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Abstract

The Unfriendly Partition Conjecture posits that every countable graph
admits a 2-colouring in which for each vertex there are at least as many
bichromatic edges containing that vertex as monochromatic ones. This is
not known in general, but it is known that a 3-colouring with this property
always exists. Anholcer, Bosek and Grytczuk recently gave a list-colouring
version of this conjecture, and proved that such a colouring exists for lists
of size 4. We improve their result to lists of size 3; the proof extends to
directed acyclic graphs. We also discuss some generalisations.
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1. INTRODUCTION

It is a simple exercise to show that the vertices of any finite graph can be par-
titioned into two parts so that every vertex is in the opposite part to at least
half of its neighbours. This was first observed by Lovész [12]. Such a parti-
tion is often referred to as “unfriendly”. A natural question is whether infinite
graphs necessarily have unfriendly partition, where if a vertex has infinite neigh-
bourhood we interpret “at least half” to mean a set of the same cardinality as
the whole neighbourhood. Shelah and Milner [13] answer this question (which
they attribute to Cowan and Emerson) in the negative by constructing uncount-
able counterexamples; however, they conjecture that any countable graph has an
unfriendly partition.

This conjecture has been proved in some cases, such as for graphs with finitely
many vertices of infinite degree by Aharoni, Milner and Prikry [1], for rayless
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graphs by Bruhn, Diestel, Georgakopoulos and Spriissel [6], and for graphs with
no subdivision of an infinite clique by Berger [5]; the first two results mentioned
make no assumption on the cardinality of the graph.

Unfriendly partitions may be rephrased in the language of colourings. A
majority colouring of a graph is an assignment of colours to vertices such that at
most half of the edges incident with any vertex are monochromatic, and a graph
is magority £-colourable if it has a majority colouring using at most £ colours.
The Unfriendly Partition Conjecture is that every countable graph is majority
2-colourable. Shelah and Milner [13] showed that every graph (even without the
assumption of countability) is majority 3-colourable.

A classical extension of (proper) colouring of graphs is the concept of list
colouring, introduced independently by Vizing [14] and by Erdés, Rubin and
Taylor [7]. Instead of assigning colours to vertices from a fixed palette of ¢
colours, each vertex v must be assigned one of a list L(v) of ¢ colours. Does a
suitable colouring exist for every possible system of lists? While it is natural to
suppose that this is hardest to achieve when all lists coincide, in fact this is not
the case. For example, K33 can be properly 2-coloured, but there is a system
of lists of size 2 from which no proper colouring exists. As well as being an
interesting problem in its own right, moving to the more general setting of list
colouring can facilitate proving results about colouring. More recently, the even
more general setting of correspondence (or DP) colouring by Dvotdk and Postle
[8] has attracted a great deal of interest.

Majority list colourings were introduced as an open question by Kreutzer,
Oum, Seymour, van der Zypen and Wood [11], with the first significant results
being due to Anholcer, Bosek and Grytczuk [2]. A graph G is majority {-choosable
if for any system of lists (L(v))v v (G) of size ¢ there is a majority colouring of
G in which each vertex v is assigned a colour from L(v). Anholcer, Bosek and
Grytczuk [4] recently made the following analogue of the Unfriendly Partition
Conjecture.

Conjecture 1. Any countable graph is majority 2-choosable.

Kreutzer, Oum, Seymour, van der Zypen and Wood [11] also extended the
concept of majority colourings to digraphs, by requiring that at most half of the
outgoing edges from any vertex are monochromatic. In this case three colours
are necessary even for some finite digraphs. Anholcer, Bosek and Grytczuk [4]
make the following conjectures for countable digraphs.

Conjecture 2. Any countable digraph is magjority 3-choosable.
Conjecture 3. Any countable acyclic digraph is majority 2-choosable.

