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Abstract

An orientation of a graph is semi-transitive if it is acyclic, and for any
directed path v0 → v1 → · · · → vk either there is no arc between v0 and vk,
or vi → vj is an arc for all 0 ≤ i < j ≤ k. An undirected graph is semi-
transitive if it admits a semi-transitive orientation. Semi-transitive graphs
generalize several important classes of graphs and they are precisely the class
of word-representable graphs studied extensively in the literature.

Determining if a triangle-free graph is semi-transitive is an NP-hard prob-
lem. The existence of non-semi-transitive triangle-free graphs was estab-
lished via Erdős’ theorem by Halldórsson and the authors in 2011. However,
no explicit examples of such graphs were known until recent work of the first
author and Saito who have shown computationally that a certain subgraph
on 16 vertices of the triangle-free Kneser graphK(8, 3) is not semi-transitive,
and have raised the question on the existence of smaller triangle-free non-
semi-transitive graphs. In this paper we prove that the smallest triangle-
free 4-chromatic graph on 11 vertices (the Grötzsch graph) and the smallest
triangle-free 4-chromatic 4-regular graph on 12 vertices (the Chvátal graph)
are not semi-transitive. Hence, the Grötzsch graph is the smallest triangle-
free non-semi-transitive graph. We also prove the existence of semi-transitive
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graphs of girth 4 with chromatic number 4 including a small one (the circu-
lant graph C(13; 1, 5) on 13 vertices) and dense ones (Toft’s graphs). Finally,
we show that each 4-regular circulant graph (possibly containing triangles)
is semi-transitive.

Keywords: semi-transitive orientation, triangle-free graph, Grötzsch graph,
Mycielski graph, Chvátal graph, Toft’s graph, circulant graph, Toeplitz
graph.
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1. Introduction

An orientation of a graph is semi-transitive if it is acyclic, and for any directed
path v0 → v1 → · · · → vk either there is no arc between v0 and vk, or vi → vj
is an arc for all 0 ≤ i < j ≤ k. An undirected graph is semi-transitive if it
admits a semi-transitive orientation. The notion of a semi-transitive orientation
generalizes that of a transitive orientation; it was introduced by Halldórsson,
Kitaev and Pyatkin [10] in 2011 as a powerful tool to study word-representable

graphs defined via alternation of letters in words and studied extensively in recent
years (see [14, 15]). The hereditary class of semi-transitive graphs is precisely
the class of word-representable graphs, and its significance is in the fact that
it generalizes several important classes of graphs. In particular, we have the
following useful fact.

Theorem 1 [11]. Any 3-colourable graph is semi-transitive.

A shortcut C in a directed acyclic graph is an induced subgraph on vertices
{v0, v1, . . . , vk} for k ≥ 3 such that v0 → v1 → · · · → vk is a directed path,
v0 → vk is an arc, and there exist 0 ≤ i < j ≤ k such that there is no arc between
vi and vj . The arc v0 → vk in C is called the shortcutting arc, and the path
v0 → v1 → · · · → vk is the long path in C. Thus, an orientation is semi-transitive
if and only if it is acyclic and shortcut-free.

The following lemma is an easy, but very helpful observation that will be
used many times in this paper. Note that it was first proved in [1] for the case
of m = 4.

Lemma 2 [1]. Suppose that an undirected graph G has a cycle C = x1x2 · · ·xmx1,

where m ≥ 4 and the vertices in {x1, x2, . . . , xm} do not induce a clique in G. If

G is oriented semi-transitively, and m − 2 edges of C are oriented in the same

direction (i.e., from xi to xi+1 or vice versa, where the index m + 1 := 1) then

the remaining two edges of C are oriented in the opposite direction.

