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Abstract

In this paper the behavior of the game domination number γg(G) and
the Staller start game domination number γ′g(G) by the contraction of an
edge and the subdivision of an edge are investigated. Here we prove that
contracting an edge can decrease γg(G) and γ′g(G) by at most two, whereas
subdividing an edge can increase these parameters by at most two. In the
case of no-minus graphs it is proved that subdividing an edge can increase
both these parameters by at most one but on the other hand contracting an
edge can decrease these by two. All possible values of these parameters are
also analysed here.
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1. Introduction

The domination game was introduced in [5] by Brešar, Klavžar and Rall. A
vertex dominates itself and its neighbors. In the domination game, two players,
Dominator and Staller, alternate turns choosing a vertex in a finite, undirected
graph G, and adding it to a set of vertices S. The rule of the game is that
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whenever a player chooses a vertex to add to S, the vertex must dominate at
least one vertex, which is not yet dominated by the vertices of S. The game ends
when S is a dominating set of the graph and the cardinality of S is called the
score of the game. The two players have conflicting goals — Dominator tries to
minimize the final score while Staller tries to maximize it.

Two graph parameters associated with this game were introduced in [5].
Assuming both players play optimally, the game domination number γg(G) is the
score of the game on G when Dominator starts (D game), and the Staller start
game domination number γ′g(G) is the score when Staller starts (S game). Both
parameters are studied in parallel since many results hold for both of them.

In terms of the order of the graph, Kinnersley, West and Zamani [14] con-
jectured that a general upper bound for γg(G) is 3

5 of its order if G is an isolate
free graph. Bujtás [8, 9, 10] developed an innovative discharging-like method to
attack this conjecture. The conjecture was confirmed by Henning and Kinners-
ley on the class of graphs with minimum degree at least two [12]. Schmidt [16]
determined the largest known class of trees for which the conjecture holds.

It is known that the difference between γg(G) and γ′g(G) is at most one, and
that it can occur in both directions. The consequences of an edge removal in a
graph were considered in [7] and it is proved that γg(G) and γ′g(G) can either
increase or decrease by at most two.

This motivated us to study any operation which gives a monotone behavior
of these parameters in the sense that these parameters may either increase or de-
crease. We succeeded in showing that edge contraction as well as edge subdivision
preserves the monotone behavior for both these parameters. The order of a graph
G will be denoted by n(G). The open neighborhood NG(x) = {y : xy ∈ E(G)}
and the closed neighborhood NG[x] = NG(x) ∪ {x} will be abbreviated as N(x)
and N [x] when G will be clear from the context. Two vertices u and v are true
twins if N [u] = N [v].

The sequence of moves in a D game will be denoted with d1, s1, d2, s2, . . .,
and the sequence of moves in an S game with s′1, d

′
1, s
′
2, d
′
2, . . .. A partially domi-

nated graph is a graph together with a declaration that some vertices are already
dominated. Let G|S denote the partially dominated graph where the vertices
of S are considered already dominated. We get the residual graph from G|S by
removing all edges between dominated vertices, and all vertices v with N [v] ⊆ S.
We have the following result.

Theorem 1 (The Continuation Principle [14]). Let G be a graph and A,B ⊆
V (G). If B ⊆ A then γg(G|A) ≤ γg(G|B) and γ

′
g(G|A) ≤ γ′

g(G|B).

This result together with earlier observations [5] on the problem allowed
one to deduce that the game domination number and the Staller start game
domination number may differ by at most one.
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Theorem 2 [5, 14]. For any graph G and a subset S of vertices, |γg(G|S) −
γ′g(G|S)| ≤ 1.

The Staller-pass game [5]. The Staller-pass game is the variant of the dom-
ination game in which at some point in the game, instead of picking a vertex,
Staller may decide to pass, and it is Dominator’s turn again. Denote the size of
the final dominating set in the Staller-pass game on G, under optimal play, by
γspg (G).

Theorem 3 [15]. If n ≥ 1, then

γg(Pn) =

{ ⌈
n
2

⌉
− 1; n ≡ 3 (mod 4),⌈

n
2

⌉
; otherwise

and

γ′g(Pn) =
⌈n

2

⌉
.

