A DECOMPOSITION FOR DIGRAPHS WITH MINIMUM OUTDEGREE 3 HAVING NO VERTEX DISJOINT CYCLES OF DIFFERENT LENGTHS

Ngo Dac Tan
Institute of Mathematics
Vietnam Academy of Science and Technology
18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam
e-mail: ndtan@math.ac.vn

Abstract

We say that a digraph $D=(V, A)$ admits a good decomposition $D=$ $D_{1} \cup D_{2} \cup D_{3}$ if $D_{1}=\left(V_{1}, A_{1}\right), D_{2}=\left(V_{2}, A_{2}\right)$ and $D_{3}=\left(V_{3}, A_{3}\right)$ are such subdigraphs of D that $V=V_{1} \cup V_{2}$ with $V_{1} \cap V_{2}=\emptyset, V_{2} \neq \emptyset$ but V_{1} may be empty, D_{1} is the subdigraph of D induced by V_{1} and is an acyclic digraph, D_{2} is the subdigraph of D induced by V_{2} and is a strong digraph and D_{3} is a subdigraph of D, every arc of which has its tail in V_{1} and its head in V_{2}. In this paper, we show that a digraph $D=(V, A)$ with minimum outdegree 3 has no vertex disjoint directed cycles of different lengths if and only if D admits a good decomposition $D=D_{1} \cup D_{2} \cup D_{3}$, where $D_{1}=\left(V_{1}, A_{1}\right), D_{2}=$ $\left(V_{2}, A_{2}\right)$ and $D_{3}=\left(V_{3}, A_{3}\right)$ are such that D_{2} has minimum outdegree 3 and no vertex disjoint directed cycles of different lengths and for every vertex $v \in V_{1}, d_{D_{1} \cup D_{3}}^{+}(v) \geq 3$. Moreover, when such a good decomposition for D exists, it is unique. By these results, the investigation of digraphs with minimum outdegree 3 having no vertex disjoint directed cycles of different lengths can be reduced to the investigation of strong such digraphs. Further, we classify strong digraphs with minimum outdegree 3 and girth 2 having no vertex disjoint directed cycles of different lengths.

Keywords: digraph with minimum outdegree 3, vertex disjoint cycles, cycles of different lengths, acyclic digraph, strong digraph.
2010 Mathematics Subject Classification: 05C38, 05C20, 05C75.

1. Introduction

In this paper, the term digraph always means a finite simple digraph, i.e., a digraph that has a finite number of vertices, no loops and no multiple arcs. Unless otherwise indicated, our graph-theoretic terminology will follow [1].

Let D be a digraph. Then the vertex set and the arc set of D are denoted by $V(D)$ and $A(D)$ (or by V and A for short), respectively. A vertex $v \in V$ is called an outneighbor of a vertex $u \in V$ if $(u, v) \in A$. We denote the set of all outneighbors of u by $N_{D}^{+}(u)$. The outdegree of $u \in V$, denoted by $d_{D}^{+}(u)$, is $\left|N_{D}^{+}(u)\right|$. The minimum outdegree of D is $\min \left\{d_{D}^{+}(u) \mid u \in V\right\}$. Similarly, a vertex $w \in V$ is called an inneighbor of a vertex $u \in V$ if $(w, u) \in A$. We denote the set of all inneighbors of u by $N_{D}^{-}(u)$. The indegree of $u \in V$, denoted by $d_{D}^{-}(u)$, is $\left|N_{D}^{-}(u)\right|$.

Let $D=(V, A)$ be a digraph. Then we write $u v$ for an $\operatorname{arc}(u, v) \in A$ for short. By a cycle and a path in D we always mean a directed cycle and a directed path, respectively. By disjoint cycles in D we always mean vertex disjoint cycles. The girth of D is the length of a shortest cycle in D. For a subset $W \subseteq V$, the subdigraph of D induced by W is denoted by $D[W]$.

