a function f : X → Y , we let f :
((

X
2

))
→

((
Y
2

))
be defined by

f({a, b}) = {f(a), f(b)}. If f is G-equivariant, then so is f . Similarly, if f is a
bijection, then so is f .

We define the Burnside ring of a group G. We let BG+ be the set of isomor-
phism classes of finite right G-sets. The isomorphism classes form an additive
monoid under [X] + [Y ] = [X ⊔ Y ], where ⊔ is disjoint union. We let BG be
the Grothendieck group of BG+, which is the abelian group of formal differences
of elements of BG+. The abelian group BG becomes a ring with multiplication
induced by [X][Y ] = [X×Y ], where X and Y are right G-sets. This ring is called
the Burnside ring, and was introduced by Solomon [7].

Let M be a commutative monoid and R be a commutative ring. We define
what it means for a function from M to R to be a polynomial. Given m and n ∈
M , and a function f : M → R, we let ∆m(f)(n) = f(n + m) − f(n). We refer
to ∆m as the mth difference operator. A function is a polynomial of degree 0
if it is constant. Then a function f : M → R is a polynomial of degree d > 0
if ∆m(f) is a polynomial of degree d − 1 for all m ∈ M . Let P(M,R) be the
set of polynomial functions from M to R. Then P(M,R) is also a ring under
pointwise multiplication and addition. Given a ring homomorphism ϕ : R → S
and a polynomial function f : M → R, we let ϕ̂(f) = ϕ ◦ f . We see that ϕ̂(f) is
a polynomial function from M to S. Moreover ϕ̂ : P(M,R) → P(M,S) is a ring
homomorphism.

Definition 3. A common construction we use frequently is the following. Let G
and H be groups. For every G-set X, suppose we have an H-set F (X). Moreover,
given isomorphic G-sets X and Y , suppose that F (X) ≃ F (Y ). Then there is an
induced function FG : BG+ → BH given by FG([X]) = [F (X)] for all [X] ∈ BG+.
We call FG the function induced by F .

In general, H = G or will be the trivial group.
Now we discuss an important example of a polynomial function from BG+

to BG, which generalizes the power function. Let N be a fixed left G-set, and
given a right G-set X, let F (X) = XN be the set of all functions f : N → X.
This is a right G-set with action given by fg(n) = f(gn)g. If X is isomorphic
to another G-set Z, then F (X) ≃ F (Z). Hence there is an induced function FG.
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We will denote this function by xN , in analogy with the classical power function.
It is a function in the variable x, and we can substitute any element [X] ∈ BG+

in for x.

Proposition 4. The function xN is a polynomial of degree |N |.

Proof. Let k be a positive integer. Given a sequence Y1, . . . , Yk of G-sets, we
let ∆Y1,...,Yk

(XN ) = ∆Y1
◦ (∆Y2,...,Yk

(XN ). Observe that (∆Y (X
N ) is the class of

functions f : N → X ⊔ Y such that f−1(Y ) 6= ∅. By induction on k, we observe
that ∆Y1,...,Yk

(XN ) is the class of the functions f : N → X ⊔ Y1 ⊔ · · · ⊔ Yk such
that f−1(Yi) 6= ∅ for all i. In particular, when k = |N |, then f−1(X) = ∅, so that
∆Y1,...,Yn(x

N ) is a polynomial of degree 0. Hence induction on |N | − k allows us
to conclude that ∆Y1,...,Yk

(xN ) is a polynomial of degree |N | − k. Therefore xN

is a polynomial of degree |N |.

We define a ring homomorphism which we use later when specializing the
Burnside chromatic polynomial. Given a right G-set X, let Xinv = |

⋃
g∈G Fix(g)|.

If X and Y are isomorphic right G-sets, then Xinv ≃ Yinv. Moreover, for disjoint
right G-sets X and Y , we have (X ∪Y )inv = Xinv∪Yinv, and (X×Y )inv = Xinv×
Yinv. Let the function fix : BG → Z be defined by fix([X]− [Y ]) = |Xinv| − |Yinv|,
where X and Y are G-sets. Then fix is a ring homomorphism, which we refer to
as the projection map.

Another important example of a polynomial function is fix ◦xN : BG+ → Z,
where fix is the projection map. We will use xNinv to denote this invariant power
function. Both functions xN and xNinv appear in formulas in the sequel.

We will construct several more examples of polynomial functions, and prove
identities about them. Our main proof technique relies on the following lemma.

Lemma 5. Let FG : BG+ → BH be a function induced by F and EG : BG+ →
BH be a function induced by E. Suppose that, for every G-set X, we have F (X) ≃
G(X) as H-sets. Then FG = EG. Moreover, if FG is a polynomial function, then

so is EG.

Proof. Clearly for [X] ∈ BG+, we have FG([X]) = [F (X)] = [E(X)] = EG([X]).

One way to prove an equality of polynomials p(x) = q(x) combinatorially
is to find sets P (n) and Q(n) such that p(n) = |P (n)| and q(n) = |Q(n)| for
all positive integers n, along with a bijection between P (n) and Q(n) for all n.
Essentially Lemma 5 is the G-analog for our polynomial invariants: interpret both
sides of the identity as being induced functions, and find H-invariant bijections
F (X) ≃ G(X) for every G-set X. In most examples, either H is the trivial group,
or H = G.

