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Abstract

Concerning diagonal flips on triangulations, Gao et al. showed that any
triangulation G on the sphere with n ≥ 5 vertices has at least n−2 flippable
edges. Furthermore, if G has minimum degree at least 4 and n ≥ 9, then G
has at least 2n + 3 flippable edges. In this paper, we give a simpler proof
of their results, and extend them to the case of the projective plane, the
torus and the Klein bottle. Finally, we give an estimation for the number
of flippable edges of a triangulation on general surfaces, using the notion of
irreducible triangulations.
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1. Introduction

A triangulation G on a surface F is a simple graph embedded on F so that each
face is triangular, except for K3 on the sphere. We denote the vertex set, edge
set and face set of G by V (G), E(G) and F (G), respectively. A k-cycle means a
cycle of length k. A cycle C in G is said to be contractible if C bounds a 2-cell
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Figure 1. The diagonal flip of the edge ac.

on the surface. We say that C is separating if G− V (C) is disconnected. Let Gi

be a triangulation on a surface Fi and let fi be a face of Gi, for i = 1, 2. A face
sum of G1 and G2 with f1 and f2 identified is to identify the boundary 3-cycle
of f1 and that of f2 and obtain a new triangulation on the connected sum of F1

and F2.
Let abc and adc be two faces of a triangulation G sharing the edge ac. A

diagonal flip of ac consists in replacing ac with another diagonal bd in the quadri-
lateral abcd as in Figure 1. We say that the edge ac is flippable if b and d are not
adjacent in G. We do not perform a diagonal flip of any non-flippable edge.

The origin of diagonal flips in triangulations is the following.

Theorem 1 (Wagner [20]). Any two triangulations on the sphere with the same
number of vertices can be transformed into each other by a sequence of diagonal
flips.

Theorem 1 has been extended to the torus [5], the projective plane and the
Klein bottle [16]. Arguments in the above results depend on individual surfaces,
but Negami extended these results to general surfaces.

Theorem 2 (Negami [14]). For any closed surface F, there exists a natural num-
ber N(F) such that any two triangulations G1 and G2 on F can be transformed
into each other by a sequence of diagonal flips if |V (G1)| = |V (G2)| ≥ N(F).

The assumption of |V (G1)| = |V (G2)| ≥ N(F) is needed since N(F) does not
coincide with the order of minimal triangulations on F in general. We can find
many related researches, for example, see [4, 9, 12].

Recently, Gao et al. showed a lower bound for the number of flippable edges
of triangulations on the sphere, as in Theorem 3.

Theorem 3 (Gao et al. [7]). Let G be a triangulation on the sphere with n
vertices, then the following hold, where all bounds are tight.

1This work was supported by JSPS KAKENHI Grant Number 18K03390.
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(a) If n ≥ 5, then G contains at least n− 2 flippable edges.

(b) If G has minimum degree at least 4, then G contains at least min{2n + 3,
3n− 6} flippable edges.

(c) If G is 4-connected, then all edges of G are flippable.

In this paper, motivated by this result, we study flippable edges in more
depth.

Our first contribution is to give a simpler proof of Theorem 3. For (a), we give
an inductive proof on the number of vertices which is independent of a topology
of surfaces. For (b) and (c), we focus on the number of separating 3-cycles in
a triangulation, and bound the number of flippable edges in triangulations with
minimum degree at least 4 and 4-connected ones in the same logic, as in the
following.

Theorem 4. Let G be an n-vertex triangulation on the sphere with minimum
degree at least 4, and let k be the number of separating 3-cycles of G. Then

(i) G has at least min{3n− k − 5, 3n− 6} flippable edges.

(ii) k ≤ max{n− 8, 0}.

In Theorem 4(i), if k = 0, that is, G is 4-connected, then we have Theo-
rem 3(c), since |E(G)| = 3n − 6. On the other hand, if k = max{n − 8, 0} in
Theorem 4(ii), then we have Theorem 3(b) by substituting it to the result in
Theorem 4(i). Moreover, we characterize n-vertex triangulations with minimum
degree at least 4 which have exactly 2n+ 3 flippable edges. Section 2 is devoted
to Theorems 3(b) and (c).