For a natural number k, all integers modulo k are $0,1,2, \ldots, k-1$. A digraph $D=(V, A)$ is called k-regular if $d_{D}^{+}(v)=d_{D}^{-}(v)=k$ for every vertex $v \in V$. A digraph is called acyclic if it has no cycles. If $C=v_{0}, v_{1}, \ldots, v_{m-1}, v_{0}$ is a cycle of length m in D and $v_{i}, v_{j} \in V(C)$, then $v_{i} C v_{j}$ denotes the sequence $v_{i}, v_{i+1}, v_{i+2}, \ldots, v_{j}$, where all indices are taken modulo m. We will consider $v_{i} C v_{j}$ both as a path and as a vertex set. Similar notation as described above for a cycle is also used for a path. A digraph $D=(V, A)$ is called strong if for every pair x, y of distinct vertices in D there exist both a path from x to y and a path from y to x. A digraph with only one vertex is considered to be strong. A strong component of a digraph D is a maximal induced subdigraph of D which is strong. A strong component of D is called trivial if it consists of only one vertex; otherwise, it is called nontrivial. The strong component digraph $S C(D)$ of D is obtained by contracting each strong component of D into a single vertex and deleting any parallel arcs obtained in this process. In other words, if $C_{1}, C_{2}, \ldots, C_{t}$ are the strong components of D, then $V(S C(D))=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ and $A(S C(D))=\left\{v_{i} v_{j} \mid\right.$ There is an arc $u_{i} u_{j} \in A$ with $u_{i} \in V\left(C_{i}\right)$ and $u_{j} \in$ $\left.V\left(C_{j}\right)\right\}$. Then $S C(D)$ is acyclic and therefore there exists a vertex in $S C(D)$ with outdegree 0 . A strong component C of D is called terminal if the corresponding vertex in $S C(D)$ of C has outdegree 0 . Thus, any digraph D has a terminal strong component.

Researchers have been interested in conditions for the existence of disjoint cycles in digraphs since long ago. Among many results about this problem, we mention here the following nice one that gives a condition to guarantee the existence of two disjoint cycles in a digraph.
Theorem 1 (Thomassen [10]). Every digraph with minimum outdegree at least three contains two disjoint cycles.

In the above result, we do not care if the lengths of disjoint cycles are equal or not. In recent years, many researchers were interested in conditions to guarantee
the existence of disjoint cycles of different lengths in digraphs. In [4], Henning and Yeo have posed the following conjecture.

Conjecture 2 (Henning \& Yeo [4]). Every digraph with minimum outdegree at least four contains two disjoint cycles of different lengths.

This conjecture has been verified for several classes of digraphs in $[3,4,6]$ before it has been proved completely by Lichiardopol in [5].

Theorem 3 (Lichiardopol [5]). Every digraph with minimum outdegree at least four contains two disjoint cycles of different lengths.

In this paper, we investigate the structure of digraphs having no disjoint cycles of different lengths. On account of Theorems 1 and 3, it is natural and reasoned to restrict our investigation to digraphs with minimum outdegree 3 . In Section 2, we will prove a decomposition theorem for digraphs with minimum outdegree 3 having no disjoint cycles of different lengths. Before the formulating our results, we define a notion called a good decomposition for a digraph. Namely, we say that a digraph $D=(V, A)$ admits a good decomposition $D=D_{1} \cup D_{2} \cup D_{3}$ if $D_{1}=\left(V_{1}, A_{1}\right), D_{2}=\left(V_{2}, A_{2}\right)$ and $D_{3}=\left(V_{3}, A_{3}\right)$ are such subdigraphs of D that $V=V_{1} \cup V_{2}$ with $V_{1} \cap V_{2}=\emptyset, V_{2} \neq \emptyset$ but V_{1} may be empty, D_{1} is the subdigraph of D induced by V_{1} and is an acyclic digraph, D_{2} is the subdigraph of D induced by V_{2} and is a strong digraph and D_{3} is a subdigraph of D, every arc of which has its tail in V_{1} and its head in V_{2}. Further, we say that a good decomposition $D=D_{1} \cup D_{2} \cup D_{3}$ of a digraph D is unique if for any other good decomposition $D=D_{1}^{\prime} \cup D_{2}^{\prime} \cup D_{3}^{\prime}$ of D we always have $D_{1}^{\prime}=D_{1}, D_{2}^{\prime}=D_{2}$ and $D_{3}^{\prime}=D_{3}$.