Finally we discuss how to extend a polynomial function f : BG+ → R
into a polynomial function f : BG → R. Given a commutative cancellative
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monoidM , the Grothendieck group G(M) is the smallest abelian group containing
M . Elements of the Grothendieck group G(M) are equivalence classes of the
form a − b, where a, b ∈ M . The equivalence relation is given by requiring
a − b = c − d whenever a + d = b + c, where a, b, c, d ∈ M . The Grothendieck
group of the Burnside monoid is the Burnside ring BG. Given a polynomial
function f : M → R, there is a way to extend it to a polynomial function
f̃ : G(M) → R. Given a, b ∈ M , we know that the bth difference operator ∆b(f)
is a polynomial of lower degree than f . Hence by induction we may assume there
exists a polynomial function g : G(M) → R such that g(m) = ∆b(f)(m) for all
m ∈ M . We set f̃(a− b) = f(a)− g(a− b). Induction on the degree of f can be
used to prove that f̃ is well-defined. Thus, we have a way to talk about evaluating
a polynomial on negative G-sets. This corresponds to computing f(−[X]) where
X is a G-set.

We also have the following theorem.

Theorem 6. Let M be a commutative cancellative monoid, R be a commutative

ring, and let d be a nonnegative integer. Let f : M → Z and g : M → Z be

polynomial functions of degree d. Let f̃ : G(M) → Z and g̃ : G(M) → Z be their

extensions. Then f = g if and only if f̃ = g̃.

In particular, we always prove polynomial identities by restricting to BG+.

Proof. We prove the result by induction on degree. Suppose that f = g. Let
x ∈ BG. Then there exists y and z ∈ BG+ such that x = y− z. Then ∆z(f) has
an extension to G(M), which we denote by h. We have f̃(y−z) = f(y)−h(y−z).
We see that ∆z(f) = ∆z(g), so by induction h is also an extension for ∆z(g).
Thus f̃(y − z) = g̃(y − z).

The converse direction is immediate.

3. G-Invariant Graphs and Their Relation to Gain Graphs

In this section we define G-invariant graphs, review the definition of gain graphs,
describe the derived cover construction, and show that derived covers are G-
invariant graphs. We show that the derived covers of switching-equivalent gain
graphs are isomorphic as G-invariant graphs. Moreover, a G-invariant graph G
is the derived cover of a gain graph if and only if the group action is free on
both the vertices and edges of G. Finally, we discuss deletion and contraction for
G-invariant graphs and for gain graphs.

Recall that a multigraph G consists of a vertex set V (G), an edge set E(G)

and an endpoint mapping vG : E(G) →
((

V (G)
2

))
which sends an edge to its

multiset of endpoints. A link is an edge with two distinct endpoints, while a loop

has only one distinct endpoint.
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Let G be a group. Then a G-invariant graph is a graph G where V (G) and

E(G) are G-sets and vG : E(G) →
((

V
2

))
is an equivariant map. An isomorphism

ϕ : G → G′ between G-invariant graphs G and G′ is a pair of G-invariant bijec-
tions ϕV : V (G) → V (G′) and ϕE : E(G) → E(G′) such that, if e ∈ E(G) has
endpoints u and v, then ϕE(e) has endpoints ϕV (u) and ϕV (v). Equivalently,
vG′ ◦ ϕE = ϕV ◦ vG.

Naturally every graph is G-invariant when G is the trivial group. Given a
graph G, let S(G) be the set of automorphisms of G. Then G is also S(G)-
invariant. These form two classes of examples. A third class of examples comes
from derived covers of gain graphs.

A gain graph consists of an underlying graph |Σ| equipped with a gain func-

tion σ from an orientation of E to a group G. A gain graph is a graph where
each edge is given an orientation and a gain from G. Loops are defined to have
two possible orientations. Also we define σ(e−1) = σ(e)−1, where we view e−1 as
reversing the orientation on e.

There is an operation on gain graphs called switching. Given a gain graph Σ
and a function η : V → G, we define Ση to be a gain graph with |Ση| = |Σ| and
with gain function ση defined by setting ση(e) = η(u)−1σ(e)η(w) for an edge e
directed from u to w. Then Ση is the switching of Σ with respect to η. There are
many papers which study properties or invariants of gain graphs, and often the
property or invariant is preserved by switching operations. For instance, there
is the notion of balance in signed graphs [5], the study of frustration index [2],
and the chromatic polynomial of a gain graph [?]. One philosophy in the study
of gain graphs is that the ‘interesting’ invariants or properties are those that are
invariant under switching equivalence.

To any gain graph Σ we associate a natural G-invariant graph Σ̃, known in
the literature as the derived cover. The vertex set of Σ̃ is G×V (Σ), and the edge
set is G×E(Σ), where in both cases the group action is by left multiplication on
the first coordinate. Given an edge e, oriented from a vertex u to a vertex w, we
define v

Σ̃
(g, e) = {(g, u), (gσ(e), w)}. The derived cover is a G-invariant graph.

Our definition suggests that each orientation on e gives a different set of edges,
however we also require that (g, e−1) = (gσ(e)−1, e) for every edge e and every
g ∈ G.

Let Σ be a gain graph, and let σ be a switching function. We show that Σ
and Ση are isomorphic as G-invariant graphs.

Proposition 7. Let Σ be a gain graph, and let η : V → G. Define ϕV : V (Σ̃) →

V (Σ̃η) by ϕV (g, v) = (gη(v), v) for v ∈ V . For an edge e oriented from u to w,

let ϕE(g, e) = (gη(u), e). Then the pair (ϕV , ϕE) is an isomorphism ϕ : Σ̃ → Σ̃η

of G-invariant graphs.

Proof. Observe that ϕV is an isomorphism of G-sets. Similarly, ϕE is an isomor-
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phism of G-sets. Thus we need to show that v
Σ̃η ◦ ϕE = ϕV ◦ vΣ. Let e ∈ E(Σ)

be an edge oriented from u to v and let g ∈ G. Then ϕE(g, e) = (gη(u), e)
with endpoints (gη(u), u) and (gη(u)ση(e), v). However, by definition of ση(e),
the last vertex is equal to (gσ(e)η(v), v). The endpoints of (g, e) are (g, u)
and (gσ(e), v), which are mapped by ϕV to (gη(u), v) and (gσ(e)η(v), v). Thus
v
Σ̃η ◦ ϕE = ϕV ◦ v

E(Σ̃)
.

