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Abstract

We say that a digraph D = (V,A) admits a good decomposition D =
D1 ∪ D2 ∪ D3 if D1 = (V1, A1), D2 = (V2, A2) and D3 = (V3, A3) are such
subdigraphs of D that V = V1 ∪ V2 with V1 ∩ V2 = ∅, V2 6= ∅ but V1 may be
empty, D1 is the subdigraph of D induced by V1 and is an acyclic digraph,
D2 is the subdigraph of D induced by V2 and is a strong digraph and D3 is
a subdigraph of D, every arc of which has its tail in V1 and its head in V2.
In this paper, we show that a digraph D = (V,A) with minimum outdegree
3 has no vertex disjoint directed cycles of different lengths if and only if D
admits a good decomposition D = D1∪D2∪D3, where D1 = (V1, A1), D2 =
(V2, A2) and D3 = (V3, A3) are such that D2 has minimum outdegree 3 and
no vertex disjoint directed cycles of different lengths and for every vertex
v ∈ V1, d

+

D1∪D3
(v) ≥ 3. Moreover, when such a good decomposition for

D exists, it is unique. By these results, the investigation of digraphs with
minimum outdegree 3 having no vertex disjoint directed cycles of different
lengths can be reduced to the investigation of strong such digraphs. Further,
we classify strong digraphs with minimum outdegree 3 and girth 2 having
no vertex disjoint directed cycles of different lengths.

Keywords: digraph with minimum outdegree 3, vertex disjoint cycles, cy-
cles of different lengths, acyclic digraph, strong digraph.
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1. Introduction

In this paper, the term digraph always means a finite simple digraph, i.e., a
digraph that has a finite number of vertices, no loops and no multiple arcs.
Unless otherwise indicated, our graph-theoretic terminology will follow [1].

https://doi.org/10.7151/dmgt.2381


574 N.D. Tan

Let D be a digraph. Then the vertex set and the arc set of D are denoted
by V (D) and A(D) (or by V and A for short), respectively. A vertex v ∈ V

is called an outneighbor of a vertex u ∈ V if (u, v) ∈ A. We denote the set of
all outneighbors of u by N+

D (u). The outdegree of u ∈ V , denoted by d+D(u),
is |N+

D (u)|. The minimum outdegree of D is min{d+D(u) | u ∈ V }. Similarly, a
vertex w ∈ V is called an inneighbor of a vertex u ∈ V if (w, u) ∈ A. We denote
the set of all inneighbors of u by N−

D (u). The indegree of u ∈ V , denoted by
d−D(u), is |N

−

D (u)|.
Let D = (V,A) be a digraph. Then we write uv for an arc (u, v) ∈ A for

short. By a cycle and a path in D we always mean a directed cycle and a directed
path, respectively. By disjoint cycles in D we always mean vertex disjoint cycles.
The girth of D is the length of a shortest cycle in D. For a subset W ⊆ V , the
subdigraph of D induced by W is denoted by D[W ].

For a natural number k, all integers modulo k are 0, 1, 2, . . . , k−1. A digraph
D = (V,A) is called k-regular if d+D(v) = d−D(v) = k for every vertex v ∈ V .
A digraph is called acyclic if it has no cycles. If C = v0, v1, . . . , vm−1, v0 is a
cycle of length m in D and vi, vj ∈ V (C), then viCvj denotes the sequence
vi, vi+1, vi+2, . . . , vj , where all indices are taken modulo m. We will consider
viCvj both as a path and as a vertex set. Similar notation as described above
for a cycle is also used for a path. A digraph D = (V,A) is called strong if
for every pair x, y of distinct vertices in D there exist both a path from x to
y and a path from y to x. A digraph with only one vertex is considered to be
strong. A strong component of a digraph D is a maximal induced subdigraph
of D which is strong. A strong component of D is called trivial if it consists of
only one vertex; otherwise, it is called nontrivial. The strong component digraph

SC(D) of D is obtained by contracting each strong component of D into a single
vertex and deleting any parallel arcs obtained in this process. In other words, if
C1, C2, . . . , Ct are the strong components of D, then V (SC(D)) = {v1, v2, . . . , vt}
and A(SC(D)) = {vivj | There is an arc uiuj ∈ A with ui ∈ V (Ci) and uj ∈
V (Cj)}. Then SC(D) is acyclic and therefore there exists a vertex in SC(D) with
outdegree 0. A strong component C of D is called terminal if the corresponding
vertex in SC(D) of C has outdegree 0. Thus, any digraph D has a terminal
strong component.

