FLIPPABLE EDGES IN TRIANGULATIONS ON SURFACES

Daiki Ikegami
Graduate School of Environment and Information Science
Yokohama National University
79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
e-mail: ikegami-daiki-xj@ynu.jp
AND
Atsuhiro Nakamoto ${ }^{1}$
Faculty of Environment and Information Science
Yokohama National University
79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
e-mail: nakamoto@ynu.ac.jp

Abstract

Concerning diagonal flips on triangulations, Gao et al. showed that any triangulation G on the sphere with $n \geq 5$ vertices has at least $n-2$ flippable edges. Furthermore, if G has minimum degree at least 4 and $n \geq 9$, then G has at least $2 n+3$ flippable edges. In this paper, we give a simpler proof of their results, and extend them to the case of the projective plane, the torus and the Klein bottle. Finally, we give an estimation for the number of flippable edges of a triangulation on general surfaces, using the notion of irreducible triangulations.

Keywords: triangulation, diagonal flip, surface.
2010 Mathematics Subject Classification: 05C10.

1. Introduction

A triangulation G on a surface \mathbb{F} is a simple graph embedded on \mathbb{F} so that each face is triangular, except for K_{3} on the sphere. We denote the vertex set, edge set and face set of G by $V(G), E(G)$ and $F(G)$, respectively. A k-cycle means a cycle of length k. A cycle C in G is said to be contractible if C bounds a 2-cell

Figure 1. The diagonal flip of the edge ac.
on the surface. We say that C is separating if $G-V(C)$ is disconnected. Let G_{i} be a triangulation on a surface \mathbb{F}_{i} and let f_{i} be a face of G_{i}, for $i=1,2$. A face sum of G_{1} and G_{2} with f_{1} and f_{2} identified is to identify the boundary 3-cycle of f_{1} and that of f_{2} and obtain a new triangulation on the connected sum of \mathbb{F}_{1} and \mathbb{F}_{2}.

Let $a b c$ and $a d c$ be two faces of a triangulation G sharing the edge $a c$. A diagonal flip of $a c$ consists in replacing $a c$ with another diagonal $b d$ in the quadrilateral $a b c d$ as in Figure 1. We say that the edge $a c$ is fippable if b and d are not adjacent in G. We do not perform a diagonal flip of any non-flippable edge.

The origin of diagonal flips in triangulations is the following.
Theorem 1 (Wagner [20]). Any two triangulations on the sphere with the same number of vertices can be transformed into each other by a sequence of diagonal flips.

Theorem 1 has been extended to the torus [5], the projective plane and the Klein bottle [16]. Arguments in the above results depend on individual surfaces, but Negami extended these results to general surfaces.

Theorem 2 (Negami [14]). For any closed surface \mathbb{F}, there exists a natural number $N(\mathbb{F})$ such that any two triangulations G_{1} and G_{2} on \mathbb{F} can be transformed into each other by a sequence of diagonal flips if $\left|V\left(G_{1}\right)\right|=\left|V\left(G_{2}\right)\right| \geq N(\mathbb{F})$.

The assumption of $\left|V\left(G_{1}\right)\right|=\left|V\left(G_{2}\right)\right| \geq N(\mathbb{F})$ is needed since $N(\mathbb{F})$ does not coincide with the order of minimal triangulations on \mathbb{F} in general. We can find many related researches, for example, see $[4,9,12]$.

Recently, Gao et al. showed a lower bound for the number of flippable edges of triangulations on the sphere, as in Theorem 3.

Theorem 3 (Gao et al. [7]). Let G be a triangulation on the sphere with n vertices, then the following hold, where all bounds are tight.

[^0](a) If $n \geq 5$, then G contains at least $n-2$ flippable edges.
(b) If G has minimum degree at least 4 , then G contains at least $\min \{2 n+3$, $3 n-6\}$ flippable edges.
(c) If G is 4-connected, then all edges of G are flippable.

In this paper, motivated by this result, we study flippable edges in more depth.

Our first contribution is to give a simpler proof of Theorem 3. For (a), we give an inductive proof on the number of vertices which is independent of a topology of surfaces. For (b) and (c), we focus on the number of separating 3-cycles in a triangulation, and bound the number of flippable edges in triangulations with minimum degree at least 4 and 4 -connected ones in the same logic, as in the following.

Theorem 4. Let G be an n-vertex triangulation on the sphere with minimum degree at least 4, and let k be the number of separating 3-cycles of G. Then
(i) G has at least $\min \{3 n-k-5,3 n-6\}$ flippable edges.
(ii) $k \leq \max \{n-8,0\}$.

In Theorem 4(i), if $k=0$, that is, G is 4-connected, then we have Theorem $3(\mathrm{c})$, since $|E(G)|=3 n-6$. On the other hand, if $k=\max \{n-8,0\}$ in Theorem 4(ii), then we have Theorem 3(b) by substituting it to the result in Theorem 4(i). Moreover, we characterize n-vertex triangulations with minimum degree at least 4 which have exactly $2 n+3$ flippable edges. Section 2 is devoted to Theorems 3(b) and (c).

Secondly, extending Theorem 3 to the projective plane, the torus, and the Klein bottle, we prove Theorems 5, 6, 7 stated below. The arguments in the new proof of Theorem 3 do not depend on a topology of individual surfaces, and so we can extend the results to other surfaces by the same inductive method, in which the first step of induction will be verified for the so called "irreducible triangulations", defined as follows.