In some sense, this suggests that many ‘interesting’ gain graph invariants un-
der switching equivalence might have extensions to G-invariant graph invariants.

We can classify which G-invariant graphs are derived covers of gain graphs.

Theorem 8. Let G be a group and let G be a G-invariant graph. Then there

exists a gain graph Σ such that G ∼= Σ̃ if and only if G acts freely on V (G) and

E(G).

Proof. First, suppose there exists a gain graph Σ such that G ∼= Σ̃. By con-
struction, G acts freely on V (Σ̃) and E(Σ̃), so G also acts freely on V (G) and
E(G).

Now suppose thatG acts freely on V (G) and E(G). Let V (Σ) be a transversal
of V (G) under G. Let E/G = {E1, . . . , Em}. Given an orbit Ei ∈ E/G, there
exists at least one e ∈ Ei such that vG(e) ∩ V (Σ) 6= ∅. For each orbit Ei, choose
ei ∈ Ei such that vG(ei)∩ V (Σ) 6= ∅. Since G acts freely on V (G), and V (Σ) is a
transversal, there exists at least one choice of ei. Let E(Σ) = {e1, . . . , em}. Thus
we have defined the vertices and edges of Σ.

Now we define the endpoint function vΣ and the gain function σ. Given
e ∈ E(Σ), we know vG(e) = {v, w} where v ∈ V (Σ). Since G acts freely on V (G),
there exists a unique g ∈ G such that g−1w ∈ V (Σ). Then set vΣ(e) = {v, g−1w}
and set σ(e) = g. Note that we have oriented e from v to w.

We claim that G is isomorphic to Σ̃ as a G-invariant graph. We define the
map fV : V (Σ̃) → V (G) by fV (g, v) = g · v. Similarly, we define the map
fE : E(Σ̃) → E(G) by fE(g, e) = g · e. By construction, both fV and fE are
isomorphisms of G-sets.

Let e ∈ E(Σ). Then vG(e) = {v, w} where v ∈ V (Σ). There exists a unique
h ∈ G with h−1w ∈ V (Σ). As an edge of Σ̃, the edge (g, e) has endpoints (g, v)
and (gσ(e), h−1w). Clearly fV (g, v) = gv. Moreover, fE(g, e) = g · e, which has
endpoints gv and gw. It remains to show that gw = gσ(e)h−1w. By definition,
σ(e) = h and the result follows. Thus (fv, fE) is an isomorphism of G-invariant
graphs.

We review deletion and contraction for gain graphs. For a gain graph Σ
and an edge e, Σ − e is defined by deleting the edge e, but not its endpoints.
Contraction for gain graphs is defined up to switching operations. For an edge e
with σ(e) = 1, we define Σ/e by identifying the endpoints of e, and then deleting
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the edge e. Given a non-loop edge e, if σ(e) 6= 1, then we first choose a switching
function η such that ση(e) = 1. Then Σ/e = Ση/e. Note that the resulting
graph depends on the choice of switching function η. However, up to switching
equivalence, Σ/e is well-defined. We do not contract loops in this paper.

We define the operations of deletion and contraction for edge orbits. The
definition is given regardless of whether or not the edge is a link or a loop.
Our definition also does not require performing switching operations, unlike the
definition for gain graphs. Let G be a G-invariant graph. Given an edge orbit
G(e) ∈ E/G, we define the deletion G−G(e) to be the G-invariant graph (V,E \
G(e), v|E\G(e)), where v|E\G(e) denotes restriction. Note that we are deleting an

entire orbit. For a gain graph Σ, and an edge e ∈ E(Σ), we have Σ̃− e =
Σ̃−G(1, e).

Given a set S ⊆ E/G, we can define contraction with respect to S. First
we define a symmetric relation ∼. We declare that u ∼ v if the vertices u and
v are both endpoints of an edge e where G(e) ∈ S. Then we take the transitive
closure of ∼ to get an equivalence relation that we also denote by ∼. Define
V/S to be the set of equivalence classes of ∼, and let [v] be the equivalence class
of v ∈ V . We define E \ S to be the set of edges e for which G(e) 6∈ S. For
e ∈ E \ S, if vG(e) = {u, v}, then we define vG/S(e) = {[u], [v]}. We define
the contraction of G with respect to S, denoted by G/S, to be the G-invariant
graph (V/S,E \ S, vG/S). Given a gain graph Σ, and a non-loop edge e, we have

Σ̃/e = Σ̃/G(1, e).

In Figure 2, we show an example of deletion and contraction. Both come
from the graph in Figure 1, whose vertices are 0, 1, 2, 3. The underlying group is
Z4, acting via rotation.

0

1

2

3

Figure 1. A Z4-invariant graph G, with a marked edge orbit [e] that is indicated by
dashed lines.

Finally, a loop orbit is an orbit O ⊆ E such that every edge in O is a loop. We
will see that loop orbits play the same role for the Burnside chromatic polynomial
that loops play for the chromatic polynomial.
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0

1

2

3

{0, 2}

{1, 3}

Figure 2. The deletion G−G(e), and contraction G/G(e).

4. Chromatic Polynomial

Now we define the chromatic polynomial of a G-invariant graph G, which gen-
eralizes the Q-chromatic function of Zaslavsky. The idea is to find a polynomial
invariant whose domain and codomain are the Burnside ring, just as the ordinary
chromatic polynomial has domain Z and codomain Z. Given a set X, and a func-
tion κ : V → X, we say an edge e is monochromatic under κ if κ(u) = κ(v), where
u and v are the endpoints of e. We say an edge orbit G(e) is monochromatic if
every edge in the orbit is monochromatic. The function κ : V → X is a proper

coloring if there are no monochromatic edge orbits under κ. It is possible for a
coloring to be proper even if there are some monochromatic edges.