A leaf of a graph G is a vertex of degree one and a support vertex of G is a
vertex adjacent to a leaf. A vertex of G is a universal vertex if it is adjacent to all
vertices of G other than itself. An edge contraction in a graph G is an operation
which removes an edge e from G while simultaneously merging the two vertices
that it previously joined and is denoted by G.e. Subdividing an edge e in a graph
G is an operation which consists of removing e and adding a new vertex adjacent
to both extremities of e, forming a path of length two connecting the previously
adjacent vertices and is denoted by G� e.

2. Edge Contraction and Edge Subdivision

We first prove the following bounds on the game domination number of the graph
obtained by edge contraction.

Theorem 4. Let G be a graph and e ∈ E(G). If G.e is the graph obtained from
G by contracting the edge e, then

γg(G)− 2 ≤ γg(G.e) ≤ γg(G),

γ′g(G)− 2 ≤ γ′g(G.e) ≤ γ′g(G).

Proof. Let G be a graph, and e = uv be an edge in G. In G.e, we denote by w
the new vertex obtained by the identification of u and v.

We first prove the upper bounds by describing a strategy for Dominator. We
use the imagination strategy, as used in [5]. During the course of the game on
G.e, Dominator imagines another game played on G. Every time in his turn to
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play, he plays an optimal move in the imagined game and copies this move to
the real game. Then he copies Staller’s answer in the real game to his imagined
game. In addition, in the imagined game, Dominator may consider some extra
vertices dominated during the course of the game, and adapt his strategy. Note
that by the Continuation Principle, considering more vertices dominated in the
imagined game cannot make the imagined game last longer. If Staller plays the
vertex w, then Dominator will consider that she played the vertex u in G and
also adds the neighbourhood of v to the set of dominated vertices. Similarly if
Dominator is supposed to copy to the real game a move in the imagined game on
the vertex u or v, then Dominator plays to w and adds both the neighbourhoods
of u and v to the set of dominated vertices in the imagined game. Finally, if
any player moves on a neighbour of w in G.e, Dominator will assume that both
u and v get dominated in the imagined game. We know that Dominator, and
possibly not Staller, is playing optimally in the imagined game. This guarantees
that the imagined game in G should last no longer than γg(G) for the D game
or than γ′g(G) for the S game. Moreover, at each stage of the game, if S is the
set of dominated vertices in the real game, either S does not contain w or the
set of dominated vertices in the imagined game is precisely (S \ {w}) ∪ {u, v}.
Eventually, when the imagined game is over, the real game is also finished and
Dominator ensured that the number of moves in the real game was no more than
the number of moves in the imagined game. Staller, and possibly not Dominator,
is playing optimally in the real game on G.e. This implies that the total number
of moves made in the real game is at least γg(G) for the D game and at least
γ′g(G) for the S game. Dominator, and possibly not Staller is playing optimally
in the imagined game on G. This implies that the total number of moves made
in the imagined game is at most γg(G.e) for the D game and at most γ′g(G.e) for
the S game, thus proving the upper bound.

Now we prove that γg(G) − 2 ≤ γg(G.e). Consider a real Dominator start
game played on G and Dominator imagines another Dominator start game played
on G.e. Again, Dominator copies every move of Staller in the real game except u
and v to the imagined game and copies back his optimal response in the imagined
game except w to the real game on G. Every move of Dominator in the imagined
game except w is a legal move in the real game. Suppose at some stage Dominator
chooses w in the imagined game, then he chooses either u or v in the real game
instead of copying w. Clearly one of u or v is a legal move in G. If Staller plays
either u or v in the real game then Dominator plays w for Staller in the imagined
game when it is a legal move. Assume first that every move of Staller in the
real game is also a legal move in the imagined game. There may be vertices
remaining undominated in the real game when the imagined game is finished. If
neither Dominator nor Staller played u or v, then the only undominated vertices
must be one among {u, v}. Otherwise, all the undominated vertices must be
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included either in N(v) or in N(u). In both cases the real game can be finished
by playing either u or v depending on the game. Thus the game finishes in at
most two more moves.