Secondly, extending Theorem 3 to the projective plane, the torus, and the
Klein bottle, we prove Theorems 5, 6, 7 stated below. The arguments in the
new proof of Theorem 3 do not depend on a topology of individual surfaces, and
so we can extend the results to other surfaces by the same inductive method,
in which the first step of induction will be verified for the so called “irreducible
triangulations”, defined as follows.

Contraction of an edge e = v1v2 in a triangulation G consists in shrinking e
until v1 and v2 coincide and in replacing each pair of the multiple edges bounding
two digonal faces with a single edge as shown in Figure 2. (The inverse operation
of a contraction of an edge is called a vertex-splitting.) An edge e of G is said
to be contractible if the graph obtained from G by contracting e is simple. A
triangulation is said to be irreducible if it has no contractible edge.

For the sphere, K4 is a unique irreducible triangulation [17]. The projective
plane admits precisely two irreducible triangulations I1P and I2P shown in Figure 3,
where I1P is isomorphic to K6 [1]. For the torus, there exist precisely 21 irreducible
triangulations [10], in which I1T is the smallest one whose graph is isomorphic
to K7. For the Klein bottle, there exist precisely 29 irreducible triangulations
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Figure 2. The contraction of the edge e.

including I3K and I26K [11, 18]. For all the triangulations in Figure 3, the dotted
segments are flippable edges.
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Figure 3. Triangulations I1P , I2P , I1T , I5T , I21T , I3K , and I26K , where we identify vertices with
the same label in each triangulation.

Theorem 5. Let G be a triangulation on the projective plane with n vertices.
Then,

(a) G contains at least n− 4 flippable edges if G is not isomorphic to I1P .

(b) G contains at least 2n− 7 flippable edges if G has minimum degree at least
4 and is not isomorphic to I1P nor I2P .

(c) G contains at least 2n − 7 flippable edges if G is 4-connected and not iso-
morphic to I1P nor I2P .

Theorem 6. Let G be a triangulation on the torus with n vertices. Then,

(a) G contains at least n− 5 flippable edges if G is not isomorphic to I1T .

(b) G contains at least 2n− 9 flippable edges if G has minimum degree at least
4 and is not isomorphic to I1T , I5T nor I21T .
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(c) G contains at least 2n − 9 flippable edges if G is 4-connected and not iso-
morphic to I1T , I5T nor I21T .

Theorem 7. Let G be a triangulation on the Klein bottle with n vertices. Then,

(a) G contains at least n− 5 flippable edges if G is not isomorphic to I26K .

(b) G contains at least 2n−15 flippable edges if G has minimum degree at least 4.

(c) G contains at least 2n − 11 flippable edges if G is 4-connected and not iso-
morphic to I3K .

In each of Theorems 5, 6, 7, the three bounds are tight, in the sense that
there exists an infinite sequence of triangulations attaining them.

In Section 3, we construct triangulations on those surfaces attaining the
bounds. It should be mentioned that for the projective plane and the torus, the
lower bounds for triangulations with minimum degree at least 4 and 4-connected
ones coincide in Theorems 5 and 6.

Thirdly, we give an estimation for the number of flippable edges in trian-
gulations on a given surface F. The Euler genus g of a surface F with Euler
characteristic χ(F) is defined as g = 2− χ(F).

Theorem 8. Let G be an n-vertex triangulation on a surface F with Euler genus
g ≥ 1. Then, the following hold.

(a) G contains at least n− (13g − 4) flippable edges.

(b) If G has minimum degree at least 4, G contains at least 2n − 2(13g − 4)
flippable edges.

2. A New Proof of Theorem 3

In this section, we prove Theorem 3. In the rest of this paper, let Eflip(G) denote
the set of flippable edges in a triangulation G. At first, we give a lemma describing
a structure around a non-flippable edge in a triangulation on a surface.

Lemma 9. Let G be a triangulation on a surface, and let ac be an edge in G
shared by two faces abc and adc. Then ac is non-flippable if and only if a, b, c and
d induce K4 in G.

Proof. The lemma directly follows from the definition.

We first give a simple proof of Theorem 3(a). In order to do it, we introduce
the notion of “weak faces” in a triangulation, as follows.