Contraction of an edge $e=v_{1} v_{2}$ in a triangulation G consists in shrinking e until v_{1} and v_{2} coincide and in replacing each pair of the multiple edges bounding two digonal faces with a single edge as shown in Figure 2. (The inverse operation of a contraction of an edge is called a vertex-splitting.) An edge e of G is said to be contractible if the graph obtained from G by contracting e is simple. A triangulation is said to be irreducible if it has no contractible edge.

For the sphere, K_{4} is a unique irreducible triangulation [17]. The projective plane admits precisely two irreducible triangulations I_{P}^{1} and I_{P}^{2} shown in Figure 3, where I_{P}^{1} is isomorphic to $K_{6}[1]$. For the torus, there exist precisely 21 irreducible triangulations [10], in which I_{T}^{1} is the smallest one whose graph is isomorphic to K_{7}. For the Klein bottle, there exist precisely 29 irreducible triangulations

Figure 2. The contraction of the edge e.
including I_{K}^{3} and $I_{K}^{26}[11,18]$. For all the triangulations in Figure 3, the dotted segments are flippable edges.

Figure 3. Triangulations $I_{P}^{1}, I_{P}^{2}, I_{T}^{1}, I_{T}^{5}, I_{T}^{21}, I_{K}^{3}$, and I_{K}^{26}, where we identify vertices with the same label in each triangulation.

Theorem 5. Let G be a triangulation on the projective plane with n vertices. Then,
(a) G contains at least $n-4$ fippable edges if G is not isomorphic to I_{P}^{1}.
(b) G contains at least $2 n-7$ flippable edges if G has minimum degree at least 4 and is not isomorphic to I_{P}^{1} nor I_{P}^{2}.
(c) G contains at least $2 n-7$ flippable edges if G is 4-connected and not isomorphic to I_{P}^{1} nor I_{P}^{2}.
Theorem 6. Let G be a triangulation on the torus with n vertices. Then,
(a) G contains at least $n-5$ flippable edges if G is not isomorphic to I_{T}^{1}.
(b) G contains at least $2 n-9$ flippable edges if G has minimum degree at least 4 and is not isomorphic to I_{T}^{1}, I_{T}^{5} nor I_{T}^{21}.
(c) G contains at least $2 n-9$ fippable edges if G is 4-connected and not isomorphic to I_{T}^{1}, I_{T}^{5} nor I_{T}^{21}.

Theorem 7. Let G be a triangulation on the Klein bottle with n vertices. Then,
(a) G contains at least $n-5$ flippable edges if G is not isomorphic to I_{K}^{26}.
(b) G contains at least $2 n-15$ flippable edges if G has minimum degree at least 4 .
(c) G contains at least $2 n-11$ flippable edges if G is 4 -connected and not isomorphic to I_{K}^{3}.

In each of Theorems 5, 6, 7, the three bounds are tight, in the sense that there exists an infinite sequence of triangulations attaining them.

In Section 3, we construct triangulations on those surfaces attaining the bounds. It should be mentioned that for the projective plane and the torus, the lower bounds for triangulations with minimum degree at least 4 and 4-connected ones coincide in Theorems 5 and 6 .

Thirdly, we give an estimation for the number of flippable edges in triangulations on a given surface \mathbb{F}. The Euler genus g of a surface \mathbb{F} with Euler characteristic $\chi(\mathbb{F})$ is defined as $g=2-\chi(\mathbb{F})$.

Theorem 8. Let G be an n-vertex triangulation on a surface \mathbb{F} with Euler genus $g \geq 1$. Then, the following hold.
(a) G contains at least $n-(13 g-4)$ flippable edges.
(b) If G has minimum degree at least 4 , G contains at least $2 n-2(13 g-4)$ flippable edges.

2. A New Proof of Theorem 3

In this section, we prove Theorem 3. In the rest of this paper, let $E_{f l i p}(G)$ denote the set of flippable edges in a triangulation G. At first, we give a lemma describing a structure around a non-flippable edge in a triangulation on a surface.

Lemma 9. Let G be a triangulation on a surface, and let ac be an edge in G shared by two faces abc and adc. Then ac is non-flippable if and only if a, b, c and d induce K_{4} in G.

Proof. The lemma directly follows from the definition.
We first give a simple proof of Theorem 3(a). In order to do it, we introduce the notion of "weak faces" in a triangulation, as follows.

A face $a b c$ of a triangulation G is said to be weak if at least one of $a b, b c$ and $c a$ is flippable. We denote the set of weak faces in G by $F_{\text {weak }}(G)$. Since a flippable edge is shared by two weak faces, we have $2\left|E_{f l i p}(G)\right| \geq\left|F_{\text {weak }}(G)\right|$.

The next lemma will be used for counting the number of weak faces by induction.