Researchers have been interested in conditions for the existence of disjoint
cycles in digraphs since long ago. Among many results about this problem,
we mention here the following nice one that gives a condition to guarantee the
existence of two disjoint cycles in a digraph.

Theorem 1 (Thomassen [10]). Every digraph with minimum outdegree at least

three contains two disjoint cycles.

In the above result, we do not care if the lengths of disjoint cycles are equal or
not. In recent years, many researchers were interested in conditions to guarantee
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the existence of disjoint cycles of different lengths in digraphs. In [4], Henning
and Yeo have posed the following conjecture.

Conjecture 2 (Henning & Yeo [4]). Every digraph with minimum outdegree at

least four contains two disjoint cycles of different lengths.

This conjecture has been verified for several classes of digraphs in [3, 4, 6]
before it has been proved completely by Lichiardopol in [5].

Theorem 3 (Lichiardopol [5]). Every digraph with minimum outdegree at least

four contains two disjoint cycles of different lengths.

In this paper, we investigate the structure of digraphs having no disjoint
cycles of different lengths. On account of Theorems 1 and 3, it is natural and
reasoned to restrict our investigation to digraphs with minimum outdegree 3. In
Section 2, we will prove a decomposition theorem for digraphs with minimum
outdegree 3 having no disjoint cycles of different lengths. Before the formulating
our results, we define a notion called a good decomposition for a digraph. Namely,
we say that a digraph D = (V,A) admits a good decomposition D = D1∪D2∪D3

if D1 = (V1, A1), D2 = (V2, A2) and D3 = (V3, A3) are such subdigraphs of D that
V = V1∪V2 with V1∩V2 = ∅, V2 6= ∅ but V1 may be empty, D1 is the subdigraph
of D induced by V1 and is an acyclic digraph, D2 is the subdigraph of D induced
by V2 and is a strong digraph and D3 is a subdigraph of D, every arc of which
has its tail in V1 and its head in V2. Further, we say that a good decomposition
D = D1 ∪D2 ∪D3 of a digraph D is unique if for any other good decomposition
D = D′

1 ∪D′

2 ∪D′

3 of D we always have D′

1 = D1, D
′

2 = D2 and D′

3 = D3.

Theorem 4. A digraph D = (V,A) with minimum outdegree 3 has no vertex

disjoint cycles of different lengths if and only if D admits a good decomposition

D = D1 ∪ D2 ∪ D3, where D1 = (V1, A1), D2 = (V2, A2) and D3 = (V3, A3) are

such that D2 has minimum outdegree 3 and no vertex disjoint cycles of different

lengths and for every vertex v ∈ V1, d
+

D1∪D3
(v) ≥ 3. Moreover, when such a good

decomposition for D exists, it is unique.

By Theorem 4, the investigation of digraphs with minimum outdegree 3
having no vertex disjoint directed cycles of different lengths can be reduced
to the investigation of strong such digraphs. Further in this paper, we will
get a classification for strong digraphs with minimum outdegree 3 and girth
2 having no vertex disjoint cycles of different lengths. In [7], for every in-
teger n ≥ 2 we have defined the digraph D2

2n =
(

V (D2
2n), A(D

2
2n)

)

as fol-
lows. The vertex set V (D2

2n) = {ui, vi | i = 0, 1, . . . , n − 1} and the arc set
A(D2

2n) = {uivi, viui, uiui+1, uivi+1, viui+1, vivi+1 | i = 0, 1, . . . , n − 1}, where
i+ 1 is always taken modulo n.
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The digraph D2
4 is the complete digraph on 4 vertices. The digraph D2

8 is
illustrated in Figure 1.
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Figure 1. The digraph D2
8.

It has been proved in [7] that for any integer n ≥ 2, the digraph D2
2n is

a 3-regular digraph with girth 2 having no vertex disjoint cycles of different
lengths. For more results about digraphs having no vertex disjoint cycles of
different lengths, the reader can see the papers [2, 8] and [9].

The following result will be proved in Section 3.

Theorem 5. Let D = (V,A) be a strong digraph with minimum outdegree 3 and

girth 2. Then D is a digraph having no vertex disjoint cycles of different lengths

if and only if D is isomorphic to a digraph D2
2n for some integer n ≥ 2.