A face abc of a triangulation G is said to be weak if at least one of ab, bc
and ca is flippable. We denote the set of weak faces in G by Fweak(G). Since a
flippable edge is shared by two weak faces, we have 2|Eflip(G)| ≥ |Fweak(G)|.
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The next lemma will be used for counting the number of weak faces by
induction.

Lemma 10. If a triangulation G on a surface F is obtained from another trian-
gulation H by a single vertex-splitting, then |Fweak(G)| ≥ |Fweak(H)|+ 2.

Proof. Let e = v1v2 be an edge of G, and let v = [v1v2] be the image of e in
H by the contraction. Let uv1v2 and wv1v2 be two faces of G sharing e. It is
easy to see that all flippable edges in E(H) − {uv, vw} are also flippable in G.
Observe that at least one of v1 and v2, say v1, has degree at least 4, since two
vertices of degree 3 cannot be adjacent in G unless G = K4. Then, uv1 and v1w
are flippable edges of G. For otherwise, i.e., if uv1 is non-flippable in G, then
x and v2 are adjacent, by Lemma 9, where uv1 is shared by two facial 3-cycles
uv1x and uv1v2 in G. However, in this case, H has multiple edges between x and
[v1v2], a contradiction. Hence, two faces uv1v2 and v1v2w of G are weak. Since
all weak faces in H are also weak in G, we have |Fweak(G)| ≥ |Fweak(H)|+ 2.

Using Lemma 10, we first give a shorter proof of Theorem 3(a).

A shorter proof of Theorem 3(a). Let G be an n-vertex triangulation on the
sphere with n ≥ 5, and we prove that |Fweak(G)| ≥ 2n−4. By Steinitz’s result[17],
every triangulation on the sphere can be transformed into the only irreducible
triangulation K4 by contractions of edges. Hence, if n = 5, then G is obtained
from K4 by a single vertex-splitting, and we see that G has exactly three flippable
edges, and all six faces are weak. Thus, |Fweak(G)| ≥ 2n−4 when n = 5. If n ≥ 6,
then G is obtained from H with |V (H)| = n− 1 by a single vertex-splitting. By
induction hypothesis and Lemma 10, we have |Fweak(G)| ≥ |Fweak(H)| + 2 ≥
2(n− 1)− 4 + 2 = 2n− 4. Hence, we have |Eflip(G)| ≥ 1

2 |Fweak(G)| ≥ n− 2.

Next, we give a proof to Theorem 3(b) and (c) simultaneously, by focusing
on the number k of separating 3-cycles.

Let k ≥ 1, and let T1, . . . , Tk−1 be k − 1 copies of a triangulation on the
sphere isomorphic to K4. For each i, let si and fi be two distinct faces of Ti, and
let ei be the edge of Ti shared by the two faces other than si and ti. Let O0 and
Ok be two copies of a triangulation on the sphere isomorphic to an octahedron,
and let f0 (respectively, fk) be a face of O0 (respectively, Ok). Let L1 be the
triangulation obtained from O0 and Ok by a face sum of f0 and fk. For k ≥ 2, let
Lk be a triangulation obtained from O0, T1, . . . , Tk−1, Ok by a face sum of f0 and
s1, a face sum of ti and si+1 for i = 1, . . . , k − 2, and a face sum of tk−1 and fk.
(See Figure 4.) Then Lk is a triangulation on the sphere with minimum degree
at least 4 which has n = k + 8 ≥ 9 vertices and k separating 3-cycles. Moreover,
Lk contains k− 1 = n− 9 non-flippable edges, which are e1, . . . , ek−1. Hence, we
have |Eflip(Lk)| ≥ 3n− 6− (n− 9) = 2n+ 3. For k ≥ 1, let Lk denote the set of
triangulations Lk constructed by the above procedures.
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Figure 4. Triangulation Lk consisting of O0, T1, . . . , Tk−1, Ok.

Lemma 11. Let G be an n-vertex triangulation on the sphere with minimum
degree at least 4. Let k be the number of separating 3-cycles of G. Then

(1) G has at most max{k − 1, 0} non-flippable edges,

(2) k ≤ max{n − 8, 0}, where the equality holds if and only if n ≤ 8 or G is
isomorphic to a member of Lk with k = n− 8 ≥ 1.