Proof. Clearly, if all arcs of C have the same direction then we obtain a cycle; if
m− 1 arcs of C have the same direction, we obtain a shortcut. So, the direction
of both remaining arcs must be opposite.
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Determining if a triangle-free graph is semi-transitive is an NP-hard problem
[11]. The existence of non-semi-transitive triangle-free graphs has been estab-
lished via Erdős’ theorem [6] by Halldórsson and the authors [10] in 2011 (also
see [15, Section 4.4]). However, no explicit examples of such graphs were known
until recent work of the first author and Saito [16] who have shown computation-

ally (using the user-friendly freely available software [8]) that a certain subgraph
on 16 vertices and 36 edges of the triangle-free Kneser graph K(8, 3) is not semi-
transitive; the subgraph is shown in Figure 1. Thus, K(8, 3) itself on 56 vertices
and 280 edges is non-semi-transitive. The question on the existence of smaller
triangle-free non-semi-transitive graphs has been raised in [16].
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Figure 1. A minimal non-semi-transitive subgraph of K(8, 3).

In Section 2 we prove that the Grötzsch graph in Figure 2 on 11 vertices
is a smallest (by the number of vertices) non-semi-transitive triangle-free graph,
and that the Chvátal graph in Figure 4 is the smallest triangle-free 4-regular
non-semi-transitive graph. In Section 3 we address the question on the existence
of triangle-free semi-transitive graphs with chromatic number 4, and prove, in
particular, that Toft’s graphs and the circulant graph C(13; 1, 5) (the same as
the Toeplitz graph T13(1, 5, 8, 12)) are such graphs. Finally, in Section 4 we
discuss some open problems.

2. Non-Semi-Transitive Orientability of the Grötzsch Graph and

the Chvátal Graph

The leftmost graph in Figure 2 is the well-known Grötzsch graph (also known as
Mycielski graph). It is well-known [5] and is easy to prove that this graph is a
minimal 4-chromatic triangle-free graph (and the only such graph on 11 vertices).
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Figure 2. The Grötzsch graph and two of its partial orientations.

Theorem 3. The Grötzsch graph G is a smallest (by the number of vertices)
non-semi-transitive graph.

Proof. To obtain a contradiction, suppose that G is oriented semi-transitively.
Then, the outer cycle formed by the vertices 1–5 either contains a directed path
of length 3, or the longest directed path formed by the vertices is of length 2.
Thus, we have two cases to consider.

Case 1. Taking into account symmetries, without loss of generality we can
assume that 5 → 1 → 2 → 3 is a path of length 3, so that the orientation of
the remaining two arcs must be 5 → 4 → 3 by Lemma 2 as shown in the middle
graph in Figure 2. Moreover, Lemma 2 can be used to complete orientations
of the subgraphs induced by the vertices in the sets {1, 2, 3, 2′}, {1, 2, 1′, 5} and
{3, 4, 5, 4′}, as shown in the left graph in Figure 3. We consider two subcases here
depending on orientation of the arc 02′.
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Figure 3. Two partial orientations of the Grötzsch graph.

Case 1a. Suppose 0 → 2′ is an arc. By Lemma 2,

• from the subgraph induced by 0, 2′, 3, 4′, we have 0 → 4′;

• from the subgraph induced by 0, 1′, 5, 4′, we have 0 → 1′;

• from the subgraph induced by 0, 1′, 2, 3′, we have 0 → 3′ and 3′ → 2;
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• from the subgraph induced by 2, 3, 4, 3′, we have 3′ → 4;

• from the subgraph induced by 0, 3′, 4, 5′, we have 0 → 5′ and 5′ → 4.

Now if 5′ → 1 were an arc, the subgraph induced by 0, 5′, 1, 2′ would be a shortcut,
while if 1 → 5′ were an arc, the subgraph induced by 1, 5′, 4, 5 would be a shortcut;
a contradiction.

Case 1b. Suppose 2′ → 0 is an arc. By Lemma 2,

• from the subgraph induced by 0, 5′, 1, 2′, we have 1 → 5′ and 5′ → 0;

• from the subgraph induced by 1, 5, 4, 5′, we have 4 → 5′;

• from the subgraph induced by 0, 3′, 4, 5′, we have 4 → 3′ and 3′ → 0;

• from the subgraph induced by 2, 3, 4, 3′, we have 2 → 3′.