Assume now that the kth move of Staller is not a legal move in the imagined
game. Again, the only vertices that may be dominated in the imagined game but
not in the real game are vertices from N [u]∪N [v]. More precisely, if any of u or v
was played in the real game then these vertices are contained in N(v) or in N(u)
respectively, otherwise only u or v may be such a vertex. In any case Dominator
plays any legal move x in the real game. Let S be the set of vertices dominated
in the real game on G after the (k + 2)th move and let S′ be the set of vertices
dominated in the imagined game after the kth move. Defining S′′ = S′ ∪N [x] by
adding the newly dominated vertices in N [x] to the set S′ of dominated vertices
in the imagined game after the kth move. By the Continuation Principle, we
get that γ′g(G.e|S′′) ≤ γ′g(G.e|S′). The residual graph from G|S and the residual
graph fromG.e|S′′ are isomorphic. Staller, and possibly not Dominator, is playing
optimally in the real game on G. We then have

γg(G) ≤ k + 2 + γ′g(G|S) = k + 2 + γ′g(G.e|S′′) ≤ k + 2 + γ′g(G.e|S′).

Also Dominator, and possibly not Staller, is playing optimally in the imagined
game on G.e. Thus we get

k + γ′g(G.e|S′) ≤ γg(G.e).

Therefore γg(G) ≤ γg(G.e) + 2.
The same argument also holds for Staller start game domination number and

hence the bounds proposed for the S game can be proved similarly.

Now we consider the case of edge subdivision. Since in G � e, for any edge
e′ incident to the added degree 2 vertex, (G� e).e′ is the initial graph G, we get
the following as a corollary of Theorem 4.

Corollary 5. Let G be a graph and e ∈ E(G). The graph G � e obtained from
G by subdividing the edge e satisfies

γg(G) ≤ γg(G� e) ≤ γg(G) + 2,

γ′g(G) ≤ γ′g(G� e) ≤ γ′g(G) + 2.

3. No-Minus Graphs

In [11], a special family of graphs was introduced, called no-minus graphs. A graph
G is no-minus if for any subset of vertices S ⊆ V , γg(G|S) ≤ γ′g(G|S). In a
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no-minus graph it is of no advantage for either player to pass a move. It is
known already that forests [14], tri-split graphs and dually chordal graphs [11]
are no-minus graphs. We have just proved that 0 ≤ γg(G) − γg(G.e) ≤ 2 and
0 ≤ γ′g(G) − γ′g(G.e) ≤ 2. We shall now describe no-minus graphs, especially
trees, attaining all possible values for these differences.

3.1. Edge contraction

Proposition 6. For any l ≥ 3 there exists a connected no-minus graph G with
an edge e such that γg(G) = l and γg(G.e) = l − 2.

Proof. For l ≥ 3, we construct the following family of connected no-minus graphs
denoted by Gl, l ≥ 0. Let G0 be the graph constructed in the following way. Take
two copies of K1,2 and label their centre vertices as x and y. Join x and y by
the edge e. For l ≥ 1, the graph Gl is obtained from G0 by identifying the end
vertices of l copies of P3 with x. See Figure 1. We claim that γg(Gl) = l+ 3 and
γg(Gl.e) = l+1. Note that if Dominator plays his first move on x, then only l+2
vertices remain undominated which yields γg(Gl) ≤ l + 3.

Figure 1. The graph Gl.

Now we present a strategy for Staller which ensures that at least l + 3 moves
are needed to finish the game on Gl. If Dominator starts by playing on x, then
Staller selects a leaf adjacent to y. The resulting residual graph at this stage is
a partially dominated graph consisting of l + 1 copies of K2 and hence at least
l+ 1 more moves needed to finish the game. Therefore a total of l+ 3 moves will
be played. Otherwise, if Dominator does not start by playing on x then Staller
responds by playing on a leaf adjacent to x. Note that all vertices of Gl are either
leaves or support vertices and the number of support vertices in Gl is l + 2. By
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the Continuation Principle, Dominator prefers to select support vertices to leaves.
The number of support vertices of the residual graph G′l after the first two moves
of Gl is l + 1. Clearly γg(Gl) ≥ 2 + γg(G′l) and γg(G′l) ≥ γ(G′l) ≥ l + 1 (using
the fact that the domination number of a graph is at least the number of support
vertices of that graph). Thus γg(Gl) ≥ l + 3, and we get that γg(Gl) = l + 3.

Let Gl.e be the graph obtained from Gl by contracting the edge e in Gl. Here
x and y are identified by a new vertex, say w. If Dominator selects the vertex
w then only l vertices remain undominated which yields γg(Gl.e) ≤ l + 1. There
are l+ 1 support vertices in Gl.e and hence γg(Gl.e) ≥ γ(Gl.e) ≥ l+ 1. Thus we
get that γg(Gl.e) = l + 1.