Proof. (1) We use induction on k. If k = 0, then G is 4-connected. In this
case, since G does not contain K4 as a subgraph, G has no non-flippable edge,
by Lemma 9.

Suppose k ≥ 1, and let C = abc be a separating 3-cycle of G. Let G1 and G2

be two subgraphs of G such that V (G1) ∪ V (G2) = V (G) and V (G1) ∩ V (G2) =
V (C), where we may suppose that G1 is innermost, that is, G1 has no separating
3-cycle. We note that G2 is also a triangulation on the sphere. By Jordan Curve
Theorem, G2 is a graph on a punctured surface with boundary cycle C. Then we
paste a 2-cell on C, and obtain a triangulation G2 on the sphere. Let ki denote
the number of separating 3-cycles in Gi, for i = 1, 2. Then we have k2 = k − 1,
since G1 has no separating 3-cycle, and since C is no longer a separating 3-cycle
in G2. Since G1 is 4-connected, every edge in G1 is flippable, as described in the
first paragraph. Moreover, since every edge e ∈ E(C) is flippable in G, all edges
of G contained in G1 are flippable in G.

Now we count the number of non-flippable edges in G2 in the following two
cases on whether G2 has minimum degree at least 4 or not.

Case 1. G2 has minimum degree at least 4. Observe that for any edge
e /∈ E(C) in G2, e is flippable in G2 if and only if e is flippable in G, since G2

is an induced subgraph of G. Moreover, e ∈ E(C) is flippable in G, even if e is
non-flippable in G2. Hence the number of non-flippable edges of G is less than or
equal to that of G2. By induction hypothesis, since G2 has precisely k2 separating
3-cycles, G2 has at most max{k2 − 1, 0} non-flippable edges. Hence the number
of non-flippable edges of G is at most

max{k2 − 1, 0} = max{k − 2, 0} ≤ max{k − 1, 0},

where the equality holds if and only if k = 1.
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Case 2. G2 has a vertex v of degree 3. Since G has minimum degree at least
4, v lies on C in G2. So we let v = a and let a′, b, c be the three neighbors of a
in G2. Note that Case 2 happens only when k ≥ 2 since G has two separating
3-cycles abc and a′bc. In this case, we contract the edge aa′ in G, and let G′

be the resulting triangulation, where we let [aa′] denote the image of aa′ in G′

by the contraction. This operation merges the two separating 3-cycles abc and
a′bc in G into a single separating 3-cycle [aa′]bc in G′, but this introduces no
new separating 3-cycle. Hence, if we let k′ be the number of separating 3-cycles
in G′, then k′ = k − 1(≥ 1). Since a, b and c have degree at least 4 in G1 by
the 4-connectedness, G′ has minimum degree at least 4. Hence, by induction
hypothesis, G′ has at most k′ − 1 non-flippable edges. By the contraction of aa′

in G, the single non-flippable edge aa′ in G disappears in G′, and no new non-
flippable edge is not produced in G′, and hence G has at most (k′−1)+1 = k−1
non-flippable edges.

By Cases 1 and 2, the number of flippable edges in G is at most max{k−1, 0},
and we are done.

(2) Using the same induction as in (1), we prove that n ≥ k+8 for any k ≥ 1
by the same case analysis in Cases 1 and 2.

In Case 1, let ni = |V (Gi)| for i = 1, 2, where n1 + n2 − 3 = n. Observe that
the smallest 4-connected triangulation is an octahedron, which has six vertices.
Since G1 is 4-connected, we have n1 ≥ 6. On the other hand, we have k2 = k−1.
If k2 = 0, then we also have n2 ≥ 6 by the same argument as for G1. Hence,
when k = 1,

n = n1 + n2 − 3 ≥ 6 + 6− 3 = 9,

where the equality holds when both G1 and G2 are isomorphic to the octahedron,
and hence G = L1 ∈ L1. If k2 ≥ 1, then n2 ≥ k2 + 8 = (k − 1) + 8 = k + 7 by
induction hypothesis. Therefore,

n = n1 + n2 − 3 ≥ 6 + (k + 7)− 3 = k + 10 > k + 8.