They make progress towards these conjectures by proving that every count-
able graph and every countable digraph is majority 4-choosable. We make further



COUNTABLE GRAPHS ARE MAJORITY 3-CHOOSABLE 501

progress towards Conjectures 1 and 3 by showing that every countable graph and
every countable acyclic digraph is majority 3-choosable. In fact our proofs work
in the more general setting of majority correspondence colouring, which we may
define in the spirit of Dvoidk and Postle [8]. However, for ease of reading we
present our main results for majority choosability, and defer remarks on the cor-
respondence setting to the end of the paper.

2. MAIN RESuULTS

We will use the following (slightly modified) lemma of Anholcer, Bosek and
Grytczuk [4]; we give a short proof for completeness.

Lemma 4. Let V be a countable set and X be a countable (possibly finite) col-
lection of infinite subsets of V. Suppose that each v € V has a list L(v) of £+ 1
colours. Then there is a choice of £-element sublists L'(v) C L(v) such that for
every colour ¢ and set X € X there are infinitely many v € X such that ¢ & L' (v).

Proof. Note that the set C' := J,c, L(v) of all colours is countable. Fix an
ordering of the countable set X x C' x N. For each triple (X, ¢,7) in turn, choose
any v € X which has not previously been chosen (which is possible since X is
infinite). If ¢ € L(v), set L'(v) = L(v) \ {c}. Finally, arbitrarily choose any
sublist L'(v) which has not previously been defined.

Note that for every (X, c) every element v that was chosen for a triple of the
form (X, c,i) has the property that v € X and ¢ ¢ L'(v). There are infinitely
many such elements, and so these sublists have the required property. [

In the proof of our main result we use the notation N(v) and N[v] for the
open and closed neighbourhoods respectively of a vertex v.

Theorem 5. Every countable graph is majority 3-choosable.

Proof. Apply Lemma 4 with ¢ = 2, where X = {N(v;) | d(v;) = oo}, to obtain
a system of lists (L’(v))UGV(G). Order the vertices v1,vs,..., and for each n € N
consider the subgraph G,, induced by v1,...,v,. Fix a colouring x,. Since it
is finite, G,, is majority 2-choosable: any colouring which minimises the total
number of monochromatic edges is a majority colouring. In particular, there is
a colouring Y, which colours v; from L'(v;) for each i < n which is a majority
colouring for G,,.

We now use a compactness argument. Infinitely many of the colourings
(Xn)nen agree on the colour of vy; let x(v1) be this colour. Of these, infinitely
many also agree on the colouring of ve; let x(v2) be this colour. Continuing in
this manner we get a colouring x of V(G) in which v; receives a colour from
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L'(v;) for each i, and such that for each n € N there exists m > n such that
X (vi) = xm(v;) for every i < n.

We claim that x is a majority colouring. Indeed, if v; has finite degree then,
writing n = max{j : v; € N[v;]}, there exists m > n such that x,,(v;) = x(v;) for
every 7 < n. In particular, these two colourings agree on v; and all its neighbours,
and since Y, is a majority colouring on (,,, at most half of the edges containing
v; are monochromatic in x,, and hence x. Alternatively, if v; has infinite degree
then by taking X = N(v;) and ¢ = x(v;) in the definition of the sublists L' (v;), v;
has infinitely many neighbours v; for which x(v;) & L'(v;), and so x(vj) # x(v;).
Thus the conditions of a majority colouring are satisfied at every vertex. [

This proof does not give a good bound for digraphs, where it is an open
conjecture to even show that finite digraphs are majority 3-colourable [11]. How-
ever, in the much simpler case of acyclic digraphs we can use this method. Any
finite acyclic digraph is majority 2-choosable, since we may colour vertices in
reverse topological ordering (so that each vertex is processed after all its out-
neighbours), giving each vertex the colour from its list which is less common
among its neighbours. The proof above, replacing neighbourhoods and degrees
by outneighbourhoods and outdegrees throughout, therefore gives the following
bound.

Theorem 6. Every countable acyclic digraph is majority 3-choosable.