Theorem 4. A digraph $D=(V, A)$ with minimum outdegree 3 has no vertex disjoint cycles of different lengths if and only if D admits a good decomposition $D=D_{1} \cup D_{2} \cup D_{3}$, where $D_{1}=\left(V_{1}, A_{1}\right), D_{2}=\left(V_{2}, A_{2}\right)$ and $D_{3}=\left(V_{3}, A_{3}\right)$ are such that D_{2} has minimum outdegree 3 and no vertex disjoint cycles of different lengths and for every vertex $v \in V_{1}, d_{D_{1} \cup D_{3}}^{+}(v) \geq 3$. Moreover, when such a good decomposition for D exists, it is unique.

By Theorem 4, the investigation of digraphs with minimum outdegree 3 having no vertex disjoint directed cycles of different lengths can be reduced to the investigation of strong such digraphs. Further in this paper, we will get a classification for strong digraphs with minimum outdegree 3 and girth 2 having no vertex disjoint cycles of different lengths. In [7], for every integer $n \geq 2$ we have defined the digraph $D_{2 n}^{2}=\left(V\left(D_{2 n}^{2}\right), A\left(D_{2 n}^{2}\right)\right)$ as follows. The vertex set $V\left(D_{2 n}^{2}\right)=\left\{u_{i}, v_{i} \mid i=0,1, \ldots, n-1\right\}$ and the arc set $A\left(D_{2 n}^{2}\right)=\left\{u_{i} v_{i}, v_{i} u_{i}, u_{i} u_{i+1}, u_{i} v_{i+1}, v_{i} u_{i+1}, v_{i} v_{i+1} \mid i=0,1, \ldots, n-1\right\}$, where $i+1$ is always taken modulo n.

The digraph D_{4}^{2} is the complete digraph on 4 vertices. The digraph D_{8}^{2} is illustrated in Figure 1.

Figure 1. The digraph D_{8}^{2}.
It has been proved in [7] that for any integer $n \geq 2$, the digraph $D_{2 n}^{2}$ is a 3 -regular digraph with girth 2 having no vertex disjoint cycles of different lengths. For more results about digraphs having no vertex disjoint cycles of different lengths, the reader can see the papers $[2,8]$ and [9].

The following result will be proved in Section 3.
Theorem 5. Let $D=(V, A)$ be a strong digraph with minimum outdegree 3 and girth 2. Then D is a digraph having no vertex disjoint cycles of different lengths if and only if D is isomorphic to a digraph $D_{2 n}^{2}$ for some integer $n \geq 2$.

2. Proof of Theorem 4

In this section, we will prove Theorem 4. First, we prove its necessity. So, let $D=(V, A)$ be a digraph with minimum outdegree 3 having no disjoint cycles of different lengths. Then, we have the following claims.

Claim 6. Every terminal strong component of D is nontrivial.
This claim is trivial because the minimum outdegree of D is 3 .
Claim 7. D has a unique nontrivial strong component.
Proof. Suppose, on the contrary, that D has at least two nontrivial strong components and let C_{1} and C_{2} be two of them. By Claim 6 , without loss of generality, we may assume that C_{1} is terminal. Let $P=v_{1}, v_{2}, \ldots, v_{k}$ be a longest path in C_{1}. Then, since C_{1} is a terminal strong component, every outneighbor of v_{k} in D must be in $V(P)$. Therefore, since the minimum outdegree of D is 3, there
exist $i, j \in\{1,2, \ldots, k-1\}$ with $i \neq j$ such that both $v_{k} v_{i} \in A$ and $v_{k} v_{j} \in A$ hold. It follows that $Q_{1}=v_{i}, v_{i+1}, \ldots, v_{k}, v_{i}$ and $Q_{2}=v_{j}, v_{j+1}, \ldots, v_{k}, v_{j}$ are two cycles of different lengths in C_{1}. Further, since C_{2} is nontrivial and strong, it is clear that C_{2} has a cycle Q_{3}. Therefore, either Q_{1} and Q_{3} or Q_{2} and Q_{3} are two disjoint cycles of different lengths in D, a contradiction.