Lemma 10. If a triangulation G on a surface \mathbb{F} is obtained from another triangulation H by a single vertex-splitting, then $\left|F_{\text {weak }}(G)\right| \geq\left|F_{\text {weak }}(H)\right|+2$.
Proof. Let $e=v_{1} v_{2}$ be an edge of G, and let $v=\left[v_{1} v_{2}\right]$ be the image of e in H by the contraction. Let $u v_{1} v_{2}$ and $w v_{1} v_{2}$ be two faces of G sharing e. It is easy to see that all flippable edges in $E(H)-\{u v, v w\}$ are also flippable in G. Observe that at least one of v_{1} and v_{2}, say v_{1}, has degree at least 4 , since two vertices of degree 3 cannot be adjacent in G unless $G=K_{4}$. Then, $u v_{1}$ and $v_{1} w$ are flippable edges of G. For otherwise, i.e., if $u v_{1}$ is non-flippable in G, then x and v_{2} are adjacent, by Lemma 9 , where $u v_{1}$ is shared by two facial 3 -cycles $u v_{1} x$ and $u v_{1} v_{2}$ in G. However, in this case, H has multiple edges between x and [$v_{1} v_{2}$], a contradiction. Hence, two faces $u v_{1} v_{2}$ and $v_{1} v_{2} w$ of G are weak. Since all weak faces in H are also weak in G, we have $\left|F_{\text {weak }}(G)\right| \geq\left|F_{\text {weak }}(H)\right|+2$.

Using Lemma 10 , we first give a shorter proof of Theorem 3(a).
A shorter proof of Theorem 3(a). Let G be an n-vertex triangulation on the sphere with $n \geq 5$, and we prove that $\left|F_{\text {weak }}(G)\right| \geq 2 n-4$. By Steinitz's result[17], every triangulation on the sphere can be transformed into the only irreducible triangulation K_{4} by contractions of edges. Hence, if $n=5$, then G is obtained from K_{4} by a single vertex-splitting, and we see that G has exactly three flippable edges, and all six faces are weak. Thus, $\left|F_{\text {weak }}(G)\right| \geq 2 n-4$ when $n=5$. If $n \geq 6$, then G is obtained from H with $|V(H)|=n-1$ by a single vertex-splitting. By induction hypothesis and Lemma 10 , we have $\left|F_{\text {weak }}(G)\right| \geq\left|F_{\text {weak }}(H)\right|+2 \geq$ $2(n-1)-4+2=2 n-4$. Hence, we have $\left|E_{\text {flip }}(G)\right| \geq \frac{1}{2}\left|F_{\text {weak }}(G)\right| \geq n-2$.

Next, we give a proof to Theorem 3(b) and (c) simultaneously, by focusing on the number k of separating 3 -cycles.

Let $k \geq 1$, and let T_{1}, \ldots, T_{k-1} be $k-1$ copies of a triangulation on the sphere isomorphic to K_{4}. For each i, let s_{i} and f_{i} be two distinct faces of T_{i}, and let e_{i} be the edge of T_{i} shared by the two faces other than s_{i} and t_{i}. Let O_{0} and O_{k} be two copies of a triangulation on the sphere isomorphic to an octahedron, and let f_{0} (respectively, f_{k}) be a face of O_{0} (respectively, O_{k}). Let L_{1} be the triangulation obtained from O_{0} and O_{k} by a face sum of f_{0} and f_{k}. For $k \geq 2$, let L_{k} be a triangulation obtained from $O_{0}, T_{1}, \ldots, T_{k-1}, O_{k}$ by a face sum of f_{0} and s_{1}, a face sum of t_{i} and s_{i+1} for $i=1, \ldots, k-2$, and a face sum of t_{k-1} and f_{k}. (See Figure 4.) Then L_{k} is a triangulation on the sphere with minimum degree at least 4 which has $n=k+8 \geq 9$ vertices and k separating 3-cycles. Moreover, L_{k} contains $k-1=n-9$ non-flippable edges, which are e_{1}, \ldots, e_{k-1}. Hence, we have $\left|E_{f l i p}\left(L_{k}\right)\right| \geq 3 n-6-(n-9)=2 n+3$. For $k \geq 1$, let \mathcal{L}_{k} denote the set of triangulations L_{k} constructed by the above procedures.

Figure 4. Triangulation L_{k} consisting of $O_{0}, T_{1}, \ldots, T_{k-1}, O_{k}$.

Lemma 11. Let G be an n-vertex triangulation on the sphere with minimum degree at least 4. Let k be the number of separating 3-cycles of G. Then
(1) G has at most $\max \{k-1,0\}$ non-flippable edges,
(2) $k \leq \max \{n-8,0\}$, where the equality holds if and only if $n \leq 8$ or G is isomorphic to a member of \mathcal{L}_{k} with $k=n-8 \geq 1$.

Proof. (1) We use induction on k. If $k=0$, then G is 4-connected. In this case, since G does not contain K_{4} as a subgraph, G has no non-flippable edge, by Lemma 9.

Suppose $k \geq 1$, and let $C=a b c$ be a separating 3 -cycle of G. Let G_{1} and G_{2} be two subgraphs of G such that $V\left(G_{1}\right) \cup V\left(G_{2}\right)=V(G)$ and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=$ $V(C)$, where we may suppose that G_{1} is innermost, that is, G_{1} has no separating 3-cycle. We note that G_{2} is also a triangulation on the sphere. By Jordan Curve Theorem, G_{2} is a graph on a punctured surface with boundary cycle C. Then we paste a 2 -cell on C, and obtain a triangulation G_{2} on the sphere. Let k_{i} denote the number of separating 3 -cycles in G_{i}, for $i=1,2$. Then we have $k_{2}=k-1$, since G_{1} has no separating 3 -cycle, and since C is no longer a separating 3 -cycle in G_{2}. Since G_{1} is 4-connected, every edge in G_{1} is flippable, as described in the first paragraph. Moreover, since every edge $e \in E(C)$ is flippable in G, all edges of G contained in G_{1} are flippable in G.