The contradiction is now obtained by the fact that there is no way to orient the
arc 0 → 1′ in the subgraph formed by 0, 1′, 2, 3′ without creating a cycle or a
shortcut.

Case 2. If the longest directed path induced by the vertices 1–5 is of length
2 then, again using the symmetries, we can assume the following orientation of
the arcs: 1 → 2 → 3, 1 → 5, 4 → 5 and 4 → 3 as shown in the rightmost graph
in Figure 2. Moreover, Lemma 2 can be used to complete orientations of the
subgraph induced by the vertices in {1, 2, 3, 2′}, as shown in the right graph in
Figure 3. We consider two subcases here depending on orientation of the arc 02′.

Case 2a. Suppose 0 → 2′ is an arc. By Lemma 2,

• from the subgraph induced by 0, 2′, 3, 4′, we have 0 → 4′ and 4′ → 3;

• from the subgraph induced by 3, 4, 5, 4′, we have 4′ → 5;

• from the subgraph induced by 0, 1′, 5, 4′, we have 0 → 1′ and 1′ → 5;

• from the subgraph induced by 1, 2, 1′, 5, we have 1′ → 2;

• from the subgraph induced by 0, 1′, 2, 3′, we have 0 → 3′ and 3′ → 2.

• from the subgraph induced by 2, 3, 4, 3′, we have 3′ → 4;

• from the subgraph induced by 0, 3′, 4, 5′, we have 0 → 5′ and 5′ → 4.

Now if 5′ → 1 were an arc, the subgraph induced by 0, 5′, 1, 2′ would be a shortcut,
while if 1 → 5′ were an arc, the subgraph induced by 1, 5′, 4, 5 would be a shortcut.
A contradiction.

Case 2b. Suppose 2′ → 0 is an arc. By Lemma 2,

• from the subgraph induced by 0, 5′, 1, 2′, we have 1 → 5′ and 5′ → 0;

• from the subgraph induced by 1, 5, 4, 5′, we have 4 → 5′;

• from the subgraph induced by 0, 3′, 4, 5′, we have 4 → 3′ and 3′ → 0;

• from the subgraph induced by 2, 3, 4, 3′, we have 2 → 3′;
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• from the subgraph induced by 0, 1′, 2, 3′, we have 2 → 1′ and 1′ → 0;

• from the subgraph induced by 1, 2, 1′, 5, we have 5 → 1′;

• from the subgraph induced by 0, 1′, 5, 4′, we have 5 → 4′ and 4′ → 0.

Now if 3 → 4′ were an arc, the subgraph induced by 2′, 3, 4′, 0 would be a shortcut,
while if 4′ → 3 were an arc, the subgraph induced by 4, 5, 4′, 3 would be a shortcut;
a contradiction.

Thus, G is not semi-transitive, and its minimality follows from the above
mentioned fact that all triangle-free graphs on 10 or fewer vertices are 3-colorable,
and thus semi-transitive by Theorem 1.
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Figure 4. The Chvátal graph.

The well-known Chvátal graph is presented in Figure 4. It is the minimal
4-regular triangle-free 4-chromatic graph [5]. Using the software [8], we found out
that the Chvátal graph is not semi-transitive. We have also found an analytical
proof of this fact via a long and tedious case analysis. Even being written using
a specially developed short notation introduced in [1], the proof takes several
pages; therefore, we put the proof of our next theorem in Appendix for the most
patient and interested Reader.

Theorem 4. The Chvátal graph H is a minimal 4-regular triangle-free non-semi-

transitive graph.

As it was shown in [5], the Chvátal graph H is not 4-critical: it remains
4-chromatic after removal of the edge 56 (a graph is called 4-critical, if it is 4-
chromatic, but removal of any edge makes it 3-chromatic). The software [8] shows
that the graph H \ {56} is still non-semi-transitive. A proof of this fact is very
similar to the proof of Theorem 4, in particular, it is also tedious, long and does
not bring any new insights, so we omit it.