Suppose that X is a right G-set. Then the set B(G,X) of proper colorings
has a natural right G-action given by letting κg(v) = κ(gv)g for any g ∈ G and
any κ ∈ B(G,X).

Let X ′ be another G-set, and let ϕ : X → X ′ be an isomorphism. Given a
coloring κ ∈ B(G,X), it follows that ϕ ◦ κ ∈ B(G,X ′). Moreover, the two G-
sets B(G,X) and B(G,X ′) are isomorphic. We let BG(G, x) denote the induced
function from BG+ to BG. We call BG(G, x) the chromatic polynomial due to
the following theorem.

Theorem 9. Let G be a G-invariant graph. Then BG(G, x) is a polynomial

function of x. Moreover, BG(G, x) has degree 0 if and only if there is an orbit of

E consisting entirely of loops. Otherwise BG(G, x) has degree |V |.
Moreover, BG(G, x) can be computed recursively. If there are no edges, then

BG(G, x) = xV (G). Otherwise

BG(G, x) = BG(G−O, x)−BG(G/O, x)

for any orbit O ∈ E(G)/G.
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Proof. We prove the result by induction on the number of edges of G. First
suppose that there are no edges. Then every function is a proper coloring and
BG(G, x) = xV (G).

Now we prove the deletion-contraction recurrence. Let X be a right G-set,
and let O ∈ E/G. Observe that B(G,X) is a G-stable subset of B(G − O,X).
We claim that B(G/O,X) is isomorphic to B(G − O,X) \ B(G,X) as a right
G-set. Then by Lemma 5 we have BG(G/O, x) = BG(G−O, x)−BG(G, x), and
the result follows.

Let κ ∈ B(G/O,X). We define ϕ(κ) ∈ B(G − O,X) as follows. For v ∈
V (G), let [v] be the equivalence class of v in V (G/O). Then let ϕ(κ)(v) =
κ([v]). We claim that ϕ(κ) is a proper coloring of G − O. If not, then there is
a monochromatic edge orbit O′ in G − O. Let e ∈ O′ with endpoints u and v.
Then ϕ(κ)(u) = ϕ(κ)(v). However, this implies that κ([u]) = κ([v]), and that
e is a monochromatic edge in G/O. Thus O′ is a monochromatic edge orbit in
G/O, contradicting the fact that κ is a proper coloring of G/O.

We also claim that ϕ(κ) is not a proper coloring of G. This is because O
is monochromatic under κ. Thus we have a function ϕ : B(G/O,X) → B(G −
O,X) \ B(G,X). This function is a bijection, since any coloring κ of G that
is proper other than the monochromatic orbit edge-orbit O induces a proper
coloring of the contraction G/O. Moreover, ϕ is an isomorphism of right G-sets.

The deletion-contraction recurrence implies that BG(G, x) is a polynomial.
If G has a loop orbit O, then B(G,X) = ∅ for any G-set X, as any X-coloring
would leave O monochrome. Hence BG(G, x) = 0 in that case. So suppose G has
no loop orbit, and let O ∈ E/G. Then BG(G−O, x) also has no loop orbit, and
hence by induction has degree |V |. Similarly, BG(G/O, x) will have degree that
is strictly less than |V |, since V/O has at least one fewer vertex. Thus BG(G, x)
also has degree |V |.

There is a specialization of the Burnside chromatic polynomial, which we
call the G-invariant chromatic polynomial. We let Binv(G,X) be the set of G-
invariant proper colorings of G. This comes with an action by the trivial group,
so there is an induced function Binv

G (G, x) : BG+ → Z. By the way G acts
on B(G,X), we also have Binv

G (G, x) = Fix ◦BG(G, x). The reader can verify
that Binv

G (G, x) is a polynomial function. Moreover, if G has no loop orbit, then
Binv

G (G, x) has degree |V (G)/G|. Given a right G-set Q, we see that Q is also
a left G-set with action gx = xg−1 for g ∈ G and x ∈ Q. Then a coloring
f ∈ BG(G,Q) is in Binv

G (G,Q) if and only if it G-invariant with respect to the
left action on Q.

Now we discuss how we can obtain Zaslavsky’s Q-chromatic function from
the Burnside chromatic polynomial. Let Σ be a gain graph with gain function
σ, let Q be a right G-set, and let f : V (Σ) → Q. We define Σ−1 to be the gain
graph with gain function σ−1(e) = (σ(e))−1 for all e ∈ E. Naturally, given a
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function f : V (Σ) → Q, we can define another function f̃ : V (Σ̃) → Q, given
by f̃(g, u) = f(u)g. Then f̃ is a G-invariant function. Moreover, f is a proper
coloring if and only if f̃ is a proper coloring. Finally, let h be a G-invariant proper

coloring of Σ̃−1. Define h : V (Σ) → Q by h(v) = h(1, v). Then h = (̃h), and h is
a proper coloring of Σ. Thus we have proven the following result.

Proposition 10. Let Σ be a gain graph with gain group G. Let Q be a finite

right G-set. Then P (Σ, Q) = Binv
G (Σ̃−1, Q).

The next result follows from a standard inclusion-exclusion argument. It
generalizes Theorem 4 in [11].

Theorem 11. Let G be a G-invariant graph. Then

BG(G, x) =
∑

A⊆E/G

(−1)|A|xV/A

and

Binv
G (G, x) =

∑

A⊆E/G

(−1)|A|x
V/A
inv .

Zaslavsky found a similar formula for P (Σ, Q) when Σ is a gain graph. His
formula is essentially given by applying our formula when G = Σ̃, and replacing
xV/A with the number of fixed points of QV/A. We say essentially because he
replaces QV/A with the number of fixed points of QV (Σ) under an action of the
fundamental group, see [11] for details. However, in both cases one is counting the
number of functions f : V (Σ) → Q where the edges of A ⊆ E(Σ) are monochrome.

