A NOTE ON FORCING 3-REPETITIONS IN DEGREE SEQUENCES

Shimon Kogan
Department of Computer Science and Applied Mathematics Weizmann Institute, Rehovot 76100, Israel
e-mail: shimon.kogan@weizmann.ac.il

Abstract

In Caro, Shapira and Yuster [Forcing k-repetitions in degree sequences, Electron. J. Combin. 21 (2014) \#P1.24] it is proven that for any graph G with at least 5 vertices, one can delete at most 6 vertices such that the subgraph obtained has at least three vertices with the same degree. Furthermore they show that for certain graphs one needs to remove at least 3 vertices in order that the resulting graph has at least 3 vertices of the same degree.

In this note we prove that for any graph G with at least 5 vertices, one can delete at most 5 vertices such that the subgraph obtained has at least three vertices with the same degree. We also show that for any triangle-free graph G with at least 6 vertices, one can delete at most one vertex such that the subgraph obtained has at least three vertices with the same degree and this result is tight for triangle-free graphs.

Keywords: repeated degrees.
2010 Mathematics Subject Classification: 05C07.

1. InTRODUCTION

All the graphs in this paper are simple, that is they have no loops and no multiple edges. A well-known elementary exercise states that every simple graph has two vertices with the same degree. Since there are graphs without 3 vertices of the same degree, it is natural to ask how many vertices one needs to remove from a graph in order that the resulting graph has at least 3 vertices of the same degree. The following theorem was proven in [1].

Theorem 1.1. For any graph G with at least 5 vertices, one can delete at most 6 vertices such that the subgraph obtained has at least three vertices with the same degree.

Furthermore it is shown in [1] that for certain graphs one needs to remove at least 3 vertices in order that the resulting graph has at least 3 vertices of the same degree.

More generally the following was shown in [1]. For a given positive integer k, let $C=C(k)$ denote the least integer such that any graph with n vertices has an induced subgraph with at least $n-C$ vertices, such that at least $\min \{k, n-C\}$ vertices in this subgraph are of the same degree, then $\Omega(k \log k) \leq C(k) \leq(8 k)^{k}$. For $k=3$ the bounds in [1] are $3 \leq C(3) \leq 6$ and the exact value was left as an open question in that paper. In this note we slightly improve Theorem 1.1, by showing that $C(3) \leq 5$. Formally we prove the following.

Theorem 1.2. For any graph G with at least 5 vertices, one can delete at most 5 vertices such that the subgraph obtained has at least three vertices with the same degree.

We also prove the following result for triangle-free graphs.
Theorem 1.3. For any triangle-free graph G with at least 6 vertices, one can delete at most one vertex such that the subgraph obtained has at least three vertices with the same degree.

Theorem 1.3 is tight as a path on 4 vertices together with an isolated vertex is a graph on 5 vertices with no three vertices of the same degree, for which no removal of a vertex creates three vertices of the same degree. Furthermore for any $n \geq 1$ the bipartite half-graph (defined below) contains $2 n$ vertices and no three of them of the same degree.

Definition 1.1. The half-graph on $2 n$ vertices is a bipartite graph with vertex set $\left\{x_{1}, \ldots, x_{n}\right\} \cup\left\{y_{1}, \ldots, y_{n}\right\}$ such that x_{i} is adjacent to y_{j} if and only if $i+j>n$. Note that x_{i} and y_{i} have degree i, for $1 \leq i \leq n$.

Note that for an odd number of vertices we can take a half-graph and one isolated vertex. The resulting graph has no three vertices of the same degree.

2. Proof of Theorem 1.2

Let $G(V, E)$ be a graph on $n \geq 5$ vertices. Denote by $d(v)$ the degree of vertex v in graph G. Let $H \subset V$ be a set of 3 vertices x, y, z where $d(x) \leq d(y) \leq d(z)$. Set H is called balanceable if one of the following conditions hold.

1. $G[H]$ is an independent set.
2. $G[H]$ is a clique.
3. $G[H]$ contains only the edge (x, y).
4. $G[H]$ contains only the edges (x, y) and (x, z).

Let $p=d(z)-d(y)$ and $q=d(y)-d(x)$. We will need the following lemma whose proof is almost identical to the proof of Theorem 1.1 and is given only for completeness.

Lemma 2.1. If graph G contains a balanceable set H, then one can delete at most $p+q+\max (p, q)$ vertices from G such that the subgraph obtained has at least three vertices with the same degree.

Proof. Let H be a balanceable set in graph G with vertices x, y, z such that $d(x) \leq d(y) \leq d(z)$ and recall that $p=d(z)-d(y)$ and $q=d(y)-d(x)$. Throughout the proof we denote by $N($.$) the set of neighbors of a vertex in the current$ G (that is, in the graph G after some vertices have possibly been deleted). Similarly, we denote by $d($.$) the degree of a vertex in the current G$. We can assume without loss of generality that set H satisfies conditions 1 or 3 of a balanceable set (otherwise we just take the complement of graph G as our graph). We will consider two cases.