Note also, that proving that a graph G is not semi-transitive immediately
implies that the whole class of graphs containing G as an induced subgraph is
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not semi-transitive; so, Theorems 3 and 4 indeed give two classes of non-semi-
transitive graphs.

3. Semi-Transitive Triangle-Free 4-Chromatic Graphs

As a matter of fact, no explicit examples of semi-transitively orientable triangle-
free graphs with chromatic number 4, or larger, have been published yet. How-
ever, as it was shown in [10], the existence of such graphs easily follows from two
well-known classical results presented below.

Theorem 5 [19]. A graph is k-chromatic if and only if the minimum possible

length of the longest directed path among all its acyclic orientations is k − 1.

Theorem 6 [6]. For every k ≥ 2 and g ≥ 3 there exists a k-chromatic graph of

girth g.

Indeed, Theorem 5 implies that every graph whose girth is larger than its
chromatic number has a semi-transitive orientation (as there is no chance for a
shortcut in an acyclic orientation of such a graph), and Theorem 6 claims that
such graphs exist. However, the existence of 4-chromatic semi-transitive graphs
of girth 4 does not follow from Theorems 5 and 6. Below we present two explicit
examples of such graphs.

3.1. Circulant graphs

A circulant graph C(n; a1, . . . , ak) is a graph with the vertex set {0, . . . , n − 1}
and an edge set

E = {ij | (i− j) (mod n) or (j − i) (mod n) are in {a1, . . . , ak}}.

According to [3], such graphs were first studied in 1932 by Foster, and the name
comes from circulant matrices introduced by Catalan in 1846. Circulant graphs
have applications in distributed computer networks [2]. Note that circulant
graphs are indeed the Cayley graphs on cyclic groups Zn; so, they are vertex-
transitive (i.e., for every pair of its vertices there is an automorphism mapping
one of them into another). Circulant graphs are also a particular case of Toeplitz
graphs [7]. Various results on semi-transitivity of Toeplitz graphs have been
obtained in [4].

It is well-known that the circulant graph C(13; 1, 5) (which is the same as
the Toeplitz graph T13(1, 5, 8, 12)) is the smallest vertex-transitive 4-chromatic
triangle-free graph [13]. Of course, it would be nice to add this graph to our
collection of minimal non-semi-transitive 4-chromatic triangle-free graphs in the
previous section, but the graph appears to be semi-transitive, as follows from the
next theorem.
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Theorem 7. The circulant graph C(13; 1, 5) is a 4-chromatic 4-regular semi-

transitive graph of girth 4.

Proof. Let G := C(13; 1, 5) and consider its orientation presented in Figure 5. It
is easy to verify by successive deletion of sources and/or sinks that this orientation
is acyclic. The following two easy observations help in checking the absence of
shortcuts.
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Figure 5. A semi-transitive orientation of the circulant graph C(13; 1, 5).

Claim 1. If v is a source or a sink in a directed graph and either all its neighbors

are sinks in G \ v or all of them are sources in G \ v then v does not lie in any

shortcut.

Indeed, assume v lies in a shortcut with a long path v0 → v1 → · · · → vk−1 →
vk. If v is a sink then v = vk, and thus, vk−1 cannot be a source in G \ v and v0
cannot be a sink in G \ v. If v is a source then v = v0, and thus, vk cannot be a
source in G \ v and v1 cannot be a sink in G \ v.

Claim 2. If v is a source that lies in a shortcut, then there are two directed paths

P0, P1 starting at v so that P0 starts with a shortcutting arc u → v and v is k-th

vertex in P1 for some k ≥ 4.

This claim follows directly from the definition of the shortcut.
By Claim 1, 0 is not a part of any shortcut in G, and 1 does not lie

in a shortcut in G \ 0. In the graph G \ {0, 1} the paths starting in 6 are
{65, 678, 67(12), 6(11)(12)}, and the paths starting in 9 are

{9(10)5, 9(10)(11)(12), 945, 94(12), 98}.