Now we count the number of non-flippable edges in G_{2} in the following two cases on whether G_{2} has minimum degree at least 4 or not.

Case 1. G_{2} has minimum degree at least 4. Observe that for any edge $e \notin E(C)$ in G_{2}, e is flippable in G_{2} if and only if e is flippable in G, since G_{2} is an induced subgraph of G. Moreover, $e \in E(C)$ is flippable in G, even if e is non-flippable in G_{2}. Hence the number of non-flippable edges of G is less than or equal to that of G_{2}. By induction hypothesis, since G_{2} has precisely k_{2} separating 3 -cycles, G_{2} has at most $\max \left\{k_{2}-1,0\right\}$ non-flippable edges. Hence the number of non-flippable edges of G is at most

$$
\max \left\{k_{2}-1,0\right\}=\max \{k-2,0\} \leq \max \{k-1,0\}
$$

where the equality holds if and only if $k=1$.

Case 2. G_{2} has a vertex v of degree 3. Since G has minimum degree at least $4, v$ lies on C in G_{2}. So we let $v=a$ and let a^{\prime}, b, c be the three neighbors of a in G_{2}. Note that Case 2 happens only when $k \geq 2$ since G has two separating 3 -cycles $a b c$ and $a^{\prime} b c$. In this case, we contract the edge $a a^{\prime}$ in G, and let G^{\prime} be the resulting triangulation, where we let $\left[a a^{\prime}\right]$ denote the image of $a a^{\prime}$ in G^{\prime} by the contraction. This operation merges the two separating 3 -cycles $a b c$ and $a^{\prime} b c$ in G into a single separating 3 -cycle $\left[a a^{\prime}\right] b c$ in G^{\prime}, but this introduces no new separating 3 -cycle. Hence, if we let k^{\prime} be the number of separating 3 -cycles in G^{\prime}, then $k^{\prime}=k-1(\geq 1)$. Since a, b and c have degree at least 4 in G_{1} by the 4 -connectedness, G^{\prime} has minimum degree at least 4. Hence, by induction hypothesis, G^{\prime} has at most $k^{\prime}-1$ non-flippable edges. By the contraction of $a a^{\prime}$ in G, the single non-flippable edge $a a^{\prime}$ in G disappears in G^{\prime}, and no new nonflippable edge is not produced in G^{\prime}, and hence G has at most $\left(k^{\prime}-1\right)+1=k-1$ non-flippable edges.

By Cases 1 and 2, the number of flippable edges in G is at $\operatorname{most} \max \{k-1,0\}$, and we are done.
(2) Using the same induction as in (1), we prove that $n \geq k+8$ for any $k \geq 1$ by the same case analysis in Cases 1 and 2 .

In Case 1, let $n_{i}=\left|V\left(G_{i}\right)\right|$ for $i=1,2$, where $n_{1}+n_{2}-3=n$. Observe that the smallest 4 -connected triangulation is an octahedron, which has six vertices. Since G_{1} is 4 -connected, we have $n_{1} \geq 6$. On the other hand, we have $k_{2}=k-1$. If $k_{2}=0$, then we also have $n_{2} \geq 6$ by the same argument as for G_{1}. Hence, when $k=1$,

$$
n=n_{1}+n_{2}-3 \geq 6+6-3=9
$$

where the equality holds when both G_{1} and G_{2} are isomorphic to the octahedron, and hence $G=L_{1} \in \mathcal{L}_{1}$. If $k_{2} \geq 1$, then $n_{2} \geq k_{2}+8=(k-1)+8=k+7$ by induction hypothesis. Therefore,

$$
n=n_{1}+n_{2}-3 \geq 6+(k+7)-3=k+10>k+8 .
$$

In Case 2, we note that $k \geq 2$. Then, if we let $n^{\prime}=\left|V\left(G^{\prime}\right)\right|$, then we have $n=n^{\prime}+1$ and $k^{\prime}=k-1 \geq 1$. Hence, by induction hypothesis, G^{\prime} satisfies $n^{\prime} \geq k^{\prime}+8$, in which the equality holds if and only if $G^{\prime} \in \mathcal{L}_{k^{\prime}}$. Therefore, $n=n^{\prime}+1 \geq\left(k^{\prime}+8\right)+1=k+8$ for $k \geq 2$, where the equality holds in G if and only if $n^{\prime}=k^{\prime}+8$ in G^{\prime}. In this case, we have $G \in \mathcal{L}_{k}$, since G is obtained from $G^{\prime} \in \mathcal{L}_{k^{\prime}}$ by a splitting of a vertex in a separating 3-cycle of G^{\prime} which increases the number of separating 3 -cycles by one.

Next, we prove Theorem 3(b) and (c) using Lemma 11, and characterize triangulations attaining the equality in (b).