Proof. Given A ⊆ E/G, let C(G,A,X) be the set of functions κ : V → X such
that an edge orbit O ∈ E/G is monochrome if and only if O ∈ A. If X and Y are
isomorphic right G-sets, then C(G,A,X) ≃ C(G,A, Y ). Let CG(G,A, x) denote
the induced function from BG+ to BG.

Given A ⊆ E/G, let

CA(G,X) =
⋃

B:A⊆B⊆E/G

C(G,B,X).

Then CA(G,X) is also a G-set. Moreover, if X and Y are isomorphic G-sets, then
CA(G,X) ≃ CA(G, Y ). We claim that XV/A ≃ CA(G,X) as right G-sets. Given
f : V/A → X, we define ϕ(f) : V → X by requiring ϕ(f)(v) = f([v]), where [v]
is the equivalence class of v. Let B ⊂ E/G be the set of edge orbits of G that
are monochrome under f . We observe that A ⊆ B, and thus ϕ(f) ∈ C(G,B,X).
Moreover, for g ∈ G, ϕ(fg) = ϕ(f)g. Thus we have defined a homomorphism of
G-sets between XV/A and CA(G,X). The function ϕ has an inverse: given a set
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B ⊆ E/G containing A, and f ∈ C(G,B,X), observe that f is constant on the
equivalence classes of V/A. Hence f = ϕ(h) for a unique h : V/A → X.

Therefore by Lemma 5, we have

xV/A =
∑

B:A⊆B⊆E/G

CG(G,B, x).

Then the principle of inclusion-exclusion implies that

CG(G,A, x) =
∑

B:A⊆B⊆E/G

(−1)|B|−|A|xV/B.

We obtain our result from observing that BG(G, x) = CG(G, ∅, x).
The proof that

Binv
G (G, x) =

∑

A⊆E/G

(−1)|A|x
V/A
inv

is similar. Since we have shown that XV/A ≃ CA(G,X) as right G-sets, it follows
that Fix(XV/A) ≃ Fix(CA(G,X)) as sets. Then we have

x
V/A
inv =

∑

B:A⊆B⊆E/G

fix(CG(G,B, x)).

The principle of inclusion-exclusion implies that

Fix(CG(G, ∅, x)) =
∑

A⊆E/G

(−1)|A|x
V/A
inv .

Then we observe that a fixed point of CG(G, ∅, X) is a G-invariant function with
no monochrome edge orbit. Hence Fix(CG(G, ∅, x)) = Binv

G (G, x).

5. Lattice of Flats

In this section, we discuss a generalization of the lattice of flats of a graph. We
call our generalization the lattice of G-flats of the G-invariant graph G, and
denote it by LclG(G). We derive a formula for BG(G, x) in terms of the Möbius

function of LclG(G). We also prove that LclG(Σ̃) is isomorphic to the lattice of
fundamentally closed flats introduced by Zaslavsky. All undefined terminology
about posets, lattices, and Möbius functions can be found in Stanley [8] or in
Rota [6].

A closure operator on the boolean lattice is a function cl : 2X → 2X that
satisfies all of the following conditions.
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1. For A ⊆ B ⊆ X, we have cl(A) ⊆ cl(B).

2. For A ⊆ X, we require A ⊆ cl(A).

3. For A ⊆ X, we require cl2(A) = cl(A).

Given a closure operator cl, a subset A is closed if cl(A) = A. Let Lcl be the
set of closed subsets, called flats, ordered by inclusion. Then Lcl is a lattice. We
let µ be the Möbius function of the resulting lattice. We mention a result from
Rota [6] which we will use.

Proposition 12. Let cl be a closure operator on 2X , and let A and B be closed

subsets of X. Then

µ(A,B) =
∑

C:A⊆C⊆B

(−1)|C|−|A|.

Now we define a closure operator on E/G. Given a set S ⊆ E/G, an S-loop
is an edge orbit G(e) ∈ E/G \ S such that [V/(S ∪G(e))] = [V/S]. The closure

of S is the set

clG S = {G(e) : G(e) is an S-loop}.

This is a closure operator on the power set of E/G. We refer to the closed sets
as G-flats. The minimum element, denoted by 0̂, is the closure of the empty set.
The following is a formula for the Burnside chromatic polynomial of a G-invariant
graph in terms of the lattice of flats LclG(G). It generalizes the corresponding
formula of Zaslavsky.

Theorem 13. Let G be a G-invariant graph with no loop orbits. Then

BG(G, x) =
∑

A∈LclG
(G)

µ(0̂, A)xV/A

and

Binv
G (G, x) =

∑

A∈LclG
(G)

µ(0̂, A)x
V/A
inv

Proof. We only prove the first equation. The second equation has a similar
proof. Observe that, for A ⊆ E/G, V/A = V/ clG(A). Thus,

BG(G, x) =
∑

A⊆E/G

(−1)|A|xV/A =
∑

A∈L(G)

∑

B:clG(B)=A

(−1)|B|xV/A.

Thus it suffices to show that
∑

B⊆E/G:clG(B)=A(−1)|B| = µ(0̂, A). The result
follows from Proposition 12.
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We discuss fundamental closure for gain graphs, which is denoted by fcl, and
show how fundamental closure for a gain graph Σ is equivalent to the closure oper-
ator we just defined on Σ̃. To prevent confusion, we use cl to refer to graphic clo-
sure of a graph. For a walk W = (e1, . . . , ek) in σ, we let σ(W ) = σ(e1) · · ·σ(ek).
Let A ⊆ E(Σ) and let A1, . . . , Am be the connected components of the graph
(V (Σ), A). For each connected component Ai, fix a rooted spanning tree Ti with
root vertex ri. For any e ∈ clA, there exists an i = i(e) such that the endpoints
of e belong to Ai. We will use i(e) when we need to make the dependence of i
on e explicit. There is a unique minimal closed walk We in Ti ∪ {e} from ri to ri
that contains both endpoints of e. Let H(ri, Ti) = 〈σ(We) : e ∈ E(Ai) \ E(Ti)〉.
Then fundamental closure is defined by

fcl(A) = {e ∈ clA : σ(We) ∈ H(ri(e), Ti(e))}.