By Claim 2, both these vertices are not in shortcuts. Applying Claim 1 to G \
{0, 1, 6, 9}, remove successively the vertices 2, 7, and 8. In the obtained graph,
exclude 10 by Claim 2 (the only paths are (10)5 and (10)(11)(12)), and afterwards,
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remove 5 and 12 by Claim 1. The remaining graph on the vertex set {3, 4, 11} is
a tree.

So, there are no shortcuts in G and the considered orientation is semi-
transitive.

As it was proved in [12], a connected 4-regular circulant other than C(13; 1, 5)
has chromatic number 4 if and only if it is isomorphic to the circulant graph
C(n; 1, 2) for some n = 3t + 1 or n = 3t + 2 where t ≥ 2. Although all such
circulants contain triangles, we would like to close the question on the semi-
transitivity of 4-regular circulants by proving the following result.

Theorem 8. Each 4-regular circulant graph is semi-transitive.

Clearly, a disjoint union of semi-transitive graphs is semi-transitive, K5 =
C(5; 1, 2) admits transitive orientation and every 3-colorable graph is semi-trans-
itive by Theorem 1. Hence, Theorem 8 is a direct corollary of the above mentioned
result in [12], Theorem 7 and the following lemma.

Lemma 9. A circulant graph C(n; 1, 2) is semi-transitive for each n ≥ 6.

Proof. Consider a circulant graph G = C(n; 1, 2) with the vertex set V =
{0, 1, . . . , n − 1}. Orient the edges of the subgraph induced by the subset V0 =
{0, 1, . . . , n − 3} from lowest to highest (i.e., 0 → 1, 0 → 2, 1 → 2, 1 → 3, etc.)
and set the orientation of the remaining seven edges as follows: 1 → n− 1, 0 →
n− 1, 0 → n− 2, n− 2 → n− 4, n− 2 → n− 3, n− 2 → n− 1, n− 1 → n− 3.
It is easy to see that the orientation is acyclic. Assume that there is a shortcut
v0 → · · · → vk with a shortcutting arc v0 → vk where k ≥ 3. Clearly, the shortcut
cannot lie in V0 since otherwise for the shortcutting arc we have k ≤ 2 by the
definition of the circulant, a contradiction with k ≥ 3. So, n− 2 or n− 1 must be
in the shortcut. By symmetry, we may assume that the shortcut contains n− 2
(otherwise, reverse all arcs and swap n − 1 with n − 2 and i with n − 3 − i for
all i = 0, . . . , n − 3). Since the longest path outgoing from n − 2 has length 2,
v0 6= n − 2. But then the shortcut must contain the arc 0 → n − 2. Since 0 is
a source, we have v0 = 0, v1 = n − 2. There are only two paths of length at
least 3 starting with the arc 0 → n − 2 (namely, 0 → n − 2 → n − 1 → n − 3
and 0 → n − 2 → n − 4 → n − 3). But in both cases G does not contain the
shortcutting arc 0 → n− 3. So, the presented orientation is semi-transitive.

Remark 10. If n = 5 then the orientation in Lemma 9 provides a transitive
orientation of K5 = C(5; 1, 2).

3.2. Toft’s graphs

Another nice example of 4-chromatic semi-transitive graphs of girth 4 is given by
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Toft’s graphs Tn that were introduced in [18] as first instances of dense 4-critical
graphs (see [17] for various constructions of dense critical graphs).

Let n > 3 be odd. The construction of Toft’s graph Tn is as follows. It has
a vertex set V = A1 ∪ A2 ∪ A3 ∪ A4 of 4n vertices where A1 and A4 induce odd
cycles Cn and A2 ∪A3 induces the complete bipartite graph Kn,n with parts A2

and A3. There is also a perfect matching whose all edges connect either A1 with
A2 or A3 with A4.

Theorem 11. Toft’s graph Tn is semi-transitive.

