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Abstract

In Caro, Shapira and Yuster [Forcing k-repetitions in degree sequences,
Electron. J. Combin. 21 (2014) #P1.24] it is proven that for any graph
G with at least 5 vertices, one can delete at most 6 vertices such that the
subgraph obtained has at least three vertices with the same degree. Fur-
thermore they show that for certain graphs one needs to remove at least 3
vertices in order that the resulting graph has at least 3 vertices of the same
degree.

In this note we prove that for any graph G with at least 5 vertices, one
can delete at most 5 vertices such that the subgraph obtained has at least
three vertices with the same degree. We also show that for any triangle-free
graph G with at least 6 vertices, one can delete at most one vertex such that
the subgraph obtained has at least three vertices with the same degree and
this result is tight for triangle-free graphs.
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1. Introduction

All the graphs in this paper are simple, that is they have no loops and no multiple
edges. A well-known elementary exercise states that every simple graph has two
vertices with the same degree. Since there are graphs without 3 vertices of the
same degree, it is natural to ask how many vertices one needs to remove from a
graph in order that the resulting graph has at least 3 vertices of the same degree.
The following theorem was proven in [1].
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Theorem 1.1. For any graph G with at least 5 vertices, one can delete at most 6
vertices such that the subgraph obtained has at least three vertices with the same

degree.

Furthermore it is shown in [1] that for certain graphs one needs to remove
at least 3 vertices in order that the resulting graph has at least 3 vertices of the
same degree.

More generally the following was shown in [1]. For a given positive integer k,
let C = C(k) denote the least integer such that any graph with n vertices has an
induced subgraph with at least n− C vertices, such that at least min{k, n− C}
vertices in this subgraph are of the same degree, then Ω(k log k) ≤ C(k) ≤ (8k)k.
For k = 3 the bounds in [1] are 3 ≤ C(3) ≤ 6 and the exact value was left as an
open question in that paper. In this note we slightly improve Theorem 1.1, by
showing that C(3) ≤ 5. Formally we prove the following.

Theorem 1.2. For any graph G with at least 5 vertices, one can delete at most 5
vertices such that the subgraph obtained has at least three vertices with the same

degree.

We also prove the following result for triangle-free graphs.

Theorem 1.3. For any triangle-free graph G with at least 6 vertices, one can

delete at most one vertex such that the subgraph obtained has at least three vertices

with the same degree.

Theorem 1.3 is tight as a path on 4 vertices together with an isolated vertex
is a graph on 5 vertices with no three vertices of the same degree, for which no
removal of a vertex creates three vertices of the same degree. Furthermore for
any n ≥ 1 the bipartite half-graph (defined below) contains 2n vertices and no
three of them of the same degree.

Definition 1.1. The half-graph on 2n vertices is a bipartite graph with vertex
set {x1, . . . , xn}∪{y1, . . . , yn} such that xi is adjacent to yj if and only if i+j > n.
Note that xi and yi have degree i, for 1 ≤ i ≤ n.

Note that for an odd number of vertices we can take a half-graph and one
isolated vertex. The resulting graph has no three vertices of the same degree.

2. Proof of Theorem 1.2

Let G(V,E) be a graph on n ≥ 5 vertices. Denote by d(v) the degree of vertex v

in graph G. Let H ⊂ V be a set of 3 vertices x, y, z where d(x) ≤ d(y) ≤ d(z).
Set H is called balanceable if one of the following conditions hold.



A Note on Forcing 3-Repetitions in Degree Sequences 459

1. G[H] is an independent set.

2. G[H] is a clique.

3. G[H] contains only the edge (x, y).

4. G[H] contains only the edges (x, y) and (x, z).

Let p = d(z) − d(y) and q = d(y) − d(x). We will need the following lemma
whose proof is almost identical to the proof of Theorem 1.1 and is given only for
completeness.

Lemma 2.1. If graph G contains a balanceable set H, then one can delete at

most p + q + max(p, q) vertices from G such that the subgraph obtained has at

least three vertices with the same degree.