2. Proof of Theorem 4

In this section, we will prove Theorem 4. First, we prove its necessity. So, let
D = (V,A) be a digraph with minimum outdegree 3 having no disjoint cycles of
different lengths. Then, we have the following claims.

Claim 6. Every terminal strong component of D is nontrivial.

This claim is trivial because the minimum outdegree of D is 3.

Claim 7. D has a unique nontrivial strong component.

Proof. Suppose, on the contrary, that D has at least two nontrivial strong com-
ponents and let C1 and C2 be two of them. By Claim 6, without loss of generality,
we may assume that C1 is terminal. Let P = v1, v2, . . . , vk be a longest path in
C1. Then, since C1 is a terminal strong component, every outneighbor of vk in
D must be in V (P ). Therefore, since the minimum outdegree of D is 3, there
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exist i, j ∈ {1, 2, . . . , k − 1} with i 6= j such that both vkvi ∈ A and vkvj ∈ A

hold. It follows that Q1 = vi, vi+1, . . . , vk, vi and Q2 = vj , vj+1, . . . , vk, vj are two
cycles of different lengths in C1. Further, since C2 is nontrivial and strong, it is
clear that C2 has a cycle Q3. Therefore, either Q1 and Q3 or Q2 and Q3 are two
disjoint cycles of different lengths in D, a contradiction.

Let C1, C2, . . . , Ct be strong components of D. Since any digraph has a
terminal strong component, by Claims 6 and 7, without loss of generality, we
may assume that Ct is the only nontrivial strong component of D which must be
terminal and the other strong components C1, C2, . . . , Ct−1 of D are nonterminal
and trivial. Let V1 = V (C1) ∪ V (C2) ∪ · · · ∪ V (Ct−1), V2 = V (Ct) = V \ V1,
D1 = (V1, A1) = D[V1] and D2 = (V2, A2) = Ct = D[V2]. Further, let A3 =
A \ (A1 ∪ A2) and D3 = (V3, A3) be the subdigraph of D, arc-induced by A3.
Then, since the strong component digraph SC(D) of D is acyclic, it is clear that
D = D1 ∪ D2 ∪ D3 is a good decomposition of D. Furthermore, since D has
minimum outdegree 3 and no disjoint cycles of different lengths, the subdigraph
D2 must have minimum outdegree 3 and no disjoint cycles of different lengths and
for every vertex v ∈ V1, d

+

D1∪D3
(v) ≥ 3. The necessity of Theorem 4 is proved.

Next, we prove the sufficiency. So, let a digraph D admit a good decomposi-
tion D = D1∪D2∪D3, where D1 = (V1, A1), D2 = (V2, A2) and D3 = (V3, A3) are
such that D2 has minimum outdegree 3 and no vertex disjoint cycles of different
lengths and for every vertex v ∈ V1, d

+

D1∪D3
(v) ≥ 3. Then it is clear that the

minimum outdegree of D is 3. If C is a cycle in D, then since D1 is acyclic and
D3 is a digraph every arc of which has its tail in V1 and its head in V2, it is not
difficult to see that C must be a cycle in D2. Thus, if C1 and C2 are two disjoint
cycles in D, then they are two disjoint cycles in D2 which is a digraph having
no disjoint cycles of different lengths. It follows that C1 and C2 have the same
length and therefore D must be a digraph having no disjoint cycles of different
lengths. The sufficiency of Theorem 4 is proved.

Finally, we prove the uniqueness of the decomposition. Let D = D1 ∪D2 ∪
D3 be a good decomposition of D. Then, it is clear that D2 is the unique
nontrivial strong component of D. Hence, if D = D′

1 ∪D′

2 ∪D′

3 is another good
decomposition of D, then we must have D′

2 = D2 because D′

2 also is a nontrivial
strong component of D. It follows that D′

1 = D1 and therefore D′

3 = D3. Thus,
a good decomposition for D is unique.

The proof of Theorem 4 is complete.

3. Proof of Theorem 5

In this section, we will prove Theorem 5. Let D = (V,A) be a strong digraph
with minimum outdegree 3 and girth 2. If D is isomorphic to a digraph D2

2n for
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some integer n ≥ 2, then by Theorem 1 in [7] D is a digraph having no disjoint
cycles of different lengths. Thus, it remains to prove the converse. So, we suppose
that D is a digraph having no disjoint cycles of different lengths. We consider
the following two cases separately.

Case 1. D has a vertex u which lies on two different cycles C1 = u, v1, u and
C2 = u, v2, u of length 2.