Proof. A semi-transitive orientation of Tn can be constructed as follows. Every
arc uv where u ∈ Ai and v ∈ Ai+1 for any i ∈ {1, 2, 3} is directed u → v.
The cycles A1 and A4 are oriented semi-transitively in an arbitrary way (e.g.
by arranging in each of them two disjoint directed paths of lengths 2 and n − 2
starting in a same node). An example of Toft’s graph T5 and its orientation is
shown in Figure 6.
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Figure 6. A semi-transitive orientation of Toft’s graph T5.

Clearly, this orientation is acyclic. Assume, there is a shortcut C with a
long path v0 → · · · → vk. Then either v0, vk ∈ Ai for some i ∈ {1, 2, 3, 4} or
v0 ∈ Ai, vk ∈ Ai+1 for some i ∈ {1, 2, 3}. The first case is impossible since the
sets A2 and A3 are independent and the orientations of A1 and A4 are semi-
transitive. The second case cannot occur since all vertices form A2 and A3 have
degree 1 in the subgraphs induced by A1 ∪ A2 and A3 ∪ A4, respectively, and
the subgraph induced by A2 ∪ A3 has no directed paths of length more than 1.
Therefore, the presented orientation is semi-transitive.

4. Open Problems

In this paper we presented examples of non-semi-transitive triangle-free graphs
of girth 4, namely the Grötzsch graph, the Chvátal graph, and the Chvátal graph
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without certain edge. However, for higher girths the similar existence question is
still open.

Problem 1. Do there exist non-semi-transitive graphs of girth g for every g ≥ 5?

We also presented examples of semi-transitive k-chromatic graphs of girth
k for k = 4. Finding similar explicit instances could be of interest for larger k,
especially in terms of minimality according to different criteria.

Problem 2. Do there exist semi-transitive k-chromatic graphs of girth k for
every k ≥ 5? If yes, then are there regular or vertex-transitive examples? What
is the minimum number of vertices and/or edges in such graphs? How dense can
they be?

Problem 2 is some kind of a complement question to Problem 1, so at least
one of these problems must have a positive answer. However, we conjecture that
the answer is positive for both of them.

Finally, it would be interesting to extend the results of Lemma 9. Note, that
in general the circulants may be not semi-transitive. For instance, C(14; 1, 3, 4, 5)
is not [8]. But is this true for C(n; 1, . . . , k)?

Problem 3. Are all circulants C(n; 1, 2, . . . , k) semi-transitive? What about
circulants C(n; t, t+ 1, . . . , k) for some integers k and t satisfying k − t > 1?
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Appendix. Proof of Theorem 4

Our proof of non-semi-transitivity of the Chvátal graph uses symmetries and
Lemma 2. It results in considering 13 partially oriented copies of the graph that
can be drawn to check our arguments. Note that non-semi-transitivity of the
Chvátal graph can be easily checked using the software [8]. To make text of the
proof as short as possible, we use the following brief notation introduced in [1].

• “MC X” means “Move to (consider) the partially oriented copy X (obtained
earlier)”;

• “Cx1 · · ·xk” stands for “Apply Lemma 2 to a partially directed cycle x1 · · ·xk
(and get some new arcs)”;

• “Bxy (NC X)” denotes “Branch on the arc xy: if it goes y → x, create a copy
X (to be considered later); otherwise, put the orientation x → y and continue
the analysis of the current copy”;

• “Sx1 · · ·xk” means “The vertices x1, . . . , xk induce a shortcut, a contradic-
tion”.
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Figure 7. Two partial orientations, A and B, of the Chvátal graph.

For instance, the string “MC B, C1234, C23456, . . . , S98(12)5;” below means:
“Consider B (in Figure 8), by Lemma 2 in the cycle 1234 we must have 2 → 1
and 1 → 4, in the cycle 23456 we must have 2 → 6 and 6 → 5, . . . , a contradiction
is obtained with the cycle 98(12)5 being a shortcut”.