Proof. Let H be a balanceable set in graph G with vertices x, y, z such that
d(x) ≤ d(y) ≤ d(z) and recall that p = d(z)−d(y) and q = d(y)−d(x). Through-
out the proof we denote by N(.) the set of neighbors of a vertex in the current
G (that is, in the graph G after some vertices have possibly been deleted). Simi-
larly, we denote by d(.) the degree of a vertex in the current G. We can assume
without loss of generality that set H satisfies conditions 1 or 3 of a balanceable
set (otherwise we just take the complement of graph G as our graph). We will
consider two cases.

Case 1. d(x) < d(y) = d(z). In this case p = 0. If (N(z) \ N(x)) ∩
(N(y) \ N(x)) 6= ∅, we can delete a vertex of this intersection and decrease
the degrees of y and z by 1 without affecting the degree of x (notice that x 6∈
(N(z) \N(x)) ∩ (N(y) \N(x)) as H satisfies conditions 1 or 3 of a balanceable
set). Otherwise, if (N(z) \N(x)) ∩ (N(y) \N(x)) = ∅ we can delete a vertex of
N(z)\N(x) and a vertex of (N(y)\N(x))\{x} and decrease the degrees of y and
z by 1 without affecting the degree of x. Observe that in any case we delete at
most two vertices. Repeating this process at most q times we eventually obtain
d(x) = d(y) = d(z). Overall we have deleted at most 2q ≤ p + q + max(p, q)
vertices.

Case 2. d(x) ≤ d(y) < d(z). Let us first equate d(z) and d(y) by deleting
some u ∈ N(z) \N(y). Observe that u 6= x. We always prefer to delete a vertex
u that is non-adjacent to x, as long as there is such a vertex u. Overall, we
have deleted p vertices. The problem is that in the current graph we may have
that d(x) also decreased by some amount r ≤ p. Suppose first that r = 0. As
in the previous case, we may need to delete 2q additional vertices to equate the
degrees of y and z to that of x so in total we removed p+2q ≤ p+ q+max(p, q)
vertices. If r > 0, then this means that at some point, when we deleted a
vertex u, that vertex also had to be adjacent to x. Hence, in the current graph
(N(z)\N(x)) ⊆ (N(y)\N(x)). So, we may simply delete r+q additional vertices
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(all of them from N(z) \ N(x)) to equate the degrees of y and z to that of x.
Overall, we deleted p+ r+ q ≤ 2p+ q ≤ p+ q +max(p, q) vertices and the proof
follows.

We call a balanceable set H good if p+ q ≤ 3 and max(p, q) ≤ 2. Hence by
Lemma 2.1 it is sufficient to find a good set in G in order to finish our proof, as
in this case we have p+ q +max(p, q) ≤ 5.

We will need the following lemma proven in [2].

Lemma 2.2. Let G be any graph of order n and let m be any positive integer less

than n. Then G contains a set X of m+1 vertices such that |d(u)−d(v)| ≤ m−1
for all u, v ∈ X

Hence by Lemma 2.2 graph G has a set X of 5 vertices such that |d(u) −
d(v)| ≤ 3 for all u, v ∈ X. Assume that the vertices of X are v1, v2, v3, v4, v5.
Furthermore assume that d(v1) ≤ d(v2) ≤ · · · ≤ d(v5). We also may assume
that G[X] contains at least two of the edges in the set {(v1, v2), (v2, v3), (v3, v4),
(v4, v5)}, for otherwise this would be true in the complement of the graph G.
Now let d(v1) = d. By the definition of X we know that d(v5) ≤ d+ 3. We also
may assume the following.

Lemma 2.3. d+ 1 ≤ d(v3) ≤ d+ 2.

Proof. If d(v3) = d, then d(v1) = d(v2) = d(v3) = d and we are done. Further-
more if d(v3) = d+ 3, then d(v3) = d(v4) = d(v5) = d+ 3 and we are done.

Corollary 1. If H ⊂ X is a balanceable set such that v3 ∈ H, then H is a good

set.

Proof. In this case max(p, q) ≤ 2. Furthermore p+ q ≤ 3 by the definition of X.

Finally we will need the following simple lemma.