Proposition 7. For any l ≥ 2 there exists a connected no-minus graph G with
an edge e such that γg(G) = l and γg(G.e) = l − 1.

Proof. For l ≥ 2, we construct the graph Hl from a star K1,l by subdividing
each edge except one. We claim that γg(Hl) = l. Note that if Dominator plays
his first move on the centre vertex, then only l − 1 vertices remain undominated
which yields γg(Hl) ≤ l. On the other hand the number of support vertices in
Hl is l and γg(Hl) ≥ γ(Hl) ≥ l. Consider the graph Hl.e where e is an edge
not incident to the centre of Hl. We claim that γg(Hl.e) ≤ l − 1. If Dominator
plays his first move on the centre vertex of Hl.e, then only l − 2 vertices remain
undominated which yields γg(Hl.e) ≤ l − 1.

It is clear that Hl.e has l − 1 support vertices. Hence γg(Hl.e) ≥ γ(Hl.e) ≥
l − 1. Thus γg(Hl.e) = l − 1.

Proposition 8. For any l ≥ 1 there exists a connected no-minus graph G with
an edge e such that γg(G) = l and γg(G.e) = l.

Proof. For l ≥ 1, construct the graph Fl from a star K1,l+1 by subdividing each
edge except two. Clearly Fl has (l + 1) − 2 + 1 = l support vertices. Hence
γg(Fl) ≥ γ(Fl) ≥ l. On the other hand if Dominator plays his first move on
the centre vertex then only l + 1 − 2 vertices remain undominated in Fl. So
γg(Fl) ≤ 1 + l + 1− 2 = l and thus γg(Fl) = l.

The graph Fl.e is obtained from Fl by contracting an edge e incident with
the centre and a leaf. By a similar argument we can prove that γg(Fl.e) = l.

Proposition 9. There is no graph G with an edge e such that γ′g(G) = 3 and
γ′g(G.e) = 1.

Proof. We know that γ′g(G) = 1 if and only if G is complete. Assume that G is

a graph with γ
′
g(G) = 3 and hence G has at least two non adjacent vertices say

x and y. Clearly x and y are non adjacent in G.e for any edge e of G. Therefore
γ′g(G.e) ≥ 2 and we conclude that there is no graph G with an edge e such that
γ′g(G) = 3 and γ′g(G.e) = 1.
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Proposition 10. For any l ≥ 4 there exists a connected no-minus graph G with
an edge e such that γ′g(G) = l and γ′g(G.e) = l − 2.

Figure 2. The graph Sk.

Proof. For l ≥ 4, we construct the following family of connected no-minus graphs
denoted by Sk, k = l − 4 ≥ 0. Let S0 be the graph constructed in the following
way. Take two copies of K1,3 and label their centre vertices as x and y. Join x and
y by the edge e. For k ≥ 1 the graph Sk is obtained from S0 by identifying the
end vertices of k copies of P3 with x, see Figure 2. We claim that γ′g(Sk) = k+ 4
and γ′g(Sk.e) = k + 2. By Theorem 4 it suffices to show that γ′g(Sk) ≥ k + 4 and
γ′g(Sk.e) ≤ k + 2. First we show that γ′g(Sk) ≥ k + 4 by presenting a strategy
for Staller which ensures that the game ends with at least k + 4 moves. Staller
first plays a leaf adjacent to x and we know that all vertices of Sk are either
support vertices or leaves. Dominator prefers to select a support vertex to a leaf.
If Dominator plays a support vertex other than x, then Staller chooses another
leaf adjacent to x otherwise Staller chooses a leaf adjacent to y. Let S′k be the
residual graph after these three moves. We know that the number of support
vertices of Sk is k+2 and the number of support vertices of S′k is k+1. Therefore
γg(S′k) ≥ γ(S′k) ≥ k + 1. Thus γ′g(Sk) = 3 + γg(S′k) ≥ 3 + k + 1 = k + 4.

