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Abstract

In Caro, Shapira and Yuster [Forcing k-repetitions in degree sequences,
Electron. J. Combin. 21 (2014) #P1.24] it is proven that for any graph
G with at least 5 vertices, one can delete at most 6 vertices such that the
subgraph obtained has at least three vertices with the same degree. Fur-
thermore they show that for certain graphs one needs to remove at least 3
vertices in order that the resulting graph has at least 3 vertices of the same
degree.

In this note we prove that for any graph G with at least 5 vertices, one
can delete at most 5 vertices such that the subgraph obtained has at least
three vertices with the same degree. We also show that for any triangle-free
graph G with at least 6 vertices, one can delete at most one vertex such that
the subgraph obtained has at least three vertices with the same degree and
this result is tight for triangle-free graphs.
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1. INTRODUCTION

All the graphs in this paper are simple, that is they have no loops and no multiple
edges. A well-known elementary exercise states that every simple graph has two
vertices with the same degree. Since there are graphs without 3 vertices of the
same degree, it is natural to ask how many vertices one needs to remove from a
graph in order that the resulting graph has at least 3 vertices of the same degree.
The following theorem was proven in [1].
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Theorem 1.1. For any graph G with at least 5 vertices, one can delete at most 6
vertices such that the subgraph obtained has at least three vertices with the same
degree.

Furthermore it is shown in [1] that for certain graphs one needs to remove
at least 3 vertices in order that the resulting graph has at least 3 vertices of the
same degree.

More generally the following was shown in [1]. For a given positive integer k,
let C'= C(k) denote the least integer such that any graph with n vertices has an
induced subgraph with at least n — C vertices, such that at least min{k,n — C'}
vertices in this subgraph are of the same degree, then Q(klogk) < C(k) < (8k)*.
For k = 3 the bounds in [1] are 3 < C(3) < 6 and the exact value was left as an
open question in that paper. In this note we slightly improve Theorem 1.1, by
showing that C'(3) < 5. Formally we prove the following.

Theorem 1.2. For any graph G with at least 5 vertices, one can delete at most 5
vertices such that the subgraph obtained has at least three vertices with the same
degree.

We also prove the following result for triangle-free graphs.

Theorem 1.3. For any triangle-free graph G with at least 6 vertices, one can
delete at most one vertex such that the subgraph obtained has at least three vertices
with the same degree.

Theorem 1.3 is tight as a path on 4 vertices together with an isolated vertex
is a graph on 5 vertices with no three vertices of the same degree, for which no
removal of a vertex creates three vertices of the same degree. Furthermore for
any n > 1 the bipartite half-graph (defined below) contains 2n vertices and no
three of them of the same degree.

Definition 1.1. The half-graph on 2n vertices is a bipartite graph with vertex
set {z1,...,2n}U{y1,...,yn} such that z; is adjacent to y; if and only if i+j > n.
Note that x; and y; have degree 7, for 1 < i < n.

Note that for an odd number of vertices we can take a half-graph and one
isolated vertex. The resulting graph has no three vertices of the same degree.

2. PROOF OF THEOREM 1.2

Let G(V, E) be a graph on n > 5 vertices. Denote by d(v) the degree of vertex v
in graph G. Let H C V be a set of 3 vertices x,y, z where d(x) < d(y) < d(2).
Set H is called balanceable if one of the following conditions hold.
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1. G[H] is an independent set.
2. G[H] is a clique.

3. G[H] contains only the edge (z,y).

4. G[H] contains only the edges (z,y) and (z, 2).

Let p = d(z) — d(y) and ¢ = d(y) — d(z). We will need the following lemma
whose proof is almost identical to the proof of Theorem 1.1 and is given only for

completeness.

Lemma 2.1. If graph G contains a balanceable set H, then one can delete at
most p + q + max(p, q) vertices from G such that the subgraph obtained has at
least three vertices with the same degree.