Let $C_{1}, C_{2}, \ldots, C_{t}$ be strong components of D. Since any digraph has a terminal strong component, by Claims 6 and 7 , without loss of generality, we may assume that C_{t} is the only nontrivial strong component of D which must be terminal and the other strong components $C_{1}, C_{2}, \ldots, C_{t-1}$ of D are nonterminal and trivial. Let $V_{1}=V\left(C_{1}\right) \cup V\left(C_{2}\right) \cup \cdots \cup V\left(C_{t-1}\right), V_{2}=V\left(C_{t}\right)=V \backslash V_{1}$, $D_{1}=\left(V_{1}, A_{1}\right)=D\left[V_{1}\right]$ and $D_{2}=\left(V_{2}, A_{2}\right)=C_{t}=D\left[V_{2}\right]$. Further, let $A_{3}=$ $A \backslash\left(A_{1} \cup A_{2}\right)$ and $D_{3}=\left(V_{3}, A_{3}\right)$ be the subdigraph of D, arc-induced by A_{3}. Then, since the strong component digraph $S C(D)$ of D is acyclic, it is clear that $D=D_{1} \cup D_{2} \cup D_{3}$ is a good decomposition of D. Furthermore, since D has minimum outdegree 3 and no disjoint cycles of different lengths, the subdigraph D_{2} must have minimum outdegree 3 and no disjoint cycles of different lengths and for every vertex $v \in V_{1}, d_{D_{1} \cup D_{3}}^{+}(v) \geq 3$. The necessity of Theorem 4 is proved.

Next, we prove the sufficiency. So, let a digraph D admit a good decomposition $D=D_{1} \cup D_{2} \cup D_{3}$, where $D_{1}=\left(V_{1}, A_{1}\right), D_{2}=\left(V_{2}, A_{2}\right)$ and $D_{3}=\left(V_{3}, A_{3}\right)$ are such that D_{2} has minimum outdegree 3 and no vertex disjoint cycles of different lengths and for every vertex $v \in V_{1}, d_{D_{1} \cup D_{3}}^{+}(v) \geq 3$. Then it is clear that the minimum outdegree of D is 3 . If C is a cycle in D, then since D_{1} is acyclic and D_{3} is a digraph every arc of which has its tail in V_{1} and its head in V_{2}, it is not difficult to see that C must be a cycle in D_{2}. Thus, if C_{1} and C_{2} are two disjoint cycles in D, then they are two disjoint cycles in D_{2} which is a digraph having no disjoint cycles of different lengths. It follows that C_{1} and C_{2} have the same length and therefore D must be a digraph having no disjoint cycles of different lengths. The sufficiency of Theorem 4 is proved.

Finally, we prove the uniqueness of the decomposition. Let $D=D_{1} \cup D_{2} \cup$ D_{3} be a good decomposition of D. Then, it is clear that D_{2} is the unique nontrivial strong component of D. Hence, if $D=D_{1}^{\prime} \cup D_{2}^{\prime} \cup D_{3}^{\prime}$ is another good decomposition of D, then we must have $D_{2}^{\prime}=D_{2}$ because D_{2}^{\prime} also is a nontrivial strong component of D. It follows that $D_{1}^{\prime}=D_{1}$ and therefore $D_{3}^{\prime}=D_{3}$. Thus, a good decomposition for D is unique.