Let Sk.e is the graph obtained from Sk by contracting the edge e = xy and
let w be the new vertex due to the contraction. We show that γ′g(Sk.e) ≤ k+2 by
presenting a strategy for Dominator which ensures that at most k + 2 moves are
needed to finish the game. Staller’s first move is a leaf on Sk.e. Now Dominator
plays w as his next move and the number of vertices remain undominated in Sk.e
is at most k. Hence γ′g(Sk.e) ≤ 2 + k and we conclude that γ′g(Sk) = k + 4 and
γ′g(Sk.e) = k + 2.
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Proposition 11. For any l ≥ 2 there exists a connected no-minus graph G with
an edge e such that γ′g(G) = l and γ′g(G.e) = l − 1.

Proof. For the general case l ≥ 2, consider the graph P2l−1. It is known that
γ′g(P2l−1) = l and γ′g(P2l−1.e) = γ′g(P2l−2) = l − 1 for any edge e.

Proposition 12. For any l ≥ 1 there exists a connected no-minus graph G with
an edge e such that γ′g(G) = l and γ′g(G.e) = l.

Proof. For the general case l ≥ 1, consider the graph P2l. It is known that
γ′g(P2l) = l and γ′g(P2l.e) = γ′g(P2l−1) = l for any edge e.

3.2. Edge subdivision

By Corollary 5 we have γg(G� e)−γg(G) ≤ 2. We here prove that the result can
be strengthened in the case of no-minus graphs, as follows.

Theorem 13. Let G be a no-minus graph and e ∈ E(G). The graph G � e
obtained from G by subdividing the edge e satisfies

γg(G) ≤ γg(G� e) ≤ γg(G) + 1,

γ′g(G) ≤ γ′g(G� e) ≤ γ′g(G) + 1.

Proof. By Corollary 5, we know that for any graph G, γg(G) ≤ γg(G � e) and
γ′g(G) ≤ γ′g(G� e). So this is true in the case of no-minus graphs.

Now we prove that γg(G � e) ≤ γg(G) + 1. Let uv be the subdivided edge
and w be the vertex added in the subdivision. Consider a real Dominator start
game played on G�e. At the same time Dominator imagines another Dominator
start Staller-pass game played on G. Dominator copies every move of Staller
in the real game except w to the imagined game and copies back his optimal
response. Every move of Dominator in the imagined game is legal in the real
game. If every move of Staller in the real game is also legal in the imagined game
then only one vertex may remain undominated in G� e at the end of the game,
and it is either u or v or w. Thus the real game is finished within at most one
move more than in the imagined game. Suppose at the kth stage Staller chooses
a vertex in the real game that is not a legal move in the imagined game. This is
possible only if that move additionally dominates either w itself in the real game
or u or v itself and u and v are already dominated in the imagined game. Let
S be the set of vertices dominated in the real game after the kth move and S′

be the set of vertices dominated in the imagined game after the (k − 1)th move.
Clearly S′ = S − w and the residual graph after the kth move in the real game
is isomorphic with the residual graph after the (k − 1)th move in the imagined
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game. Staller, but possibly not Dominator, is playing optimally in the real game
and this implies

γg(G� e) ≤ k + γg(G� e|S) = k + γg(G|S′).

Dominator, but possibly not Staller, is playing optimally in the imagined game
and the kth move is of Staller. Staller skips that move in the imagined game and
for a no-minus graph G we have in [11] that γspg (G) = γg(G). Thus

k − 1 + γg(G|S′) ≤ γspg (G) = γg(G).

Therefore

γg(G� e) ≤ k + γg(G|S′) = k − 1 + γg(G|S′) + 1 ≤ γg(G) + 1.

This concludes the proof.
The same argument also holds for Staller start game domination number.

Proposition 14. For any l ≥ 1, and l 6= 2, there is a connected no-minus graph
G with an edge e such that γg(G) = l and γg(G� e) = l.

Proof. For the case l=1, consider the graph G=K2. It is clear that γg(G�e)=1
and γg(G) = 1.

For the general case when l ≥ 3, consider the graph Gl−3 in Proposition 6
and it is known that γg(Gl−3) = l, l ≥ 3. The edge e as the edge joining the
vertices x and y in the graph Gl−3. Consider the graph Gl−3 � e and claim that
γg(Gl−3�e) = l. We present a strategy for Dominator which yields γg(Gl−3�e) ≤
l. Dominator selects his first move as x and by the Continuation Principle y is not
an optimal first move of Staller because leaves are adjacent to y. So Dominator
selects y after the first move of Staller and there are at most l−3 vertices remain
undominated. Therefore γg(Gl−3 � e) ≤ 3 + l − 3 = l. By Theorem 13 we have
l = γg(Gl−3) ≤ γg(Gl−3 � e). Thus γg(Gl−3 � e) = l.