Proof. Let H be a balanceable set in graph G with vertices z,y, z such that
d(z) < d(y) < d(z) and recall that p = d(z) —d(y) and ¢ = d(y) — d(z). Through-
out the proof we denote by N(.) the set of neighbors of a vertex in the current
G (that is, in the graph G after some vertices have possibly been deleted). Simi-
larly, we denote by d(.) the degree of a vertex in the current G. We can assume
without loss of generality that set H satisfies conditions 1 or 3 of a balanceable
set (otherwise we just take the complement of graph G as our graph). We will
consider two cases.

Case 1. d(z) < d(y) = d(z). In this case p = 0. If (N(z) \ N(x)) N
(N(y) \ N(z)) # 0, we can delete a vertex of this intersection and decrease
the degrees of y and z by 1 without affecting the degree of = (notice that = ¢
(N(z) \ N(z)) N (N(y) \ N(x)) as H satisfies conditions 1 or 3 of a balanceable
set). Otherwise, if (N(z) \ N(z)) N (N(y) \ N(z)) = 0 we can delete a vertex of
N(z)\N(z) and a vertex of (N(y)\ N(z))\{z} and decrease the degrees of y and
z by 1 without affecting the degree of x. Observe that in any case we delete at
most two vertices. Repeating this process at most ¢ times we eventually obtain
d(xz) = d(y) = d(z). Overall we have deleted at most 2¢ < p + ¢ + max(p, q)
vertices.

Case 2. d(z) < d(y) < d(z). Let us first equate d(z) and d(y) by deleting
some u € N(z) \ N(y). Observe that u # x. We always prefer to delete a vertex
u that is non-adjacent to x, as long as there is such a vertex u. Overall, we
have deleted p vertices. The problem is that in the current graph we may have
that d(z) also decreased by some amount r < p. Suppose first that » = 0. As
in the previous case, we may need to delete 2¢q additional vertices to equate the
degrees of y and z to that of x so in total we removed p+ 2¢ < p+ ¢+ max(p, q)
vertices. If r» > 0, then this means that at some point, when we deleted a
vertex u, that vertex also had to be adjacent to x. Hence, in the current graph
(N(2)\N(z)) € (N(y)\N(z)). So, we may simply delete r+ ¢ additional vertices
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(all of them from N(z)\ N(x)) to equate the degrees of y and z to that of x.
Overall, we deleted p+r + ¢ < 2p+ ¢ < p+ ¢+ max(p, q) vertices and the proof
follows. [

We call a balanceable set H good if p + ¢ < 3 and max(p,q) < 2. Hence by
Lemma 2.1 it is sufficient to find a good set in G in order to finish our proof, as
in this case we have p + ¢ + max(p, q) < 5.

We will need the following lemma proven in [2].

Lemma 2.2. Let G be any graph of order n and let m be any positive integer less
than n. Then G contains a set X of m+1 vertices such that |d(u) —d(v)] < m—1
for all u,v € X

Hence by Lemma 2.2 graph G has a set X of 5 vertices such that |d(u) —
d(v)| < 3 for all u,v € X. Assume that the vertices of X are vy, ve,vs, v4, V5.
Furthermore assume that d(v1) < d(ve) < --- < d(vs). We also may assume
that G[X] contains at least two of the edges in the set {(v1,v2), (v2,v3), (vs, v4),
(vg,v5)}, for otherwise this would be true in the complement of the graph G.
Now let d(v1) = d. By the definition of X we know that d(vs) < d + 3. We also
may assume the following.

Lemma 2.3. d+ 1 <d(v3) < d+ 2.

Proof. 1f d(vs) = d, then d(v1) = d(ve) = d(v3) = d and we are done. Further-
more if d(vs) = d + 3, then d(vs) = d(v4) = d(vs) = d + 3 and we are done. ®

Corollary 1. If H C X is a balanceable set such that vs € H, then H is a good
set.