The proof of Theorem 4 is complete.

3. Proof of Theorem 5

In this section, we will prove Theorem 5. Let $D=(V, A)$ be a strong digraph with minimum outdegree 3 and girth 2 . If D is isomorphic to a digraph $D_{2 n}^{2}$ for
some integer $n \geq 2$, then by Theorem 1 in [7] D is a digraph having no disjoint cycles of different lengths. Thus, it remains to prove the converse. So, we suppose that D is a digraph having no disjoint cycles of different lengths. We consider the following two cases separately.

Case 1. D has a vertex u which lies on two different cycles $C_{1}=u, v_{1}, u$ and $C_{2}=u, v_{2}, u$ of length 2.

In this case, we consider the digraph $D_{u}=D-u$. Let $P_{1}=u_{1}, u_{2}, \ldots, u_{t}$ be a maximal path in D_{u} with $u_{1}=v_{1}$. By maximality of P_{1}, all outneighbors of u_{t} in D_{u} must be in $V\left(P_{1}\right)$. Since the minimum outdegree of D is 3 , the minimum outdegree of D_{u} is at least 2. So, u_{t} has at least two outneighbors in $V\left(P_{1}\right)$ and therefore $t \geq 3$. If u_{t} has three outneighbors in $V\left(P_{1}\right)$, say u_{i}, u_{k} and u_{j} with $1 \leq i<k<j \leq t-1$, then the cycles $C_{3}=u_{k} P_{1} u_{t}, u_{k}$ and C_{1} are two disjoint cycles of different lengths in D, a contradiction. Thus, u_{t} has exactly two outneighbors in $V\left(P_{1}\right)$, say u_{i} and u_{j} with $1 \leq i<j \leq t-1$. But u_{t} must have at least 3 outneighbors in D because the minimum outdegree of D is 3. It follows that we also must have $u_{t} u \in A$. Further, let $C_{4}=u_{i} P_{1} u_{t}, u_{i}$ and $C_{5}=u_{j} P_{1} u_{t}, u_{j}$. Then, if $i>1$, then C_{4} and C_{1} are two disjoint cycles of different lengths in D, a contradiction. So, $i=1$. Now, if $i=1$ but $j<t-1$, then C_{5} and C_{1} are two disjoint cycles of different cycles in D, a contradiction again. Thus, we can conclude that if $P_{1}=u_{1}, u_{2}, \ldots, u_{t}$ is a maximal path in D_{u} with $u_{1}=v_{1}$, then $u_{1}=v_{1}, u_{t-1}$ and u are all outneighbors of u_{t} in D.

If $v_{2} \notin V\left(P_{1}\right)$, then C_{4} and C_{2} are two disjoint cycles of different lengths in D, a contradiction. So, $v_{2} \in V\left(P_{1}\right)$. Further, if $v_{2} \in V\left(P_{1}\right)$ but $v_{2} \notin\left\{u_{t-1}, u_{t}\right\}$, then the cycles $C_{6}=v_{1} P_{1} v_{2}, u, v_{1}$ and C_{5} are two disjoint cycles of different lengths in D, a contradiction again. Thus, we must have $v_{2} \in\left\{u_{t-1}, u_{t}\right\}$. If $v_{2}=u_{t}$, then u, v_{1} and v_{2} are vertices in D such that $v_{2} v_{1} \in A$ and u lies on two different cycles u, v_{1}, u and u, v_{2}, u of length 2 . If $v_{2}=u_{t-1}$, then the vertices u_{t-1}, u and u_{t} are such that $u_{t} u \in A$ and u_{t-1} lies on two different cycles u_{t-1}, u, u_{t-1} and u_{t-1}, u_{t}, u_{t-1} of length 2 .