This strengthens an earlier result of Anholcer, Bosek and Grytczuk [3] that
countable acyclic digraphs are majority 3-colourable.

3. COMPARISON WITH THE RESULT OF SHELAH AND MILNER

Suppose we are primarily interested in majority 3-colourability of countable
graphs. This is the intersection of our result and that of Shelah and Milner
[13], and so it is natural to compare the two proofs for that case. From [13] we
can extract a proof of majority 3-colourability for countable graphs which is sub-
stantially shorter than that of their full result, and which we describe informally
as follows.

For a countable graph GG on vertex set V', let By be the set of all vertices of
finite degree. We recursively define B, for ordinals « as follows: B, is the set of
all vertices not in J s<a Bp, but with infinitely many neighbours in that set. Stop
this process at the first ordinal v such that B, is empty, and let C' := V'\{, < Bgs
be the set of leftover vertices. Note that in the induced subgraph G[C] all vertices
have infinite degree, so (by a result of Aharoni, Milner and Prikry [1]) it has a
majority 2-colouring, which we use to define colours of vertices in C. For each
a > 1, since every vertex in B, has infinitely many neighbours in Ulg s<a BB
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it is sufficient to colour it differently from infinitely many neighbours in this
set. We may do this inductively: colour By with a single colour ¢ and for each
a > 1 colour each vertex in B, differently to the majority of its neighbours in
Ulg s<a Bs- Finally, we colour vertices in By. By a compactness argument, for
any given colouring of V'\ By, we can 2-colour the vertices in By such that each
vertex has at most half its edges (in G) monochromatic. We may choose such
a colouring using only the two colours other than ¢, and this ensures that each
vertex in Bp has infinitely many neighbours in By of a different colour.

Our proof of Theorem 5 is perhaps simpler than this, and although their
proof has the significant advantage that it can be generalised to the uncountable
case, ours has the more modest advantage that it gives majority 3-choosability
rather than just majority 3-colourability. Both of these advantages are genuine.
The proof of Shelah and Milner relies on the fact that we are colouring from
a fixed palette, rather than list colouring, to give every vertex in Bj the same
colour. However, Lemma 4 relies on V' and X being countable; if they may be
uncountable then we may choose X to be all infinite subsets of a given countable
subset of V', and the result will not hold. Nevertheless, we conjecture that the
union of the two results is true.

Conjecture 7. Fvery graph is majority 3-choosable.

4. EXTENSIONS
4.1. (1/k)-majority colouring

Kreutzer, Oum, Seymour, van der Zypen and Wood [11] generalised majority
colouring (in the setting of digraphs) by asking how many colours are needed to
colour a finite digraph such that every vertex has the same colour as at most a 1/k
proportion of its outneighbours, where k € N. They call such a colouring a (1/k)-
magority colouring. Girdo, Kittipassorn and Popielarz [9] observed that at least
2k — 1 colours may be required, and proved that 2k colours is sufficient. In fact
they showed this in the more general list-colouring setting, that is, every finite
digraph is (1/k)-majority 2k-choosable, and Knox and Sémal [10] independently
proved the same result.

For finite simple graphs, the corresponding notion is much more straightfor-
ward: it is easy to see that for any finite graph and any system of lists of size
k, there is a colouring x for which each vertex is the same colour as at most a
1/k proportion of its neighbours, and in fact each vertex v has at least as many
neighbours of colour ¢ as colour x(v) for each ¢ € L(v) (any colouring minimising
the number of monochromatic edges has this property). Even more simply, any
finite acyclic digraph is (1/k)-majority k-choosable.
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Our methods give corresponding, but weaker, results for countable graphs in
all of these settings. Suppose that any finite induced subgraph of a countable
graph (or digraph) G is (1/k)-majority ¢-choosable. Applying Lemma 4 with
this value of ¢, and mimicking the proof of Theorems 5 and 6, we see that G is
(¢ + 1)-choosable. Together with the observations above for finite simple graphs
and acyclic digraphs, we obtain the following generalisation of Theorems 5 and 6.