In Case 2, we note that k ≥ 2. Then, if we let n′ = |V (G′)|, then we have
n = n′ + 1 and k′ = k − 1 ≥ 1. Hence, by induction hypothesis, G′ satisfies
n′ ≥ k′ + 8, in which the equality holds if and only if G′ ∈ Lk′ . Therefore,
n = n′ + 1 ≥ (k′ + 8) + 1 = k + 8 for k ≥ 2, where the equality holds in G if and
only if n′ = k′ + 8 in G′. In this case, we have G ∈ Lk, since G is obtained from
G′ ∈ Lk′ by a splitting of a vertex in a separating 3-cycle of G′ which increases
the number of separating 3-cycles by one.

Next, we prove Theorem 3(b) and (c) using Lemma 11, and characterize
triangulations attaining the equality in (b).
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• Theorem 3(b). Let G be a triangulation on the sphere with minimum degree
at least 4. By Lemma 11(1), since the number of non-flippable edges of G is at
most max{k − 1, 0}, we have

|Eflip(G)| ≥ 3n− 6−max{k − 1, 0} ≥ min{3n− k − 5, 3n− 6}.

Then, since k ≤ max{n− 8, 0} by Lemma 11(2), we have

|Eflip(G)| ≥ min{3n− k − 5, 3n− 6} ≥ min{2n+ 3, 3n− 6}.

• Theorem 3(c). In Lemma 11, if G is 4-connected, then k = 0, and hence, by
Lemma 11(1), every edge in G is flippable, which proves Theorem 3(c).

• Characterization of triangulations G with minimum degree at least 4 with
|Eflip(G)| = 2n + 3. Observe that a required n-vertex triangulation G satisfies
both equalities of Lemma 11(1) and (2) for some k ≥ 1. Hence we have G ∈ Lk
by Lemma 11(2), and clearly G satisfies the equality in Lemma 11(1) too.

3. Proof of the Theorems for Non-Spherical Surfaces

In this section, let S, P, T and K denote the sphere, the projective plane, the
torus and the Klein bottle, respectively.

We first show Theorems 5, 6 and 7 by induction on the number of vertices,
by a similar method to that in Theorem 3(a). We note that Lemma 10 holds for
triangulations on all surfaces.

Proof of Theorem 5(a). Let G be a triangulation on P which is not isomorphic
to I1P . We show that |Fweak(G)| ≥ 2n−8 by induction on the number of vertices.

Contracting edges, we can transform G into either I2P or a triangulation,
say T , obtained from I1P by a single vertex-splitting, since I1P and I2P are the
two irreducible triangulations on P. Figure 5 shows I1P and I2P and the two
candidates of T , and we verify that all the three have seven vertices and at
least six weak faces. Hence, if |V (G)| = 7, then |Fweak(G)| ≥ 2n − 8. By
the same induction by Lemma 10 as in the proof of Theorem 3(a), we have
|Eflip(G)| ≥ 1

2 |Fweak(G)| ≥ n− 4.

Theorems 6(a) and 7(a) can be proved in the same way. For T, we should
verify that the result holds for all irreducible triangulations except I1T and all
triangulations obtained from I1T by a single vertex-splitting. For K, we should do
it for all irreducible triangulations except I26K and the ones obtained from I26K by a
single vertex-splitting. We leave these tasks to readers. At the end of the paper,
we attach an Appendix with the table for the number of flippable edges in all
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Figure 5. Irreducible triangulations I1P and I2P on P and ones obtained from I1P by a
single vertex-splitting. In the figures, the faces with a circle are weak.

irreducible triangulations on P, T and K, and we list the figures of all irreducible
triangulations on T and K with the indication of flippable edges.

Next we deal with triangulations with minimum degree at least 4. An
octahedron-addition is an operation defined as below. Let a1a2a3 be a face of
a triangulation. Put a 3-cycle vivjvk inside the face a1a2a3 and add edges aivj
for all i 6= j with i, j ∈ {1, 2, 3}. A 4-splitting is a vertex-splitting such that the
resulting triangulation has minimum degree at least 4.

The following result guarantees that these two operations generate all trian-
gulations on any surface with minimum degree at least 4.

Theorem 12 (Nakamoto et al. [13]). Every triangulation on a non-spherical
surface (respectively, the sphere) with minimum degree at least 4 can be obtained
from an irreducible triangulation (respectively, an octahedron) by a sequence of
4-splittings and octahedron-additions, preserving the minimum degree at least 4.