- Theorem 3(b). Let G be a triangulation on the sphere with minimum degree at least 4. By Lemma 11(1), since the number of non-flippable edges of G is at $\operatorname{most} \max \{k-1,0\}$, we have

$$
\left|E_{f l i p}(G)\right| \geq 3 n-6-\max \{k-1,0\} \geq \min \{3 n-k-5,3 n-6\} .
$$

Then, since $k \leq \max \{n-8,0\}$ by Lemma 11(2), we have

$$
\left|E_{f l i p}(G)\right| \geq \min \{3 n-k-5,3 n-6\} \geq \min \{2 n+3,3 n-6\} .
$$

- Theorem 3(c). In Lemma 11, if G is 4 -connected, then $k=0$, and hence, by Lemma 11(1), every edge in G is flippable, which proves Theorem 3(c).
- Characterization of triangulations G with minimum degree at least 4 with $\left|E_{f l i p}(G)\right|=2 n+3$. Observe that a required n-vertex triangulation G satisfies both equalities of Lemma 11(1) and (2) for some $k \geq 1$. Hence we have $G \in \mathcal{L}_{k}$ by Lemma 11(2), and clearly G satisfies the equality in Lemma 11(1) too.

3. Proof of the Theorems for Non-Spherical Surfaces

In this section, let $\mathbb{S}, \mathbb{P}, \mathbb{T}$ and \mathbb{K} denote the sphere, the projective plane, the torus and the Klein bottle, respectively.

We first show Theorems 5, 6 and 7 by induction on the number of vertices, by a similar method to that in Theorem 3(a). We note that Lemma 10 holds for triangulations on all surfaces.

Proof of Theorem 5(a). Let G be a triangulation on \mathbb{P} which is not isomorphic to I_{P}^{1}. We show that $\left|F_{\text {weak }}(G)\right| \geq 2 n-8$ by induction on the number of vertices.

Contracting edges, we can transform G into either I_{P}^{2} or a triangulation, say T, obtained from I_{P}^{1} by a single vertex-splitting, since I_{P}^{1} and I_{P}^{2} are the two irreducible triangulations on \mathbb{P}. Figure 5 shows I_{P}^{1} and I_{P}^{2} and the two candidates of T, and we verify that all the three have seven vertices and at least six weak faces. Hence, if $|V(G)|=7$, then $\left|F_{\text {weak }}(G)\right| \geq 2 n-8$. By the same induction by Lemma 10 as in the proof of Theorem 3(a), we have $\left|E_{f l i p}(G)\right| \geq \frac{1}{2}\left|F_{\text {weak }}(G)\right| \geq n-4$.

Theorems 6 (a) and 7 (a) can be proved in the same way. For \mathbb{T}, we should verify that the result holds for all irreducible triangulations except I_{T}^{1} and all triangulations obtained from I_{T}^{1} by a single vertex-splitting. For \mathbb{K}, we should do it for all irreducible triangulations except I_{K}^{26} and the ones obtained from I_{K}^{26} by a single vertex-splitting. We leave these tasks to readers. At the end of the paper, we attach an Appendix with the table for the number of flippable edges in all

Figure 5. Irreducible triangulations I_{P}^{1} and I_{P}^{2} on \mathbb{P} and ones obtained from I_{P}^{1} by a single vertex-splitting. In the figures, the faces with a circle are weak.
irreducible triangulations on \mathbb{P}, \mathbb{T} and \mathbb{K}, and we list the figures of all irreducible triangulations on \mathbb{T} and \mathbb{K} with the indication of flippable edges.

Next we deal with triangulations with minimum degree at least 4. An octahedron-addition is an operation defined as below. Let $a_{1} a_{2} a_{3}$ be a face of a triangulation. Put a 3 -cycle $v_{i} v_{j} v_{k}$ inside the face $a_{1} a_{2} a_{3}$ and add edges $a_{i} v_{j}$ for all $i \neq j$ with $i, j \in\{1,2,3\}$. A 4 -splitting is a vertex-splitting such that the resulting triangulation has minimum degree at least 4 .

The following result guarantees that these two operations generate all triangulations on any surface with minimum degree at least 4 .

Theorem 12 (Nakamoto et al. [13]). Every triangulation on a non-spherical surface (respectively, the sphere) with minimum degree at least 4 can be obtained from an irreducible triangulation (respectively, an octahedron) by a sequence of 4-splittings and octahedron-additions, preserving the minimum degree at least 4.

Using Theorem 12, we estimate the increase of the number of flippable edges by a 4 -splitting and an octahedron-addition in the next lemma.

Lemma 13. Let G and H be triangulations on a closed surface with minimum degree at least 4.

- If G can be obtained from H by a 4-splitting, then $\left|E_{\text {flip }}(G)\right| \geq\left|E_{f l i p}(H)\right|+2$.
- If G can be obtained from H by an octahedron-addition, then $\left|E_{f l i p}(G)\right| \geq$ $\left|E_{f l i p}(H)\right|+9$.

Proof. The former part can be proved similarly to Lemma 10, but we have to note that both v_{1} and v_{2} have degree at least 4 in G. Therefore, four edges $v_{1} u, v_{1} w, v_{2} u, v_{2} w$ are flippable in G, but $u v$ and $v w$ might be flippable in H. Hence, we have $\left|E_{\text {flip }}(G)\right| \geq\left|E_{\text {flip }}(H)\right|+2$.