Zaslavsky proved that fcl(A) does not depend on the choice of rooted spanning
trees.

Zaslavsky shows that the fundamentally closed subsets of a gain graph form
a lattice, which we denote by Lfcl(Σ). We show that the resulting lattice is
isomorphic to LclG(Σ̃).

Theorem 14. For a set A ⊆ E(Σ), let f(A) = (G × A)/G. Then f : 2E(Σ) →

2E(Σ̃)/G is a bijection. Moreover, f(fcl(A)) = clG(f(A)), and hence Lfcl(Σ) ≃
LclG(Σ̃) as lattices.

Proof. As in the definition of fundamental closure, let A1, . . . , Am be the com-
ponents of A. Assume we have a spanning tree Ti and a root vertex ri in every
component Ai. We let F denote the spanning forest that is the union of all the
trees Ti. Given A ⊆ Σ, we let Ã = (G×A)/G.

Let G(e) ∈ clG(Ã) \ Ã. Suppose that (1, e) is directed from (1, s) to (σ(e), t)
for vertices s, t ∈ V (Σ). Then there exist a sequence v1, . . . , vk of vertices in Σ,
edges e1, . . . , ek−1 of Σ \ {e}, and group elements g1, . . . , gk such that

1. (gi, ei) has endpoints (gi, vi) and (gi+1, vi+1),

2. (g1, v1) = (1, s), and

3. (gk, vk) = (σ(e), t).

We are assuming, without loss of generality, that each edge ei is oriented from
vi to vi+1. Let r be the root of the component of A containing s. Letting P be
the path e1, . . . , ek, we have σ(P ) = σ(e). Observe that the walks We1 , . . . ,Wek

together form a walk W , and σ(W ) = σ(We1) · · ·σ(Wek). This walk W is We if
ei is in F for every ei. We proceed to show that σ(W ) = σ(We) even when that
condition is not met.

Since ei and ei+1 share the vertex vi+1, the walk W contains the closed walk
Li from vi+1 to r to vi+1, consisting only of edges from the spanning forest F .
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Thus σ(Li) = 1. Moreover, W = Re1L1e2L2 · · ·Lk−1ekQ
−1 where R is the path

from the root r to v1 using only edges from F and Q is the path from the root
r to vk+1 using only edges from F . Then σ(W ) = σ(R)σ(e1) · · ·σ(ek)σ(Q)−1.
However, σ(e1) · · ·σ(ek) = σ(e). Hence σ(W ) = σ(R)σ(e)σ(Q)−1 = σ(We).
Thus e ∈ fcl(A).

Observe that, given any walk W in Σ between vertices u and v, there is a
corresponding walk gW̃ in Σ̃ from (g, u) to (gσ(We), v). We utilize this observa-
tion to show that e ∈ fcl(A) implies that the endpoints of (1, e) lie in the same
component of Σ̃/Ã. Note that the derived cover of a connected graph is not nec-
essarily connected: if Σ is a gain graph whose gains are all 1, then Σ̃ is a disjoint
union of |G| copies of Σ.

Now let e ∈ fcl(A) \ A. Assume e is directed from s to t. Let P be the
path from the root r to s, and let Q be the path from the root r to t. Since
e ∈ fcl(A), σ(We) = σ(We1) · · ·σ(Wek) for some edges e1, . . . , ek. Thus σ(e) =
σ(P )−1σ(We1) · · ·σ(Wek)σ(Q). Let gi = gi−1σ(Wei), with g0 = σ(P )−1. Then

gi−1W̃ei is a walk from (gi−1, r) to (gi, r). Thus P̃
−1, followed by g0W̃e1 , g1W̃e2 ,

. . ., gk−1W̃ek , and ending with gkQ̃ forms a walk from (1, s) to (σ(e), t), using

only edges from Ã. Hence G(e) ∈ cl(Ã).

Thus we have shown that G(e) ∈ clG(f(A)) if and only if e ∈ fcl(A). The
latter condition is true if and only if G(e) ∈ f(fcl(A)), so we have clG(f(A)) =
f(fcl(A)).

Moreover, if A is fundamentally closed, then clG(f(A)) = f(fcl(A)) = f(A),
so f(A) is also closed. Similarly, if f(A) is closed, then f(fcl(A)) = clG(f(A)) =
f(A). Since f is injective, this implies that fcl(A) = A. Thus when we restrict f
to the fundamentally closed subsets of Σ, the result is a bijection between Lfcl(Σ)
and LclG(Σ̃). Moreover, if A ⊆ B, we have f(A) ⊆ f(B). Thus we see that the
restriction of f to the lattices of closed sets is an isomorphism.

Zaslavsky mentions that very little is known about the lattice of fundamen-
tally closed sets for gain graphs. We mention two families of examples. First,
given a finite group G, consider the gain graph Σ(G) on one vertex which has one
loop edge of gain g for each g ∈ G except the identity element. The fundamen-
tally closed sets of Σ(G) then correspond to subgroups of G, so Lfcl(Σ(G)) is the
lattice of subgroups of G. Thus the lattice of fundamentally closed sets, and the
lattice of G-flats generalizes both lattices of subgroups and geometric lattices.