Using Theorem 12, we estimate the increase of the number of flippable edges
by a 4-splitting and an octahedron-addition in the next lemma.

Lemma 13. Let G and H be triangulations on a closed surface with minimum
degree at least 4.

• If G can be obtained from H by a 4-splitting, then |Eflip(G)| ≥ |Eflip(H)|+2.

• If G can be obtained from H by an octahedron-addition, then |Eflip(G)| ≥
|Eflip(H)|+ 9.

Proof. The former part can be proved similarly to Lemma 10, but we have to
note that both v1 and v2 have degree at least 4 in G. Therefore, four edges
v1u, v1w, v2u, v2w are flippable in G, but uv and vw might be flippable in H.
Hence, we have |Eflip(G)| ≥ |Eflip(H)|+ 2.

In the latter part, if G is obtained from H by a single octahedron-addition,
then nine edges in E(G)−E(H) are flippable inG and hence, we have |Eflip(G)| ≥
|Eflip(H)|+ 9.
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Now we show Theorem 5(b) using Lemma 13.

Proof of Theorem 5(b). Let G be an n-vertex triangulation on P which is not
isomorphic to I1P nor I2P . We prove that |Eflip(G)| ≥ 2n− 7.
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Figure 6. All candidates of H and their flippable edges.

For the base cases, we deal with triangulations, denoted by H, obtained from
I1P and I2P by a single 4-splitting or a single octahedron-addition. Figure 6 shows
all candidates of H by a single 4-splitting, up to isomorphism, and we can verify
the claim holds for all possible H. Suppose that G can be obtained from H
by a 4-splitting. By induction hypothesis and Lemma 13, we have |Eflip(G)| ≥
|Eflip(H)|+ 2 ≥ 2(n− 1)− 7 + 2 = 2n− 7, and our claim holds. (When applying
Lemma 13, we note that the 4-splitting produces less flippable edges than the

octahedron-addition with respect to the ratio
|Eflip(G)|
|E(G)| , and so we do not deal

with the latter.)

The proofs for Theorems 6(b) and 7(b) are similar to that for Theorem 5(b),
and hence we omit them. Readers should do the tasks using the materials in
Appendix.

We show the tightness of Theorems 5, 6 and 7. The initial set up is common
with the tightness part of Theorem 3 in [7]. Let T ′ be any triangulation on the
plane with m ≥ 3 vertices, and let C be the 3-cycle of T ′ bounding the infinite
face, where we note that |E(T ′)| = 3m−6. We put a single vertex in the interior of
each finite face of T ′, and join it to three vertices of the corresponding boundary 3-
cycle. The resulting plane triangulation, denoted by T , has m+(2m−5) = 3m−5
vertices. We note that every edge of T incident to an added vertex to T ′ is not
flippable, and this observation will be important in the following argument.

In the following constructions, we use the irreducible triangulations I1P for P,
I1T for T, I3K and I26K for K.
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Figure 7. Examples of plane triangulations T ′ and T .

Tightness of Theorem 5. (a) Let T 1
P be a triangulation on P with 3m −

2 vertices obtained from I1P and T by identifying C and a facial cycle of I1P .
Flippable edges in T 1

P are those in T ′, and hence the number of flippable edges
of T 1

P is 3m− 6. Since n = 3m− 2, T 1
P contains n− 4 flippable edges.

(b,c) Let T 2
P be a triangulation on P with minimum degree at least 4 which

is constructed, as follows. Let xy be an edge of I1P , and let xyz and xyc be two
faces of I1P sharing xy. Replace xy with a path P = xv1v2 · · · vmy, and join vi
to z and to c for i = 1, . . . ,m, as shown in Figure 8. Then T 2

P has m + 6 = n
vertices, and the flippable edges of T 2

P are viz, vic for each i, and xz, zy, xc, cy, ab,
and hence 2m + 5 = 2n − 7 flippable edges. Since T 2

P is 4-connected, T 2
P is also

an example for the case (c).

Tightness of Theorem 6. A triangulation on T and that with minimum
degree at least 4 attaining the equality in (a), (b,c) can be obtained from I1T by
the same construction as the two triangulations in Tightness of Theorem 5,
respectively.