Proposition 15. There is no connected graph G with γg(G)=2 and γg(G�e)=2.

Proof. Let G be a connected graph with γg(G) = 2. So there exists a vertex
v ∈ V (G) such that V (G)−N [v] is a clique and G has no universal vertex. Let
G�e be the graph obtained from G by subdividing any edge e = uv to u−w−v.
Suppose that if Dominator first chooses the vertex w, then either u or v or both
vertices in G� e are legal moves for Staller and Staller selects one of this move.
So after the move of Staller there are undominated vertices in G � e because G
has no universal vertex. Therefore assume that an optimal move of Dominator is
a vertex x other than w in G� e. If x 6= u, v then x is not adjacent to w and at
least one more vertex say y other than w of G � e. This is because of G has no
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universal vertex. Now either y and w are adjacent in G�e or not. If y and w are
not adjacent then Staller chooses y and after this move there are undominated
vertices in G�e. Also if y and w are adjacent then Staller chooses a vertex which
is adjacent to y and not to w. So after this move of Staller in G � e there are
undominated vertices in G� e. On the other hand if x = u or x = v then Staller
chooses w as next move. Here also G� e has undominated vertices after the first
two moves because G has no universal vertex. So it concludes that G � e has
at least 3 moves for a D game and hence γg(G � e) ≥ 3 and hence there is no
connected graph G with γg(G) = 2 and γg(G� e) = 2.

Note 16. For the case l = 2, there is a no-minus graph G with γg(G) = 2 and
γg(G� e) = 2. Consider the graph G = K2 ∪K2. It is clear that γg(G) = 2 and
γg(G� e) = 2 for any edge e of G.

Proposition 17. For any l ≥ 1, there is a connected no-minus graph G with an
edge e such that γg(G) = l and γg(G� e) = l + 1.

Proof. For l ≥ 1, construct the graph G from a star K1,l by subdividing each
edge except one. Clearly γg(G) = l and let G� e be the graph obtained from G
by subdividing the remaining edge and we get γg(G� e) = l + 1.

Note 18. It is obvious that a graph G is complete if and only if γ′g(G) = 1. So
there is no graph G with γ′g(G) = γ′g(G� e) = 1.

Proposition 19. For any l ≥ 2, there is a connected no-minus graph G with an
edge e such that γ

′
g(G) = γ

′
g(G� e) = l.

Proof. For the general case l ≥ 2, consider the graph G = P2l−1. It is known
that γ′g(P2l−1) = l. We know that P2l−1 � e = P2l for any edge e of P2l−1 and
hence γ′g(P2l) = γ′g(P2l−1 � e) = l.

Proposition 20. For l ≥ 1, there is a connected no-minus graph G with an edge
e such that γ

′
g(G) = l and γ

′
g(G� e) = l + 1.

Proof. For the general case l ≥ 2, consider the graph G = P2l. It is known
that γ′g(P2l) = l. We know that P2l � e = P2l+1 for any edge e of P2l and hence
γ′g(P2l+1) = γ′g(P2l � e) = l + 1.

4. Edge Subdivision in the General Case

For all no-minus graphs we have 0 ≤ γg(G � e) − γg(G) ≤ 1 and 0 ≤ γ′g(G �
e) − γ′g(G) ≤ 1 by Theorem 13 but in general 0 ≤ γg(G � e) − γg(G) ≤ 2 and
0 ≤ γ′g(G � e) − γ′g(G) ≤ 2. Here we discuss all possibilities of graphs realizing
γg(G � e) = γg(G) + 2 and γ′g(G � e) = γ′g(G) + 2. Note that all graphs with
γg(G) ≤ 2 are no-minus graphs. Hence in the following we consider only l ≥ 3.
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Figure 3. The domino graph D. Figure 4. The graph F .

Figure 5. The graph F ′. Figure 6. The graph F ′′.

Proposition 21. For any l ≥ 3 there is a connected graph G with an edge e such
that γg(G) = l and γg(G� e) = l + 2.

Proof. We present two families of graphs Uk and Vk that realize odd and even
values of l, respectively.