In a word, we can find in D vertices u, v_{1} and v_{2} such that $v_{2} v_{1} \in A$ and u lies on two different cycles u, v_{1}, u and u, v_{2}, u of length 2 . For such vertices u, v_{1} and v_{2}, we consider a maximal path $P_{2}=w_{1}, w_{2}, \ldots, w_{\ell}$ in D_{u} with $w_{1}=v_{2}$ and $w_{2}=v_{1}$. By arguments similar to those used in the above two paragraphs, we can show that $\ell \geq 3, w_{1}=v_{2}, w_{\ell-1}$ and u are all outneighbors of w_{ℓ} in D and $v_{1} \in\left\{w_{\ell-1}, w_{\ell}\right\}$. It follows that $\ell=3$, i.e., $P_{2}=w_{1}, w_{2}, w_{3}$ with $w_{1}=v_{2}, w_{2}=v_{1}$ and v_{1}, v_{2} and u are all outneighbors of w_{3}. Now we apply similar arguments to the vertices v_{1}, u and w_{3} in order to get the path $P_{2}^{\prime}=w_{3}, u, v_{2}^{\prime}$ such that w_{3}, u and v_{1} are all outneighbors of v_{2}^{\prime}. If $v_{2}^{\prime} \neq v_{2}$, then we apply again these arguments to the vertices u, v_{1} and v_{2}^{\prime} in order to get the path $P_{2}^{\prime \prime}=v_{2}^{\prime}, v_{1}, w_{3}^{\prime}$ such that v_{1}, u and v_{2}^{\prime} are all outneighbors of w_{3}^{\prime}. Therefore, we can get the two disjoint cycles $v_{2}^{\prime}, v_{1}, w_{3}^{\prime}, v_{2}^{\prime}$ and u, v_{2}, u of different lengths in D, a contradiction. So, $v_{2}^{\prime}=v_{2}$
and therefore $v_{2} w_{3} \in A$. By repeating these arguments to the vertices v_{2}, u, w_{3} and then to the vertices w_{3}, v_{1}, v_{2}, we can see that $v_{1} v_{2} \in A$ and $u w_{3} \in A$. Now, it is not difficult to see that D is isomorphic to D_{4}^{2} in this case.

Case 2. D has no vertex which lies on two different cycles of length 2. Let $C_{0}=u_{0}, v_{0}, u_{0}$ be a cycle of length 2 in D and $D^{\prime}=D-V\left(C_{0}\right)$. First, we prove the following simple claim which we will frequently and implicitly use later.

Claim 8. If $P=x_{1}, x_{2}, \ldots, x_{t}, t \geq 2$, is a path in D^{\prime} and x_{t} has outneighbors in $V(P)$, then x_{t-1} is the unique outneighbor of x_{t} in $V(P)$.

Proof. Let x_{t} have outneighbors in $V(P)$. If x_{t} has an outneighbor $x_{i} \in V(P)$ with $i \neq t-1$, then $H_{1}=x_{i}, x_{i+1}, \ldots, x_{t}, x_{i}$ is a cycle in D^{\prime} of length greater than 2. Therefore, C_{0} and H_{1} are two disjoint cycles of different lengths in D, a contradiction. Thus, x_{t-1} is the unique outneighbor of x_{t} in $V(P)$.