It is known that the lattice of flats of a graph is graded, semimodular, and
atomic. However, there are groups G whose subgroup lattices fail to have these
properties. Thus, these properties do not always hold for the lattice of funda-
mentally closed edge sets of a gain graph. Of course, one may wonder if the
properties hold if G is abelian. We give three examples where these conditions
fail and where G is a cyclic group.
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As a first example, let G = Z4, and let V = Z4 ×{a, b}, where G acts on the
first coordinate. Let K4,4 be the complete bipartite graph on V with bipartition
given by the second coordinate; two vertices are in the same part if and only if
they have the same second coordinate. Let G be the resulting Z4-invariant graph.
We show that LclG(G) is not semimodular.

We let ei be the edge with endpoints (0, a) and (i, b). Observe that V (K4,4)
has two orbits under this action. Let G′ = K4,4/[e0], and observe that Z4 acts
transitively on V (K4,4/[e0]). We can label the vertices V (K4,4/[e0]) by 0, 1, 2, and
3 such that Z4 acts as modular addition. The graph G′ appears in Figure 3. There
are three edge orbits, [e1], [e2], and [e3]. We see that G′/[e1] has only one vertex,
and many loops. Hence {[e0], [e1]} is not a Z4-flat, because K4,4/{[e0], [e1]} ≃
K4,4/{E}.

0

1

2

3

Figure 3. The graph G′. The solid edges are in [e1], the dotted edges are in [e2], and the
dashed edges are in [e3].

On the other hand, in G′ the edges of [e2] correspond to diagonals of the 4-
cycle. There are thus two components of G′/[e2] and no loops. We observe that
{[e0], [e2]} is a Z4-flat. Moreover, K4,4/[ei] is isomorphic to K4,4/[e0]. Hence,
{[ei], [ei+2]} is a Z4-flat for all i. We obtain the lattice on the left in Figure 4.

∅

{[e0]}{[e2]}{[e1]}{[e3]}

{[e0], [e2]} {[e1], [e3]}

E

∅

{[e0]}{[e2]} {[e3]}

{[e0], [e2]}

E

Figure 4. The lattice of G-flats for two different graphs.
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This lattice is graded, but the ranks of {[e1]} and {[e2]} are both one, while the
rank of their join is 3. Thus, the lattice fails to be semi-modular.

Now we give an example of a graph G whose lattice of Z4-flats fails to be
graded. Let G = K4,4 − [e1]. Again, the graph G/{[e0], [e3]} contains loops and
is not a Z4-flat. We obtain the lattice on the right in Figure 4. The lattice is not
graded.

Finally, the lattice of subgroups of Z4 is not atomic. It would be interesting
to determine what conditions on the group G force the lattice LclG(G) to be
graded for every G-invariant graph G.

6. A Combinatorial Reciprocity Theorem

In this section we prove a combinatorial reciprocity theorem for G-invariant chro-
matic polynomials similar to Stanley’s theorem for acyclic orientations [9]. Un-
fortunately, we do not have any combinatorial reciprocity result for BG(G,−x).
However we do have a reciprocity result for (−1)|V/G|Binv

G (G,−x). Here we view
Binv(G,X) as the set of G-invariant X-colorings.

Recall that an acyclic orientation of an ordinary graph H is an orientation O
of H that does not contain a directed cycle. Given a G-invariant graph G and a
G-set X, we define an acyclic X-coloring to be a pair (κ,O) where κ : V → X is
a G-invariant function and O is a G-invariant acyclic orientation of the subgraph
of monochrome edges of κ. Let A(G,X) be the set of acyclic X-colorings. Then
if X and Y are isomorphic as G-sets, we have A(G,X) ≃ A(G, Y ). Thus there
is an induced function AG(G, x) : BG+ → Z. This function is a polynomial
function in x. By definition, A(G,X) is the set of acyclic X-colorings of G, and
by construction AG(G, [X]) is the number of acyclic X-colorings.

We state our combinatorial reciprocity theorem.

Theorem 15. Let G be a G-invariant graph, and let X be a G-set. Then

AG(G, x) is a polynomial function and

(−1)|V/G|Binv
G (G,−x) = AG(G, x).

First, observe that Theorem 2 follows from Theorem 15 by choosing x ∈
BG+, as in that case AG(G, x) is the number of acyclic colorings. By Theorem
6, we only need to prove the result for x ∈ BG+. Our proof relies on an identity
that is similar to the binomial theorem. For a G-invariant graph G and S ⊆ V/G,
we define the induced subgraph GS as follows. The vertex set of GS is

⋃
[v]∈S [v]

and the edge set of GS is {f ∈ E : vG(f) ⊆ V (GS)}. We also let Sc = (V/G) \S.

Proposition 16.

Binv
G (G, x+ y) =

∑

S⊆V/G

Binv
G (GS , x)B

inv
G (GSc , y).
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Proof. By Theorem 6, it suffices to prove the result for x ∈ BG+ and y ∈ BG+.
We prove the resulting combinatorially by applying Lemma 5, as both sides are
induced functions. Given a coloring κ of G with colors in X ∪Y , with X ∩Y = ∅,
we define T = κ−1(X). Then T is a G-invariant subset of V , since κ is G-
invariant. We let S = T/G. Then κ|S is a proper G-invariant coloring of GS , and
κ|Sc is a proper G-invariant coloring of GSc . Thus we have defined a bijection φ
from Binv(G,X ∪ Y ) to

⋃
S⊆V/GBinv(GS , X)×Binv(GSc , Y ).

Now, fix X ∈ BG+. Then we have

Binv
G (G, [X] + y) =

∑

S⊆V/G

Binv
G (GS , [X])Binv

G (GSc , y).

In particular, if we set fX(y) = BG([X]+y), then fX(y) is a polynomial function
with domain BG+. Now we extend the domain of fX to BG. Since the equality
in Proposition 16 holds for all y ∈ BG+, the identity also holds for all y ∈ BG.