Construct U0 in the following way. Take the disjoint union of C6 and K1,2

having x as its centre. We get U0 by connecting x with one of the vertices of C6

say y. The graph Uk, k ≥ 1 is obtained from U0 by identifying one end vertex of
2k copies of P3 with x. We set e to be the edge between x and y, see Figure 7.

We claim that γg(Uk) = 2k + 3 and γg(Uk � e) = 2k + 5, for all k ≥ 0. By
Corollary 5, it suffices to show that γg(Uk) ≤ 2k + 3 and γg(Uk � e) ≥ 2k + 5.
First we prove γg(Uk) ≤ 2k + 3 by presenting a strategy for Dominator which
ensures that the game ends with at most 2k + 3 moves. Dominator starts the
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Figure 7. The graph Uk.

Figure 8. The graph Uk � e.

game by playing the vertex x. Any move of Staller on one of the 2k attached
paths is followed by a move of Dominator on some other path in the same 2k
attached paths, so that all vertices of this 2k paths are dominated. Therefore
Staller is forced to be the first to play in the subgraph C6 and it is known that
γ′g(C6|y) = 2. Hence Dominator can ensure that at most 1 + 2k + 2 = 2k + 3
moves are needed to finish the game. Thus we get γg(Uk) ≤ 2k + 3.

Now we show that γg(Uk � e) ≥ 2k + 5 by presenting a strategy for Staller
which ensures that at least 2k+5 moves are needed to finish the game. We set w as
the new vertex obtained due to the subdivision of the edge e which is adjacent to
x and y. Whenever Dominator plays on one of the 2k attached paths then Staller
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Figure 9. The graph Vk.

Figure 10. The graph Vk � e.

follows a move on some other path in the 2k attached paths. If Dominator plays
on x, then Staller responds by playing on w. On the other hand if Dominator
plays on w then Staller selects a leaf adjacent to x. (This is a legal move because
x is not selected and the leaves which are adjacent to x are not dominated yet.)
By this strategy Staller forces Dominator to be the first to play in the subgraph
C6 and it is known that γg(C6|y) = 3. On the other hand if Dominator starts to
play a vertex in C6 then Staller selects a vertex adjacent to the vertex selected by
Dominator in C6 and two more vertices remain undominated in C6. Now there
are two possibilities: either Dominator selects a vertex in C6 that dominates the
remaining undominated vertices in C6 or selects a vertex from {x,w}. In the first
case Staller responds by playing on w and the game is finished with 2k+1 moves
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(2k moves in the attached paths and one for x). In the other case Staller selects a
vertex in C6 which dominates only one new vertex. So one more move is needed
to dominate all vertices in C6 and 2k moves are needed in the 2k attached paths.
Thus in any case there is at least 2k + 5 moves needed to finish the game and
concludes the proof.

The family Vk realizes the case when l is even. Construct V0 in the following
way. Take disjoint union of the graph F ′ in Figure 5 and K1,2 having x as its
centre. We get V0 by connecting the vertex y of F ′ with x. The graph Vk, k ≥ 1,
is obtained from V0 by identifying one end vertex of 2k copies of P3 with x. We
set e to be the edge between x and y. By using a similar argument as in the
previous case we get γg(Vk) ≤ 2k + 4 and γg(Vk � e) ≥ 2k + 6.

Proposition 22. For any l ≥ 2 there is a connected graph G with an edge e such
that γ

′
g(G) = l and γ

′
g(G� e) = l + 2.

Proof. For the case when l = 2, consider the domino graph D and set the edge
e as the chord, see Figure 3. It is known that γ′g(D) = 2 while after subdividing
the edge e we get γ′g(D � e) = 4.

For the case l = 3, construct the graph F ′′ from F by attaching two vertices
y′ and y′′ as true twins of y consecutively, see Figure 6. It is known from [11]
that γg(F ) = 4 and γ′g(F ) = 3 and the game domination number remains the
same after attaching true twins. Therefore γ′g(F ) = γ′g(F ′′) = 3 and we set e as
the edge between y′ and y′′. After subdividing the edge e we get γ′g(F ′′� e) = 5.

For the general case l ≥ 5, we present two different infinite families Uk and
Vk realizing even and odd l respectively. By using analogous arguments as in
the previous case we claim that γ′g(Uk) = 2k + 4 and γ′g(Uk � e) = 2k + 6 and
γ′g(Vk) = 2k + 5 and γ′g(Vk � e) = 2k + 7 where e is the edge joining x and y.
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