Theorem 8. For each k > 2, any countable graph or countable acyclic digraph
is (1/k)-magority (k + 1)-choosable.

In addition, using the result of [9] and [10] for finite digraphs, we obtain the
following bound for countable digraphs; note, however, that for & = 2 this gives
a weaker bound than that established by Anholcer, Bosek and Grytczuk [4].

Theorem 9. For each k > 2, every countable digraph is (1/k)-majority (2k+1)-
choosable.

4.2. Majority correspondence colouring

In this section we discuss an extension of majority choosability based on corre-
spondence (or DP) colouring. Correspondence colouring is a generalisation of
list colouring in which for every edge uv there is a set of forbidden (ordered)
colour pairs, with every colour at u (or v) being in at most one pair. Choosing
these pairs to be the monochromatic ones, we recover list colouring. However,
correspondence colouring may require more colours than list colouring: for even
cycles with lists of size two, a list colouring exists but a correspondence colouring
need not.

We define majority correspondence colourings in the same way. Given a
graph G, equip each vertex v with a list L(v) of k > 2 colours, and each edge
uv with a set of bad pairs By, C L(u) x L(v), where for every ¢ € L(u) there is
at most one pair (¢,c) € By, and for every ¢ € L(v) there is at most one pair
(c,¢) € Byy. For a colouring x we say an edge uv is bad if (x(u), x(v)) € Buy,
and we say x is a (1/k)-majority correspondence colouring if for every vertex
v, at most a 1/k proportion of the edges incident with v are bad. Similarly we
may define majority correspondence colourings for digraph with respect to the
outedges from each vertex. We say that G is (1/k)-majority ¢-correspondence
colourable if for every collection of lists £ = {L(v) | v € V(G)} of size £ and bad
sets B = {By, | wv € E(G)} there is a (1/k)-majority correspondence colouring
of G.

Note that every finite graph or acyclic digraph is (1/k)-majority k-correspon-
dence colourable, with the same proof in each case. To adapt the proof of The-
orem 8 to correspondence colouring, we first need to modify the statement of
Lemma 4.
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Lemma 10. Let V' be a countable set and suppose that each v € V has a list
L(v) of £ + 1 colours. Let X be a countable (possibly finite) collection of sets,
such that each X € X consists of infinitely many pairs (v,c) with v € V and
¢ € L(v), all having distinct first elements. Then there is a choice of £-element
sublists L'(v) C L(v) such that for every X € X there are infinitely many pairs
(v,¢) € X such that ¢ & L' (v).

Proof. Fix an ordering of X x N. For each pair (X,7) in turn, choose any
pair (v,c¢) in X such that no pair containing v has previously been chosen, and
set L'(v) = L(v) \ {c}. Finally, choose sublists which have not been defined
arbitrarily. [

Equipped with this version, we may now modify the proof of Theorem 5
to deal with correspondence colouring. To do this, for each pair (u,c) with
u € V(G) and ¢ € L(u), let X, = {(v,) :v € N(u) A (¢,d) € Byy}. Set X to
be {Xy ¢ 1 | Xyl = 0o}. Note that X satisfies the assumptions of Lemma 10, and
so we may choose sublists (L’ (U))U V() in accordance with that lemma. Now
define the colouring x as in the proof of Theorem 5. If v; has finite degree, then
choosing an appropriate colouring ., shows that at most the required proportion
of edges meeting v; are bad. If v; has infinite degree, but X,, ,(,,) is finite then
at most finitely many edges meeting v; are bad. If X,, \(,,) is infinite then by
choice of the sublists v; has infinitely many neighbours v; such that v;v; cannot be
bad. The same argument works for acyclic digraphs. Thus we have the following
result.

Theorem 11. For every k > 2, any countable graph or countable acyclic digraph
is (1/k)-magority (k + 1)-correspondence colourable.