Proof. In this case max(p, q) < 2. Furthermore p+ ¢ < 3 by the definition of X.

|
Finally we will need the following simple lemma.

Lemma 2.4. For any 2 < i < 4, if (v;,viy1) € E and (vi—1,v;) € E, then the
set {v;—1,v;,vi+1} is a good set.

Proof. Each such set for 2 < i < 4 is a balanceable set by definition, furthermore
each such set contains the vertex vs and hence is good by Corollary 1. ]

Let E' = {(v1,v2), (v2,v3), (v3,v4), (v4,v5)}. Recall that we may assume that
G[X] contains at least two of the edges of E’. We will consider two cases.

Case 1. G[X] contains at least three of the edges of E'. By Lemma 2.4
we may assume that G[X] contains the edges (v2,v3), (vs,v4), (v4,v5). Now if
(vs,vs) € E, then {vs,vs,v5} is a good set, while if (vs,vs) € E, then {ve, v3,vs}
is a good set.
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Case 2. G[X] contains exactly two edges of E’. By Lemma 2.4 we may assume
that G[X] contains the edges (vs,v4), (v4,v5) but not the edges (v1,v2), (ve, v3).
Now if (v3,v5) € E, then {vs,vs4,v5} is a good set. Hence we may assume that
(vs,vs) € E. Furthermore if (v,v3) € E, then {v1,v2,v3} is a good set. Hence
we may assume that (vi,v3) € E. Now since (v1,v3) € E and (vs,vs) € E we
conclude that {v1,vs,v5} is a good set.

This finishes the proof.

3. PROOF OF THEOREM 1.3

We will need the following theorem proven in [3].

Theorem 3.1. Let G be a triangle-free graphs without three vertices of the same
degree and without isolated vertices. Let the vertices of G be vy, ..., v, such that
d(vi) < d(v2) < --- < d(vyp). Then d(vi) =1 and for all 1 <i <n — 2 we have
d(vi+2) — d(’UZ) =1.

We start by proving the following.

Theorem 3.2. For any triangle-free graph G with at least 5 vertices and no
isolated vertices, one can delete at most one vertex such that the subgraph obtained
has at least three vertices with the same degree.

Proof. Suppose that G contains n > 5 vertices and the vertices of G are vy, ..., v,
such that d(v1) < d(ve) < --- < d(v,). By Theorem 3.1 we may consider two
cases.

Case 1. d(v1) = 1 and d(vz) = 1 and for all 1 < i < n — 2 we have
d(viy2) — d(v;) = 1. In this case the degree sequence of G starts with 1,1,2,2, 3.

If v1 is not adjacent to v; for some 2 < ¢ < 4, we can remove v; and obtain a
graph with three vertices of the same degree. If vy is not adjacent to v; for some
3 <i<4ori=1, we can remove ve and obtain a graph with three vertices of the
same degree. Hence we need to only consider the case where v, is not adjacent
to both vy and v2. Thus the neighbor v; of v, with the smallest index j satisfies
j > 3, so we can remove v, and obtain a graph with three vertices of the same
degree.

Case 2. d(vi) =1 and d(v2) = 2 and for all 1 <1i <n — 2 we have d(vit2)—
d(v;) = 1. As the sum of degrees in a graph is even we may assume that n > 8
in this case. Hence the degree sequence of G starts with 1,2,2,3,3,4,4,5.

If v is not adjacent to v; for some 2 < ¢ < 3, we can remove v; and obtain a
graph with three vertices of the same degree. Assume without loss of generality
that v; is adjacent to v (as d(vs) = d(v2) = 2). Removing v; we obtain a graph
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G’ in which the degree sequence starts with 1,2,3 and this graph must contain
three vertices of the same degree by Theorem 3.1. [

Theorem 1.3 follows as if graph G has two isolated vertices we can remove a
neighbor of a vertex of degree 1 to obtain three vertices of degree 0.
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