In the latter part, if G is obtained from H by a single octahedron-addition, then nine edges in $E(G)-E(H)$ are flippable in G and hence, we have $\left|E_{f l i p}(G)\right| \geq$ $\left|E_{f l i p}(H)\right|+9$.

Now we show Theorem 5(b) using Lemma 13.
Proof of Theorem 5(b). Let G be an n-vertex triangulation on \mathbb{P} which is not isomorphic to I_{P}^{1} nor I_{P}^{2}. We prove that $\left|E_{f l i p}(G)\right| \geq 2 n-7$.

Figure 6. All candidates of H and their flippable edges.
For the base cases, we deal with triangulations, denoted by H, obtained from I_{P}^{1} and I_{P}^{2} by a single 4 -splitting or a single octahedron-addition. Figure 6 shows all candidates of H by a single 4 -splitting, up to isomorphism, and we can verify the claim holds for all possible H. Suppose that G can be obtained from H by a 4 -splitting. By induction hypothesis and Lemma 13 , we have $\left|E_{f l i p}(G)\right| \geq$ $\left|E_{f l i p}(H)\right|+2 \geq 2(n-1)-7+2=2 n-7$, and our claim holds. (When applying Lemma 13, we note that the 4 -splitting produces less flippable edges than the octahedron-addition with respect to the ratio $\frac{\left|E_{f l i p}(G)\right|}{|E(G)|}$, and so we do not deal with the latter.)

The proofs for Theorems 6(b) and 7(b) are similar to that for Theorem 5(b), and hence we omit them. Readers should do the tasks using the materials in Appendix.

We show the tightness of Theorems 5,6 and 7 . The initial set up is common with the tightness part of Theorem 3 in [7]. Let T^{\prime} be any triangulation on the plane with $m \geq 3$ vertices, and let C be the 3 -cycle of T^{\prime} bounding the infinite face, where we note that $\left|E\left(T^{\prime}\right)\right|=3 m-6$. We put a single vertex in the interior of each finite face of T^{\prime}, and join it to three vertices of the corresponding boundary 3 cycle. The resulting plane triangulation, denoted by T, has $m+(2 m-5)=3 m-5$ vertices. We note that every edge of T incident to an added vertex to T^{\prime} is not flippable, and this observation will be important in the following argument.

In the following constructions, we use the irreducible triangulations I_{P}^{1} for \mathbb{P}, I_{T}^{1} for \mathbb{T}, I_{K}^{3} and I_{K}^{26} for \mathbb{K}.

Figure 7. Examples of plane triangulations T^{\prime} and T.

Tightness of Theorem 5. (a) Let T_{P}^{1} be a triangulation on \mathbb{P} with $3 m$ 2 vertices obtained from I_{P}^{1} and T by identifying C and a facial cycle of I_{P}^{1}. Flippable edges in T_{P}^{1} are those in T^{\prime}, and hence the number of flippable edges of T_{P}^{1} is $3 m-6$. Since $n=3 m-2, T_{P}^{1}$ contains $n-4$ flippable edges.
(b,c) Let T_{P}^{2} be a triangulation on \mathbb{P} with minimum degree at least 4 which is constructed, as follows. Let $x y$ be an edge of I_{P}^{1}, and let $x y z$ and $x y c$ be two faces of I_{P}^{1} sharing $x y$. Replace $x y$ with a path $P=x v_{1} v_{2} \cdots v_{m} y$, and join v_{i} to z and to c for $i=1, \ldots, m$, as shown in Figure 8. Then T_{P}^{2} has $m+6=n$ vertices, and the flippable edges of T_{P}^{2} are $v_{i} z, v_{i} c$ for each i, and $x z, z y, x c, c y, a b$, and hence $2 m+5=2 n-7$ flippable edges. Since T_{P}^{2} is 4-connected, T_{P}^{2} is also an example for the case (c).

Tightness of Theorem 6. A triangulation on \mathbb{T} and that with minimum degree at least 4 attaining the equality in (a), (b,c) can be obtained from I_{T}^{1} by the same construction as the two triangulations in Tightness of Theorem 5, respectively.

Tightness of Theorem 7. Let $a b c$ be the 3 -cycle of I_{K}^{26} which separates I_{K}^{26} into two Möbius bands, and let $a b d$ be a face.
(a) Identify the outer face C of T with $a b d$ of I_{K}^{26}, and let T_{K}^{1} be the resulting triangulation on \mathbb{K} with $3 m+1$ vertices. As in Figure 8, flippable edges of T_{K}^{1} are exactly those of T^{\prime} and $b c, c a$, where we note that $a b$ is contained in T. Hence the number of flippable edges is $3 m-4$ edges. Since $n=3 m+1, T_{K}^{1}$ has $3 m-4=n-5$ flippable edges.
(b) Apply a 4-splitting in I_{K}^{26} as in the figure, and subdivide the new edge by m vertices. The resulting triangulation, denoted by T_{K}^{2}, has minimum degree at least 4 , but is not 4 -connected. Then T_{K}^{2} has $m+10$ vertices, and $2 m+5$ flippable edges. Since $n=m+10, T_{K}^{2}$ has $2 n-15$ flippable edges.
(c) Apply a 4 -splitting in I_{K}^{3} as in the figure, and subdivide the new edge by m vertices. The resulting triangulation on \mathbb{K}, denoted by T_{K}^{3}, is 4 -connected. Then T_{K}^{3} has $m+9$ vertices, and $2 m+7$ flippable edges. Since $n=m+9, T_{K}^{3}$
has $2 n-11$ flippable edges.