Proof of Theorem 4. Suppose that the Chvátal graph H (see Figure 4) can
be oriented semi-transitively. By Lemma 2, exactly two arcs of the cycle 1234 are
directed clockwise. So, by symmetry, we may assume that this cycle has either
arcs 2 → 1, 2 → 3, 1 → 4 and 3 → 4 or arcs 2 → 1, 2 → 3, 4 → 1 and 4 → 3. We
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Figure 8. Two partial orientations, C and D, of the Chvátal graph.

also branch on the orientation of the number of outgoing from the vertex 4 edges
among 45 and 4(10): it can be 0, 1, or 2. The corresponding cases induce 6 initial
copies (partial orientations) from A to F , presented in Figure 7, Figure 8, and
Figure 9. Next we consider all of them starting from A and using the notation
introduced above. In each case, we will obtain a contradiction showing that H

cannot be oriented semi-transitively.
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Figure 9. Two partial orientations, E and F , of the Chvátal graph.

- MC A, C1234; due to the symmetry with respect to the diagonal 2–4, we can as-

sume existence of the arc 8 → 7; C234(10)9, C145(12), C34(10)(11), C871(12), C2176,

C67(11)(10), C387(11), C8(12)59, S2389;

- MC B, C1234, C23456, C2659, C(10)456, C145(12), B67 (NC B1), C(10)67(11),

C(10)(11)34, C3(11)78, C2389, C1(12)87, S98(12)5;

- MC B1, C2176, C71(12)8, C8(12)59, C2389, C783(11), C(11)34(10), S7(11)(10)6;
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- MC C, C1234; we can assume presence of the arcs 2 → 6 and 2 → 9 (otherwise, chang-

ing direction of all arcs results in a copy A or B), and also presence of the edge 8 → 7

(because of the symmetry with respect to the diagonal 2− 4); we branch on two arcs, 17

and 38, simultaneously: if 3 → 8 and 1 → 7 NC C1; if 8 → 3 and 7 → 1 NC C2; if 8 → 3

and 1 → 7 NC C3; if 3 → 8 and 7 → 1 then S23871;

- MC C1, C2389, C387(11), C34(10)(11), C(10)(11)76, C(10)654, C2956, C598(12),

C(12)871, S5(12)14;

- MC C2, C8371, C871(12), C5(12)14, C8(12)59, C954(10), C29(10)6, C76(10)(11),

C87(11)3, S3(11)(10)4;

- MC C3, C2176, C2983, B9(10) (NC C4), C9(11)45, C895(12), C8(12)17, S1(12)54;

- MC C4, C(10)954, C2659, C56(10)9, C(10)67(11), C(10)(11)34, S83(11)7;

- MC D; using symmetry with respect to the diagonal 2–4 we can assume presence of

the arc 8 → 7; C(10)43(11), C541(12), C(11)387, C(10)(11)76, B62 (NC D1), C(10)629,

C6217, C871(12), C9238, C98(12)5, S(10)954;

- MC D1, C2671, C(12)178, C5(12)89, C59(10)6, C(10)926, S2983;

- MC E; we can assume that 6 → 2 and 9 → 2 are not arcs at the same time (otherwise

we get the graph D); C(10)43(11), C(10)459, C(10)456; since the presence of 6 → 2 and

2 → 9, or the presence of 9 → 2 and 2 → 6 gives S(10)926, while the presence of 6 → 2

and 9 → 2 is forbidden above, we have 2 → 6 and 2 → 9; B83 (NC E1), C2983, C895(12),

C41(12)5, C8(12)17, C2671, C(10)(11)76, S87(11)3;

- MC E1, C(11)387, C(10)(11)76, C2671, C178(12), C95(12)8, S41(12)5;

- MC F ; note that the vertex 2 must be a source (the in-degree is 0), and 1 and 3 must be

sinks (the out-degree is 0), since otherwise after renaming the vertices, and if necessary

reversing the directions of all arcs, we would obtain D or E; using symmetry with respect

to the diagonal 2–4, we can assume 8 → 7; C45(12)1, C2671, C87(12)3, C(11)76(10),

C4(10)65, C2956, C(12)598, S(12)871.

The proof is completed.
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