Let W_{1} be a terminal strong component of D^{\prime}. Since the minimum outdegree of D is 3 , the minimum outdegree of D^{\prime} is at least 1 . It follows that W_{1} must be nontrivial. Let $Q=w_{1}, w_{2}, \ldots, w_{\ell-1}, w_{\ell}$ be a longest path in W_{1}. Then $\ell \geq 2$ and by maximality of $|V(Q)|$, all outneighbors of w_{ℓ} in W_{1} must be in $V(Q)$. Since W_{1} is a terminal strong component of D^{\prime} and the minimum outdegree of D is 3, by Claim 8 , it is not difficult to see that $N_{D}^{+}\left(w_{\ell}\right)=\left\{w_{\ell-1}, u_{0}, v_{0}\right\}$. In particular, we have $d_{D}^{+}\left(w_{\ell}\right)=3$. Since W_{1} is strong, we can find a path Q^{\prime} from w_{ℓ} to w_{1} in W_{1}, say $Q^{\prime}=z_{1}, z_{2}, \ldots, z_{r}$ with $z_{1}=w_{\ell}$ and $z_{r}=w_{1}$. Since $N_{D}^{+}\left(w_{\ell}\right)=\left\{w_{\ell-1}, u_{0}, v_{0}\right\}$, the unique outneighbor of $w_{\ell}=z_{1}$ in D^{\prime} is $w_{\ell-1}$. So, we necessarily have $z_{2}=w_{\ell-1}$. Now we go along the path Q^{\prime} from z_{2} in the direction specified by the direction of its arcs. Let $z_{i}, i \geq 3$, be the first vertex of Q^{\prime}, which lies in $V(Q) \backslash\left\{w_{\ell-1}\right\}$, by this travelling, say $z_{i}=w_{j}$. Since Q^{\prime} is a path, it is clear that $j \neq \ell, \ell-1$. Furthermore, $H_{2}=\left(z_{2} Q^{\prime} z_{i}\right) \cup\left(w_{j} Q w_{\ell-1}\right)$ is a cycle in D^{\prime}. If either $i \neq 3$ or $j \neq \ell-2$, then H_{2} and C_{0} are two disjoint cycles of different lengths in D, a contradiction. Thus, we must have $z_{3}=w_{\ell-2}$. If $\ell \geq 4$, then by similar considerations we can get $z_{4}=w_{\ell-3}, z_{5}=w_{\ell-4}, \ldots, r=\ell$ and $z_{r}=w_{1}$. But D has no vertex which lies on two different cycles of length 2 in this case. So, we can conclude that $r=\ell=2$, i.e., $Q=w_{1}, w_{2}, Q^{\prime}=w_{2}, w_{1}$ and the length of a longest path in W_{1} is 1 . So, Q^{\prime} is also a longest path in W_{1} and therefore $N_{D}^{+}\left(w_{1}\right)=\left\{w_{2}, u_{0}, v_{0}\right\}$. Thus, W_{1} is a cycle of length 2. Rename this cycle by $C_{1}=u_{1}, v_{1}, u_{1}$. Then it is clear from the above consideration that $N_{D}^{+}\left(u_{1}\right)=\left\{v_{1}, u_{0}, v_{0}\right\}$ and $N_{D}^{+}\left(v_{1}\right)=\left\{u_{1}, u_{0}, v_{0}\right\}$.

Now let W_{2} be a terminal strong component of $D-V\left(C_{1}\right)$. By arguments similar to those used in the above paragraph, we can show that W_{2} is a cycle $C_{2}=u_{2}, v_{2}, u_{2}$ with $N_{D}^{+}\left(u_{2}\right)=\left\{v_{2}, u_{1}, v_{1}\right\}$ and $N_{D}^{+}\left(v_{2}\right)=\left\{u_{2}, u_{1}, v_{1}\right\}$. If $V\left(C_{2}\right) \cap$ $V\left(C_{0}\right) \neq \emptyset$, say $u_{2}=u_{0}$, then $v_{2}=v_{0}$ because D has no vertex which lies on two different cycles of length 2 in this case. Then it is not difficult to see that D is
isomorphic to D_{4}^{2}, which is impossible in this case. Thus, $V\left(C_{2}\right) \cap V\left(C_{0}\right)=\emptyset$. Further, we consider a terminal strong component W_{3} of $D-V\left(C_{2}\right)$. Again, by arguments similar to those used in the above paragraph, we can show that W_{3} is a cycle $C_{3}=u_{3}, v_{3}, u_{3}$ with $N_{D}^{+}\left(u_{3}\right)=\left\{v_{3}, u_{2}, v_{2}\right\}$ and $N_{D}^{+}\left(v_{3}\right)=\left\{u_{3}, u_{2}, v_{2}\right\}$. We have $V\left(C_{3}\right) \cap V\left(C_{1}\right)=\emptyset$ because every vertex of $V\left(C_{3}\right)$ has outneighbors in $V\left(C_{2}\right)$ whilst any vertex of $V\left(C_{1}\right)$ has no outneighbors in $V\left(C_{2}\right)$. If $V\left(C_{3}\right) \cap V\left(C_{0}\right) \neq \emptyset$, say $u_{3}=u_{0}$, then since D has no vertex which lies on two different cycles of length 2 in this case we must have $v_{3}=v_{0}$, i.e., $V\left(C_{3}\right)=V\left(C_{0}\right)$. Then, it is not difficult to see that in this situaton D is isomorphic to D_{6}^{2}. Otherwise, $V\left(C_{3}\right) \cap V\left(C_{0}\right)=\emptyset$ and we can repeat similar arguments as above for C_{3} and so on. Since D is finite, there is a natural number $n \geq 3$ such that the following hold for each $i \in\{0,1, \ldots, n-1\}$.
(i) $C_{i}=u_{i}, v_{i}, u_{i}$ is a cycle of length 2 and all cycles $C_{0}, C_{1}, \ldots, C_{n-1}$ are pairwise disjoint;
(ii) $N_{D}^{+}\left(u_{i}\right)=\left\{v_{i}, u_{i-1}, v_{i-1}\right\}$ and $N_{D}^{+}\left(v_{i}\right)=\left\{u_{i}, u_{i-1}, v_{i-1}\right\}$, where $i-1$ is always taken modulo n.