Figure 8. Triangulations attaining bounds in Theorems 5, 6 and 7 in which the dotted segments represent flippable edges.

Finally, we show Theorem 8. For general surfaces, it is known that each surface admits only finitely many irreducible triangulations [2], which is shown by bounding the number of vertices, for example, see $[3,6,15]$. The best upper bound known so far is the following, which will be used in our proof of Theorem 8.

Theorem 14 (Joret et al. [8]). Every irreducible triangulation of a surface with Euler genus $g \geq 1$ has at most $13 g-4$ vertices.

We prove Theorem 8.

Proof of Theorem 8. We show Theorem 8(a) by induction on the number of vertices. Let G be a triangulation on a non-spherical surface \mathbb{F} with Euler genus $g \geq 1$. If G is irreducible, then we clearly have $\left|E_{f l i p}(G)\right| \geq 0$. Hence G satisfies $\left|E_{\text {flip }}(G)\right| \geq|V(G)|-(13 g-4)$, since $|V(G)| \leq 13 g-4$ by Theorem 14. The induction step of is completely the same as in the proof of Theorem 5(a).

Theorem 8(b) can be proved similarly to that of Theorem $5(\mathrm{~b})$, and so we omit a proof.

4. REMARKS

In this paper, we estimate the number of flippable edges of triangulations on surfaces in various settings.

Gao et al. [7] have established a result for triangulations on the sphere, and given three distinct lower bounds for the number of flippable edges in ordinary triangulations, the ones with minimum degree at least 4 and 4 -connected ones in Theorem 3(a), (b) and (c) respectively, where all these bounds are best possible. Then, in this paper, we extend these results to other surfaces by induction on the number of vertices based on an edge contraction. This argument is independent of topology of surfaces, and some methods in the spherical case can be applied to a non-spherical case, but some are not.

So, in this section, we would like to make a remark about the following three points.

- Although both Theorem 5(b) and Theorem 3(b) deal with triangulations with minimum degree at least 4 , the proof of Theorem $5(\mathrm{~b})$ is much simpler than that of Theorem 3(b). Why cannot we give a similar proof to Theorem 3(b)?

In the proof of Theorem $5(\mathrm{~b})$, applying Lemma 13 , we consider only a 4 splitting to generate triangulations with minimum degree at least 4 , since an octahedron-addition produces more flippable edges. Moreover, this method gives a best possible lower bound for the number of flippable edges in triangulations on \mathbb{P} in Theorem 5(b), as shown in the above construction of T_{P}^{2}. This also gives a best possible lower bounds for \mathbb{T} and \mathbb{K} in Theorems $6(\mathrm{~b})$ and $7(\mathrm{~b})$.

For the sphere \mathbb{S}, we observe that the octahedron O is the smallest triangulation with minimum degree at least 4 , which has six vertices and twelve edges, all flippable. If we let G be a triangulation obtained from O by m-splittings, then we get $|V(G)|=n=m+6$ and $\left|E_{f l i p}(G)\right| \geq 2 m+12=2 n$ by Lemma 13 . However, this bounds is not tight, since the lower bound is $2 n+3$ in Theorem 3(b). Therefore, in order to get a tight bound in Theorem 3(b), we need to investigate a worst combination of 4 -splittings and octahedron-additions. (Note that \mathcal{L}_{k} cannot be obtained from O only by 4 -splittings, since 4 -splittings preserve the 4 -connectedness of triangulations.)

- Why do the lower bounds for the cases of "minimum degree at least 4" and " 4 -connected" coincide for \mathbb{P} and \mathbb{T} in Theorems $5(\mathrm{~b})$ and $6(\mathrm{~b})$?

Observe that all irreducible triangulations on \mathbb{P} and \mathbb{T} are 4 -connected. In the proof of Theorem 5(b), we estimate the number of flippable edges in a triangulation G on \mathbb{P} which is obtained from an irreducible one only by 4 -splittings. Since a 4 -splitting preserves the 4 -connectedness, G must be 4 -connected. Since this gives a best possible bound, a " 4 -connected" triangulation on \mathbb{P} attains the lower bound in Theorem 5(b). The same holds for \mathbb{T}, but does not for the Klein bottle \mathbb{K}, since there is an irreducible triangulation with a non-contractible separating 3 -cycle. Actually, the two lower bounds do not coincide in Theorem 7(b) and (c) for \mathbb{K}.

- Why can a 4 -connected triangulation on a non-spherical surface admit nonflippable edges, as shown in Theorems 5(c), 6(c) and 7(c)?

For the sphere, if a triangulation G is 4-connected, then every edge of G is flippable, by Theorem 3(c). This can be explained by a subgraph isomorphic to K_{4} as described in Lemma 9. If an edge $e=a c$ shared by two faces $a b c$ and $a c d$ is not flippable, then b and d are adjacent in the graph, and then a, b, c and d induce K_{4}. If a triangulation G on the sphere has the flippable edge e and at least five vertices, then by Jordan Curve Theorem, either $a b d$ or $b c d$ forms a separating 3 -cycle in G, and so G is not 4 -connected. On the other hand, in a triangulation G^{\prime} on a non-spherical surface \mathbb{F}, both of 3 -cycles abd or bcd can be non-contractible on \mathbb{F}, and e can be non-flippable on \mathbb{F} even if G^{\prime} is 4 -connected.