Now we set y = −[X]. On one hand, we have

fX(−[X]) = Binv
G (G, [X]− [X]) = Binv

G (G, 0) = 0.

On the other hand,

fX(−[X]) =
∑

S⊆V/G

Binv
G (GS , [X])Binv

G (GSc ,−[X]).

Since Binv
G (∅, [X]) = 1 for all X, we have proven the following theorem.

Lemma 17. Let G be a G-invariant graph with at least one vertex, and let X be

a G-set. Then

BG(G,−[X]) = −
∑

S⊆V/G,S 6=∅

Binv
G (GS , [X])Binv

G (GSc ,−[X]).

Lemma 18. Let AG(G,X) be the number of acyclic X-colorings. If G has at

least one vertex, then

(1)
∑

S⊆V/G

(−1)|V/G|−|S|Binv
G (GS , [X])AG(GSc , [X]) = 0.

Proof. Given an acyclicX-coloring (ν,O) ofG, let S(O) denote the set of sources
of O. Since O is G-invariant, G acts on S(O). Let AS(G,X) denote the set
of acyclic X-colorings (ν,O) where S ⊆ S(O)/G. We prove that B(GS , X) ×
A(GSc , X) ≃ AS(G,X).
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Fix a set S ⊆ V/G. Then Binv(GS , X) × A(GSc , X) is the set of triples
(λ, κ,O) where λ is a G-invariant X-coloring of GS and (κ,O) is an acyclic X-
coloring of GSc . Define a function ν : V → X by ν(v) = λ(v) when v is in an
orbit of S, and ν(v) = κ(v) otherwise. Then ν is also G-invariant. Moreover, any
monochrome edge of ν must have an endpoint in Sc, as otherwise we would obtain
a monochrome edge with respect to λ. Since the functions are G-invariant, this
would imply that λ has a monochrome edge orbit, and hence was not a proper
X-coloring. Thus every monochrome edge for ν must have at least one endpoint
v such that G(v) 6∈ S.

Now we extend the orientation O from the monochrome edges of κ to the
monochrome edges of ν. It suffices to orient monochrome edges with one endpoint
in an orbit of S. Given a monochrome edge e from u to v, where u is in an orbit
of S, we orient e from u to v so that (u, v) ∈ O′. We claim that O′ is G-invariant.
Clearly if (u, v) ∈ O and g ∈ G, then (gu, gv) ∈ O, since O is already G-invariant.
Let (u, v) ∈ O′ \ O. By the definition of O′, G(u) ∈ S and G(v) 6∈ S. Hence
(gu, gv) ∈ O′. Thus O′ is G-invariant. We have also made all the vertices in S
that are endpoints of monochromatic edges into sources. Adding new sources to
an acyclic digraph does not create a directed cycle, and hence O′ is also acyclic.
Therefore (ν,O′) is an acyclic X-coloring. Moreover, every vertex v whose orbit
is in S is also a source of O′. This is either because v is the endpoint of a
monochromatic edge, or because vertices that are not incident to any directed
edge are still technically sources. Hence (ν,O′) ∈ AS(G,X).

To any triple (λ, κ,O) in Binv(GS , X)A(GSc , X), we have associated a pair
(ν,O) ∈ TS where S ⊆ S(O)/G. It is easy to see that this construction yields a
bijection between Binv(GS , X)×A(GSc , X) and AS(G,X).

Hence
∑

S⊆V/G

(−1)|V/G|−|S|BG(GS , [X])AG(GSc , [X])(2)

= (−1)|V/G|
∑

S⊆V/G

(−1)|S||AS(G,X)|(3)

= (−1)|V/G|
∑

S⊆V/G

∑

(ν,O)∈AS(G,X)

(−1)|S|(4)

= (−1)|V/G|
∑

(ν,O)∈A(G,X)

∑

S⊆S(O)/G

(−1)|S|.(5)

Since a fixed (ν,O) ∈ A(G,X) must have sources, it follows that S(O) 6= ∅.
Hence we have ∑

S⊆S(O)/G

(−1)|S| = 0.

Hence the inner summation in Equation (5) is zero, so the summation in Equation
(2) is also zero.
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Proof of Theorem 15. We prove the result by induction on the number of
vertices of G. If G has more than one vertex, then we see that

(−1)|V/G|AG(G, [X]) = −
∑

S⊆V/G:S 6=∅

(−1)|V/G|−|S|Binv
G (GS , [X])AG(GSc , [X])

= −
∑

S⊆V/G

Binv
G (GS , [X])Binv

G (GV/G\S ,−[X])

= BG(G,−[X])

where the first equality follows from Equation (1), the second equality follows
from the inductive hypothesis, and third equality follows from Lemma 17. Then
we have proven the identity for [X] ∈ BG+. Thus AG(G, x) is a polynomial
function, and the domain of AG(G, x) can be extended to all of BG. By Theorem
6, we have (−1)|V/G|AG(G, x) = BG(G,−x) for all x ∈ BG.

Proof Sketch of Theorem 1. Theorem 1 essentially follows from Theorem 2.
The key insight is that there is a natural bijection between acyclic orientations
of Σ and G-invariant acyclic orientations of Σ̃. The rest follows from Theorem 2

and the fact that P (Σ, Q) = BG(Σ̃−1, Q).

7. A New Tantalizing Question

In the spirit of Zaslavsky [11], we also will end with a tantalizing question: is there
a universal Tutte invariant for the deletion-contraction recurrence for Burnside-
chromatic polynomials? What properties does it satisfy? It is no longer a matroid
invariant, but certainly there is some interesting generalization.

Another interesting question is to determine which theorems for gain graphs
generalize to G-invariant graphs. Here we are identifying gain graphs with their
derived covers, which is sensible for theorems that hold up to switching equiva-
lence.
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