Acknowledgements

Research supported by the European Research Council under the European
Union’s Horizon 2020 research and innovation programme (grant agreement no.
639046), and by UK Research and Innovation Future Leaders Fellowship no.
MR/S016325/1. I am grateful to Anténio Girao for drawing my attention to the
question of (1/k)-majority colouring.

REFERENCES

[1] R. Aharoni, E.C. Milner and K. Prikry, Unfriendly partitions of a graph, J. Combin.
Theory Ser. B 50 (1990) 1-10.
https://doi.org/10.1016/0095-8956(90)90092-E

[2] M. Anholcer, B. Bosek and J. Grytczuk, Majority choosability of digraphs, Electron.
J. Combin. 24 (2017) #P3.57.
https://doi.org/10.37236,/6923


https://doi.org/10.1016/0095-8956\(90\)90092-E
https://doi.org/10.37236/6923

506 J. HASLEGRAVE

[3] M. Anholcer, B. Bosek and J. Grytczuk, Majority coloring of infinite digraphs, Acta
Math. Univ. Comenian. (N.S.) 88 (2019) 371-376.

[4] M. Anholcer, B. Bosek and J. Grytczuk, Majority choosability of countable graphs
(2020).
arXiv:2003.02883

[5] E. Berger, Unfriendly partitions for graphs not containing a subdivision of an infinite
cliqgue, Combinatorica 37 (2017) 157-166.
https://doi.org,/10.1007/s00493-015-3261-1

[6] H. Bruhn, R. Diestel, A. Georgakopoulos and P. Spriissel, Fvery rayless graph has
an unfriendly partition, Combinatorica 30 (2010) 521-532.
https://doi.org/10.1007/500493-010-2590-3

[7] P. Erdés, A.L. Rubin and H. Taylor, Choosability in graphs, in: Proceedings of
the West Coast Conference on Combinatorics, Graph Theory and Computing, P.Z.
Chinn and D. McCarthy (Ed(s)), (Util. Math., Winnipeg, Man., 1980) 125-157.

[8] Z. Dvoték and L. Postle, Correspondence coloring and its application to list-coloring
planar graphs without cycles of lengths 4 to 8, J. Combin. Theory Ser. B 129 (2018)
38-54.
https://doi.org/10.1016/j.jctb.2017.09.001

[9] A. Girao, T. Kittipassorn and K. Popielarz, Generalized majority colourings of di-
graphs, Combin. Probab. Comput. 26 (2017) 850-855.
https://doi.org/10.1017/S096354831700044X

[10] F. Knox and R. Sédmal, Linear bound for majority colourings of digraphs, Electron.
J. Combin. 25 (2018) #P3.29.
https://doi.org/10.37236/6762

[11] S. Kreutzer, S. Oum, P. Seymour, D. van der Zypen and D.R. Wood, Majority
colourings of digraphs, Electron. J. Combin. 24 (2017) #P2.25.
https://doi.org/10.37236/6410

[12] L. Lovész, On decomposition of graphs, Studia Sci. Math. Hungar. 1 (1966) 237-238.

[13] S. Shelah and E.C. Milner, Graphs with no unfriendly partitions, in: A Tribute to
Paul Erdds, A. Baker, B. Bollobas and A. Hajnal (Ed(s)), (Cambridge Univ. Press,
Cambridge, 1990) 373-384.

[14] V.G. Vizing, Vertex colorings with given colors, Diskret. Analiz 29 (1976) 3-10, in
Russian.

Received 31 March 2020
Revised 6 November 2020
Accepted 6 November 2020


https://arxiv.org/abs/2003.02883
https://doi.org/10.1007/s00493-015-3261-1
https://doi.org/10.1007/s00493-010-2590-3
https://doi.org/10.1016/j.jctb.2017.09.001
https://doi.org/10.1017/S096354831700044X
https://doi.org/10.37236/6762
https://doi.org/10.37236/6410
http://www.tcpdf.org