However, forbidding non-contractible 3 -cycles, we see that all edges of a 4connected triangulations on any non-spherical surface are flippable, since the graph can no longer contain K_{4} as a subgraph. Therefore, the condition for all edges being flippable in triangulations on the sphere is " 4 -connected", but the corresponding condition for any non-spherical surface is " 4 -connected and no non-contractible 3 -cycle".

Our methods in this paper depend on the concrete structures of irreducible triangulations on \mathbb{P}, \mathbb{T} and \mathbb{K}. Can we say something on flippable edges in triangulations on non-spherical surfaces, without the lists of irreducible triangulations? We already know that Slanke [19] determined the complete lists of irreducible triangulations on some other surfaces, but their numbers for each surface are very large. We wonder if we can deal with those lists efficiently to count the number of flippable edges.

References

[1] D. Barnette, Generating the triangulations of the projective plane, J. Combin. Theory Ser. B 33 (1982) 222-230.
https://doi.org/10.1016/0095-8956(82)90041-7
[2] D.W. Barnette and A.L. Edelson, All 2-manifolds have finitely many minimal triangulations, Israel J. Math. 67 (1989) 123-128. https://doi.org/10.1007/BF02764905
[3] A. Boulch, É. Colin de Verdière and A. Nakamoto, Irreducible triangulations of surfaces with boundary, Graphs Combin. 29 (2013) 1675-1688. https://doi.org/10.1007/s00373-012-1244-1
[4] R. Brunet, A. Nakamoto and S. Negami, Diagonal flips of triangulations on closed surfaces preserving specified properties, J. Combin. Theory Ser. B 68 (1996) 295309.
https://doi.org/10.1006/jctb.1996.0070
[5] A.K. Dewdney, Wagner's theorem for torus graphs, Discrete Math. 4 (1973) 139149. https://doi.org/10.1016/0012-365X(73)90076-9
[6] Z. Gao, L.B. Richmond and C. Thomassen, Irreducible triangulations and triangular embeddings on a surface, CORR 91-07, University of Waterloo.
[7] Z. Gao, J. Urrutia and J. Wang, Diagonal flips in labelled planar triangulations, Graphs Combin. 17 (2001) 647-657. https://doi.org/10.1007/s003730170006
[8] G. Joret and D.R. Wood, Irreducible triangulations are small, J. Combin. Theory Ser. B 100 (2010) 446-455.
https://doi.org/10.1016/j.jctb.2010.01.004
[9] H. Komuro, A. Nakamoto and S. Negami, Diagonal flips in triangulations on closed surfaces with minimum degree at least 4, J. Combin. Theory Ser. B 76 (1999) 68-92. https://doi.org/10.1006/jctb.1998.1889
[10] S. Lawrencenko, The irreducible triangulations of the torus, Ukrain. Geom. Sb. 30 (1987) 52-62.
[11] S. Lawrencenko and S. Negami,, Constructing the graphs that triangulate both the torus and the Klein Bottle, J. Combin. Theory Ser. B 77 (1999) 211-218. https://doi.org/10.1006/jctb.1999.1920
[12] R. Mori, A. Nakamoto and K. Ota, Diagonal fips in Hamiltonian triangulations on the sphere, Graphs Combin. 19 (2003) 413-418. https://doi.org/10.1007/s00373-002-0508-6
[13] A. Nakamoto and S. Negami, Generating triangulations on closed surfaces with minimum degree at least 4, Discrete Math. 244 (2002) 345-349. https://doi.org/10.1016/S0012-365X(01)00093-0
[14] S. Negami, Diagonal flips in triangulations of surfaces, Discrete Math. 135 (1994) 225-232. https://doi.org/10.1016/0012-365X(93)E0101-9
[15] A. Nakamoto and K. Ota, Note on irreducible triangulations of surfaces, J. Graph Theory 20 (1995) 227-233. https://doi.org/10.1002/jgt. 3190200211
[16] S. Negami and S. Watanabe, Diagonal transformations of triangulations on surfaces, Tsukuba J. Math. 14 (1990) 155-166. https://doi.org/10.21099/tkbjm/1496161326
[17] E. Steinitz and H. Rademacher, Vorlesungen über die Theoric der Polyeder (Springer, Berlin, 1934).
[18] T. Sulanke, Note on the irreducible triangulations of the Klein bottle, J. Combin. Theory Ser. B 96 (2006) 964-972.
https://doi.org/10.1016/j.jctb.2006.05.001
[19] T. Sulanke, Generating irreducible triangulations of surfaces, preprint.
[20] K. Wagner, Bemerkungen zum Vierfarbenproblem, J. der Deut. Math. Ver. 46, Abt. 1 (1936) 26-32.

Received 19 December 2019
Revised 25 April 2020
Accepted 25 April 2020

Appendix

Figure 9. Irreducible triangulations on the torus. The dotted segments represent flippable edges.

Table 1. The number of flippable edges of irreducible triangulations on \mathbb{P}, \mathbb{T} and \mathbb{K}.

Figure 10. Irreducible triangulations on the Klein bottle. The dotted segments represent flippable edges.

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI Grant Number 18K03390.