In this case, we consider the digraph Du = D − u. Let P1 = u1, u2, . . . , ut
be a maximal path in Du with u1 = v1. By maximality of P1, all outneighbors
of ut in Du must be in V (P1). Since the minimum outdegree of D is 3, the
minimum outdegree of Du is at least 2. So, ut has at least two outneighbors
in V (P1) and therefore t ≥ 3. If ut has three outneighbors in V (P1), say ui, uk
and uj with 1 ≤ i < k < j ≤ t − 1, then the cycles C3 = ukP1ut, uk and C1

are two disjoint cycles of different lengths in D, a contradiction. Thus, ut has
exactly two outneighbors in V (P1), say ui and uj with 1 ≤ i < j ≤ t − 1. But
ut must have at least 3 outneighbors in D because the minimum outdegree of D
is 3. It follows that we also must have utu ∈ A. Further, let C4 = uiP1ut, ui
and C5 = ujP1ut, uj . Then, if i > 1, then C4 and C1 are two disjoint cycles of
different lengths in D, a contradiction. So, i = 1. Now, if i = 1 but j < t − 1,
then C5 and C1 are two disjoint cycles of different cycles in D, a contradiction
again. Thus, we can conclude that if P1 = u1, u2, . . . , ut is a maximal path in Du

with u1 = v1, then u1 = v1, ut−1 and u are all outneighbors of ut in D.

If v2 6∈ V (P1), then C4 and C2 are two disjoint cycles of different lengths in D,
a contradiction. So, v2 ∈ V (P1). Further, if v2 ∈ V (P1) but v2 6∈ {ut−1, ut}, then
the cycles C6 = v1P1v2, u, v1 and C5 are two disjoint cycles of different lengths
in D, a contradiction again. Thus, we must have v2 ∈ {ut−1, ut}. If v2 = ut,
then u, v1 and v2 are vertices in D such that v2v1 ∈ A and u lies on two different
cycles u, v1, u and u, v2, u of length 2. If v2 = ut−1, then the vertices ut−1, u and
ut are such that utu ∈ A and ut−1 lies on two different cycles ut−1, u, ut−1 and
ut−1, ut, ut−1 of length 2.

In a word, we can find in D vertices u, v1 and v2 such that v2v1 ∈ A and u

lies on two different cycles u, v1, u and u, v2, u of length 2. For such vertices u, v1
and v2, we consider a maximal path P2 = w1, w2, . . . , wℓ in Du with w1 = v2 and
w2 = v1. By arguments similar to those used in the above two paragraphs, we
can show that ℓ ≥ 3, w1 = v2, wℓ−1 and u are all outneighbors of wℓ in D and
v1 ∈ {wℓ−1, wℓ}. It follows that ℓ = 3, i.e., P2 = w1, w2, w3 with w1 = v2, w2 = v1
and v1, v2 and u are all outneighbors of w3. Now we apply similar arguments to
the vertices v1, u and w3 in order to get the path P ′

2 = w3, u, v
′

2 such that w3, u

and v1 are all outneighbors of v
′

2. If v
′

2 6= v2, then we apply again these arguments
to the vertices u, v1 and v′2 in order to get the path P ′′

2 = v′2, v1, w
′

3 such that v1, u
and v′2 are all outneighbors of w′

3. Therefore, we can get the two disjoint cycles
v′2, v1, w

′

3, v
′

2 and u, v2, u of different lengths in D, a contradiction. So, v′2 = v2
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and therefore v2w3 ∈ A. By repeating these arguments to the vertices v2, u, w3

and then to the vertices w3, v1, v2, we can see that v1v2 ∈ A and uw3 ∈ A. Now,
it is not difficult to see that D is isomorphic to D2

4 in this case.

Case 2. D has no vertex which lies on two different cycles of length 2. Let
C0 = u0, v0, u0 be a cycle of length 2 in D and D′ = D − V (C0). First, we prove
the following simple claim which we will frequently and implicitly use later.

Claim 8. If P = x1, x2, . . . , xt, t ≥ 2, is a path in D′ and xt has outneighbors in

V (P ), then xt−1 is the unique outneighbor of xt in V (P ).

Proof. Let xt have outneighbors in V (P ). If xt has an outneighbor xi ∈ V (P )
with i 6= t − 1, then H1 = xi, xi+1, . . . , xt, xi is a cycle in D′ of length greater
than 2. Therefore, C0 and H1 are two disjoint cycles of different lengths in D, a
contradiction. Thus, xt−1 is the unique outneighbor of xt in V (P ).