Then since D is connected and strong, it is not difficult to see that D is isomorphic to $D_{2 n}^{2}$.

The proof of Theorem 5 is complete.

Acknowledgements

I would like to express my sincere thanks to the anonymous reviewers for their many valuable comments and useful suggestions which helped me to improve the paper.

References

[1] J. Bang-Jensen and G. Gutin, Digraphs. Theory, Algorithms and Applications (Springer, London, 2001). https://doi.org/10.1007/978-1-4471-3886-0
[2] J. Bensmail, A. Harutyunyan, N.K. Le, B. Li and N. Lichiardopol, Disjoint cycles of different lengths in graphs and digraphs, Electron. J. Combin. 24(4) (2017) \#P4.37. https://doi.org/10.37236/6921
[3] Y. Gao and D. Ma, Disjoint cycles with different length in 4-arc-dominated digraphs, Oper. Res. Lett. 41 (2013) 650-653. https://doi.org/10.1016/j.orl.2013.09.003
[4] M.A. Henning and A. Yeo, Vertex disjoint cycles of different length in digraphs, SIAM J. Discrete Math. 26 (2012) 687-694. https://doi.org/10.1137/100802463
[5] N. Lichiardopol, Proof of a conjecture of Henning and Yeo on vertex-disjoint directed cycles, SIAM J. Discrete Math. 28 (2014) 1618-1627.
https://doi.org/10.1137/130922653
[6] N.D. Tan, Vertex disjoint cycles of different lengths in d-arc-dominated digraphs, Oper. Res. Lett. 42 (2014) 351-354.
https://doi.org/10.1016/j.orl.2014.06.004
[7] N.D. Tan, On vertex disjoint cycles of different lengths in 3-regular digraphs, Discrete Math. 338 (2015) 2485-2491. https://doi.org/10.1016/j.disc.2015.06.016
[8] N.D. Tan, On 3-regular digraphs without vertex disjoint cycles of different lengths, Discrete Math. 340 (2017) 1933-1943. https://doi.org/10.1016/j.disc.2017.03.024
[9] N.D. Tan, On 3-regular digraphs of girth 4, Discrete Math. 343 (2020) 111632. https://doi.org/10.1016/j.disc.2019.111632
[10] C. Thomassen, Disjoint cycles in digraphs, Combinatorica 3 (1983) 393-396. https://doi.org/10.1007/BF02579195

Received 19 June 2020
Revised 17 November 2020
Accepted 17 November 2020