Lemma 2.4. For any 2 ≤ i ≤ 4, if (vi, vi+1) 6∈ E and (vi−1, vi) ∈ E, then the

set {vi−1, vi, vi+1} is a good set.

Proof. Each such set for 2 ≤ i ≤ 4 is a balanceable set by definition, furthermore
each such set contains the vertex v3 and hence is good by Corollary 1.

Let E′ = {(v1, v2), (v2, v3), (v3, v4), (v4, v5)}. Recall that we may assume that
G[X] contains at least two of the edges of E′. We will consider two cases.

Case 1. G[X] contains at least three of the edges of E′. By Lemma 2.4
we may assume that G[X] contains the edges (v2, v3), (v3, v4), (v4, v5). Now if
(v3, v5) ∈ E, then {v3, v4, v5} is a good set, while if (v3, v5) 6∈ E, then {v2, v3, v5}
is a good set.
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Case 2. G[X] contains exactly two edges of E′. By Lemma 2.4 we may assume
that G[X] contains the edges (v3, v4), (v4, v5) but not the edges (v1, v2), (v2, v3).
Now if (v3, v5) ∈ E, then {v3, v4, v5} is a good set. Hence we may assume that
(v3, v5) 6∈ E. Furthermore if (v1, v3) 6∈ E, then {v1, v2, v3} is a good set. Hence
we may assume that (v1, v3) ∈ E. Now since (v1, v3) ∈ E and (v3, v5) 6∈ E we
conclude that {v1, v3, v5} is a good set.

This finishes the proof.

3. Proof of Theorem 1.3

We will need the following theorem proven in [3].

Theorem 3.1. Let G be a triangle-free graphs without three vertices of the same

degree and without isolated vertices. Let the vertices of G be v1, . . . , vn such that

d(v1) ≤ d(v2) ≤ · · · ≤ d(vn). Then d(v1) = 1 and for all 1 ≤ i ≤ n − 2 we have

d(vi+2)− d(vi) = 1.

We start by proving the following.

Theorem 3.2. For any triangle-free graph G with at least 5 vertices and no

isolated vertices, one can delete at most one vertex such that the subgraph obtained

has at least three vertices with the same degree.

Proof. Suppose thatG contains n ≥ 5 vertices and the vertices ofG are v1, . . . , vn
such that d(v1) ≤ d(v2) ≤ · · · ≤ d(vn). By Theorem 3.1 we may consider two
cases.

Case 1. d(v1) = 1 and d(v2) = 1 and for all 1 ≤ i ≤ n − 2 we have
d(vi+2)− d(vi) = 1. In this case the degree sequence of G starts with 1, 1, 2, 2, 3.

If v1 is not adjacent to vi for some 2 ≤ i ≤ 4, we can remove v1 and obtain a
graph with three vertices of the same degree. If v2 is not adjacent to vi for some
3 ≤ i ≤ 4 or i = 1, we can remove v2 and obtain a graph with three vertices of the
same degree. Hence we need to only consider the case where vn is not adjacent
to both v1 and v2. Thus the neighbor vj of vn with the smallest index j satisfies
j ≥ 3, so we can remove vn and obtain a graph with three vertices of the same
degree.

Case 2. d(v1) = 1 and d(v2) = 2 and for all 1 ≤ i ≤ n− 2 we have d(vi+2)−
d(vi) = 1. As the sum of degrees in a graph is even we may assume that n ≥ 8
in this case. Hence the degree sequence of G starts with 1, 2, 2, 3, 3, 4, 4, 5.

If v1 is not adjacent to vi for some 2 ≤ i ≤ 3, we can remove v1 and obtain a
graph with three vertices of the same degree. Assume without loss of generality
that v1 is adjacent to v2 (as d(v3) = d(v2) = 2). Removing v1 we obtain a graph
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G′ in which the degree sequence starts with 1, 2, 3 and this graph must contain
three vertices of the same degree by Theorem 3.1.

Theorem 1.3 follows as if graph G has two isolated vertices we can remove a
neighbor of a vertex of degree 1 to obtain three vertices of degree 0.
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