Let W1 be a terminal strong component of D′. Since the minimum outdegree
of D is 3, the minimum outdegree of D′ is at least 1. It follows that W1 must
be nontrivial. Let Q = w1, w2, . . . , wℓ−1, wℓ be a longest path in W1. Then ℓ ≥ 2
and by maximality of |V (Q)|, all outneighbors of wℓ in W1 must be in V (Q).
Since W1 is a terminal strong component of D′ and the minimum outdegree of
D is 3, by Claim 8, it is not difficult to see that N+

D (wℓ) = {wℓ−1, u0, v0}. In
particular, we have d+D(wℓ) = 3. Since W1 is strong, we can find a path Q′

from wℓ to w1 in W1, say Q′ = z1, z2, . . . , zr with z1 = wℓ and zr = w1. Since
N+

D (wℓ) = {wℓ−1, u0, v0}, the unique outneighbor of wℓ = z1 in D′ is wℓ−1. So,
we necessarily have z2 = wℓ−1. Now we go along the path Q′ from z2 in the
direction specified by the direction of its arcs. Let zi, i ≥ 3, be the first vertex
of Q′, which lies in V (Q) \ {wℓ−1}, by this travelling, say zi = wj . Since Q′ is a
path, it is clear that j 6= ℓ, ℓ − 1. Furthermore, H2 = (z2Q

′zi) ∪ (wjQwℓ−1) is a
cycle in D′. If either i 6= 3 or j 6= ℓ− 2, then H2 and C0 are two disjoint cycles of
different lengths in D, a contradiction. Thus, we must have z3 = wℓ−2. If ℓ ≥ 4,
then by similar considerations we can get z4 = wℓ−3, z5 = wℓ−4, . . . , r = ℓ and
zr = w1. But D has no vertex which lies on two different cycles of length 2 in
this case. So, we can conclude that r = ℓ = 2, i.e., Q = w1, w2, Q

′ = w2, w1

and the length of a longest path in W1 is 1. So, Q′ is also a longest path in W1

and therefore N+

D (w1) = {w2, u0, v0}. Thus, W1 is a cycle of length 2. Rename
this cycle by C1 = u1, v1, u1. Then it is clear from the above consideration that
N+

D (u1) = {v1, u0, v0} and N+

D (v1) = {u1, u0, v0}.
Now let W2 be a terminal strong component of D − V (C1). By arguments

similar to those used in the above paragraph, we can show that W2 is a cycle
C2 = u2, v2, u2 with N+

D (u2) = {v2, u1, v1} and N+

D (v2) = {u2, u1, v1}. If V (C2)∩
V (C0) 6= ∅, say u2 = u0, then v2 = v0 because D has no vertex which lies on two
different cycles of length 2 in this case. Then it is not difficult to see that D is
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isomorphic to D2
4, which is impossible in this case. Thus, V (C2) ∩ V (C0) = ∅.

Further, we consider a terminal strong component W3 of D − V (C2). Again, by
arguments similar to those used in the above paragraph, we can show that W3 is
a cycle C3 = u3, v3, u3 with N+

D (u3) = {v3, u2, v2} and N+

D (v3) = {u3, u2, v2}. We
have V (C3)∩V (C1) = ∅ because every vertex of V (C3) has outneighbors in V (C2)
whilst any vertex of V (C1) has no outneighbors in V (C2). If V (C3)∩V (C0) 6= ∅,
say u3 = u0, then since D has no vertex which lies on two different cycles of
length 2 in this case we must have v3 = v0, i.e., V (C3) = V (C0). Then, it
is not difficult to see that in this situaton D is isomorphic to D2

6. Otherwise,
V (C3) ∩ V (C0) = ∅ and we can repeat similar arguments as above for C3 and so
on. Since D is finite, there is a natural number n ≥ 3 such that the following
hold for each i ∈ {0, 1, . . . , n− 1}.

(i) Ci = ui, vi, ui is a cycle of length 2 and all cycles C0, C1, . . . , Cn−1 are
pairwise disjoint;

(ii) N+

D (ui) = {vi, ui−1, vi−1} and N+

D (vi) = {ui, ui−1, vi−1} , where i − 1 is
always taken modulo n.

Then since D is connected and strong, it is not difficult to see that D is
isomorphic to D2

2n.

The proof of Theorem 5 is complete.
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