Tightness of Theorem 7. Let abc be the 3-cycle of I26K which separates I26K
into two Möbius bands, and let abd be a face.

(a) Identify the outer face C of T with abd of I26K , and let T 1
K be the resulting

triangulation on K with 3m+1 vertices. As in Figure 8, flippable edges of T 1
K are

exactly those of T ′ and bc, ca, where we note that ab is contained in T . Hence the
number of flippable edges is 3m−4 edges. Since n = 3m+1, T 1

K has 3m−4 = n−5
flippable edges.

(b) Apply a 4-splitting in I26K as in the figure, and subdivide the new edge
by m vertices. The resulting triangulation, denoted by T 2

K , has minimum degree
at least 4, but is not 4-connected. Then T 2

K has m + 10 vertices, and 2m + 5
flippable edges. Since n = m+ 10, T 2

K has 2n− 15 flippable edges.

(c) Apply a 4-splitting in I3K as in the figure, and subdivide the new edge
by m vertices. The resulting triangulation on K, denoted by T 3

K , is 4-connected.
Then T 3

K has m + 9 vertices, and 2m + 7 flippable edges. Since n = m + 9, T 3
K
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has 2n− 11 flippable edges.
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Figure 8. Triangulations attaining bounds in Theorems 5, 6 and 7 in which the dotted
segments represent flippable edges.

Finally, we show Theorem 8. For general surfaces, it is known that each
surface admits only finitely many irreducible triangulations [2], which is shown
by bounding the number of vertices, for example, see [3, 6, 15]. The best upper
bound known so far is the following, which will be used in our proof of Theorem 8.

Theorem 14 (Joret et al. [8]). Every irreducible triangulation of a surface with
Euler genus g ≥ 1 has at most 13g − 4 vertices.

We prove Theorem 8.

Proof of Theorem 8. We show Theorem 8(a) by induction on the number of
vertices. Let G be a triangulation on a non-spherical surface F with Euler genus
g ≥ 1. If G is irreducible, then we clearly have |Eflip(G)| ≥ 0. Hence G satisfies
|Eflip(G)| ≥ |V (G)| − (13g − 4), since |V (G)| ≤ 13g − 4 by Theorem 14. The
induction step of is completely the same as in the proof of Theorem 5(a).

Theorem 8(b) can be proved similarly to that of Theorem 5(b), and so we
omit a proof.

4. Remarks

In this paper, we estimate the number of flippable edges of triangulations on
surfaces in various settings.
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Gao et al. [7] have established a result for triangulations on the sphere, and
given three distinct lower bounds for the number of flippable edges in ordinary
triangulations, the ones with minimum degree at least 4 and 4-connected ones in
Theorem 3(a), (b) and (c) respectively, where all these bounds are best possible.
Then, in this paper, we extend these results to other surfaces by induction on the
number of vertices based on an edge contraction. This argument is independent
of topology of surfaces, and some methods in the spherical case can be applied
to a non-spherical case, but some are not.

So, in this section, we would like to make a remark about the following three
points.

• Although both Theorem 5(b) and Theorem 3(b) deal with triangulations with
minimum degree at least 4, the proof of Theorem 5(b) is much simpler than that
of Theorem 3(b). Why cannot we give a similar proof to Theorem 3(b)?

In the proof of Theorem 5(b), applying Lemma 13, we consider only a 4-
splitting to generate triangulations with minimum degree at least 4, since an
octahedron-addition produces more flippable edges. Moreover, this method gives
a best possible lower bound for the number of flippable edges in triangulations
on P in Theorem 5(b), as shown in the above construction of T 2

P . This also gives
a best possible lower bounds for T and K in Theorems 6(b) and 7(b).

For the sphere S, we observe that the octahedron O is the smallest triangula-
tion with minimum degree at least 4, which has six vertices and twelve edges, all
flippable. If we let G be a triangulation obtained from O by m 4-splittings, then
we get |V (G)| = n = m+ 6 and |Eflip(G)| ≥ 2m+ 12 = 2n by Lemma 13. How-
ever, this bounds is not tight, since the lower bound is 2n + 3 in Theorem 3(b).
Therefore, in order to get a tight bound in Theorem 3(b), we need to investi-
gate a worst combination of 4-splittings and octahedron-additions. (Note that
Lk cannot be obtained from O only by 4-splittings, since 4-splittings preserve the
4-connectedness of triangulations.)

• Why do the lower bounds for the cases of “minimum degree at least 4” and
“4-connected” coincide for P and T in Theorems 5(b) and 6(b)?

Observe that all irreducible triangulations on P and T are 4-connected. In
the proof of Theorem 5(b), we estimate the number of flippable edges in a trian-
gulation G on P which is obtained from an irreducible one only by 4-splittings.
Since a 4-splitting preserves the 4-connectedness, G must be 4-connected. Since
this gives a best possible bound, a “4-connected” triangulation on P attains the
lower bound in Theorem 5(b). The same holds for T, but does not for the Klein
bottle K, since there is an irreducible triangulation with a non-contractible sep-
arating 3-cycle. Actually, the two lower bounds do not coincide in Theorem 7(b)
and (c) for K.
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• Why can a 4-connected triangulation on a non-spherical surface admit non-
flippable edges, as shown in Theorems 5(c), 6(c) and 7(c)?

For the sphere, if a triangulation G is 4-connected, then every edge of G is
flippable, by Theorem 3(c). This can be explained by a subgraph isomorphic to
K4 as described in Lemma 9. If an edge e = ac shared by two faces abc and
acd is not flippable, then b and d are adjacent in the graph, and then a, b, c and
d induce K4. If a triangulation G on the sphere has the flippable edge e and
at least five vertices, then by Jordan Curve Theorem, either abd or bcd forms a
separating 3-cycle in G, and so G is not 4-connected. On the other hand, in a
triangulation G′ on a non-spherical surface F, both of 3-cycles abd or bcd can be
non-contractible on F, and e can be non-flippable on F even if G′ is 4-connected.

However, forbidding non-contractible 3-cycles, we see that all edges of a 4-
connected triangulations on any non-spherical surface are flippable, since the
graph can no longer contain K4 as a subgraph. Therefore, the condition for
all edges being flippable in triangulations on the sphere is “4-connected”, but
the corresponding condition for any non-spherical surface is “4-connected and no
non-contractible 3-cycle”.

Our methods in this paper depend on the concrete structures of irreducible
triangulations on P, T and K. Can we say something on flippable edges in triangu-
lations on non-spherical surfaces, without the lists of irreducible triangulations?
We already know that Slanke [19] determined the complete lists of irreducible tri-
angulations on some other surfaces, but their numbers for each surface are very
large. We wonder if we can deal with those lists efficiently to count the number
of flippable edges.
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Appendix

Figure 9. Irreducible triangulations on the torus. The dotted segments represent flippable
edges.
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Projective plane

graph vertices flippable edges

I1P 6 0
I2P 7 6

Torus

graph vertices flippable edges

I1T 7 0

I2T 8 8
I3T 8 7
I4T 8 10
I5T 8 6

I6T 9 18
I7T 9 27
I8T 9 9
I9T 9 12
I10T 9 15
I11T 9 15
I12T 9 9
I13T 9 12
I14T 9 9
I15T 9 12
I16T 9 9
I17T 9 9
I18T 9 9
I19T 9 9
I20T 9 11

I21T 10 10

Klein bottole, 4-connected

graph vertices flippable edges

I1K 8 6
I2K 8 6
I3K 8 4
I4K 8 8
I5K 8 6
I6K 8 5

I7K 9 8
I8K 9 10
I9K 9 10
I10K 9 9
I11K 9 10
I12K 9 11
I13K 9 9
I14K 9 20
I15K 9 11
I16K 9 9
I17K 9 9
I18K 9 10
I19K 9 10
I20K 9 10
I21K 9 12
I22K 9 15
I23K 9 15
I24K 9 14

I25K 10 13

Klein bottole, non 4-connected

graph vertices flippable edges

I26K 9 3
I27K 10 13
I28K 11 9
I29K 11 13

Table 1. The number of flippable edges of irreducible triangulations on P,T and K.
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Figure 10. Irreducible triangulations on the Klein bottle. The dotted segments represent
flippable edges.
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