Case 1. $d(x)<d(y)=d(z)$. In this case $p=0$. If $(N(z) \backslash N(x)) \cap$ $(N(y) \backslash N(x)) \neq \emptyset$, we can delete a vertex of this intersection and decrease the degrees of y and z by 1 without affecting the degree of x (notice that $x \notin$ $(N(z) \backslash N(x)) \cap(N(y) \backslash N(x))$ as H satisfies conditions 1 or 3 of a balanceable set). Otherwise, if $(N(z) \backslash N(x)) \cap(N(y) \backslash N(x))=\emptyset$ we can delete a vertex of $N(z) \backslash N(x)$ and a vertex of $(N(y) \backslash N(x)) \backslash\{x\}$ and decrease the degrees of y and z by 1 without affecting the degree of x. Observe that in any case we delete at most two vertices. Repeating this process at most q times we eventually obtain $d(x)=d(y)=d(z)$. Overall we have deleted at most $2 q \leq p+q+\max (p, q)$ vertices.

Case 2. $d(x) \leq d(y)<d(z)$. Let us first equate $d(z)$ and $d(y)$ by deleting some $u \in N(z) \backslash N(y)$. Observe that $u \neq x$. We always prefer to delete a vertex u that is non-adjacent to x, as long as there is such a vertex u. Overall, we have deleted p vertices. The problem is that in the current graph we may have that $d(x)$ also decreased by some amount $r \leq p$. Suppose first that $r=0$. As in the previous case, we may need to delete $2 q$ additional vertices to equate the degrees of y and z to that of x so in total we removed $p+2 q \leq p+q+\max (p, q)$ vertices. If $r>0$, then this means that at some point, when we deleted a vertex u, that vertex also had to be adjacent to x. Hence, in the current graph $(N(z) \backslash N(x)) \subseteq(N(y) \backslash N(x))$. So, we may simply delete $r+q$ additional vertices
(all of them from $N(z) \backslash N(x)$) to equate the degrees of y and z to that of x. Overall, we deleted $p+r+q \leq 2 p+q \leq p+q+\max (p, q)$ vertices and the proof follows.

We call a balanceable set H good if $p+q \leq 3$ and $\max (p, q) \leq 2$. Hence by Lemma 2.1 it is sufficient to find a good set in G in order to finish our proof, as in this case we have $p+q+\max (p, q) \leq 5$.

We will need the following lemma proven in [2].
Lemma 2.2. Let G be any graph of order n and let m be any positive integer less than n. Then G contains a set X of $m+1$ vertices such that $|d(u)-d(v)| \leq m-1$ for all $u, v \in X$

Hence by Lemma 2.2 graph G has a set X of 5 vertices such that $\mid d(u)-$ $d(v) \mid \leq 3$ for all $u, v \in X$. Assume that the vertices of X are $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$. Furthermore assume that $d\left(v_{1}\right) \leq d\left(v_{2}\right) \leq \cdots \leq d\left(v_{5}\right)$. We also may assume that $G[X]$ contains at least two of the edges in the set $\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{4}\right)\right.$, $\left.\left(v_{4}, v_{5}\right)\right\}$, for otherwise this would be true in the complement of the graph G. Now let $d\left(v_{1}\right)=d$. By the definition of X we know that $d\left(v_{5}\right) \leq d+3$. We also may assume the following.

Lemma 2.3. $d+1 \leq d\left(v_{3}\right) \leq d+2$.
Proof. If $d\left(v_{3}\right)=d$, then $d\left(v_{1}\right)=d\left(v_{2}\right)=d\left(v_{3}\right)=d$ and we are done. Furthermore if $d\left(v_{3}\right)=d+3$, then $d\left(v_{3}\right)=d\left(v_{4}\right)=d\left(v_{5}\right)=d+3$ and we are done.

Corollary 1. If $H \subset X$ is a balanceable set such that $v_{3} \in H$, then H is a good set.

Proof. In this case $\max (p, q) \leq 2$. Furthermore $p+q \leq 3$ by the definition of X.
Finally we will need the following simple lemma.
Lemma 2.4. For any $2 \leq i \leq 4$, if $\left(v_{i}, v_{i+1}\right) \notin E$ and $\left(v_{i-1}, v_{i}\right) \in E$, then the set $\left\{v_{i-1}, v_{i}, v_{i+1}\right\}$ is a good set.

Proof. Each such set for $2 \leq i \leq 4$ is a balanceable set by definition, furthermore each such set contains the vertex v_{3} and hence is good by Corollary 1.

Let $E^{\prime}=\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{4}\right),\left(v_{4}, v_{5}\right)\right\}$. Recall that we may assume that $G[X]$ contains at least two of the edges of E^{\prime}. We will consider two cases.

Case 1. $G[X]$ contains at least three of the edges of E^{\prime}. By Lemma 2.4 we may assume that $G[X]$ contains the edges $\left(v_{2}, v_{3}\right),\left(v_{3}, v_{4}\right),\left(v_{4}, v_{5}\right)$. Now if $\left(v_{3}, v_{5}\right) \in E$, then $\left\{v_{3}, v_{4}, v_{5}\right\}$ is a good set, while if $\left(v_{3}, v_{5}\right) \notin E$, then $\left\{v_{2}, v_{3}, v_{5}\right\}$ is a good set.

Case 2. $G[X]$ contains exactly two edges of E^{\prime}. By Lemma 2.4 we may assume that $G[X]$ contains the edges $\left(v_{3}, v_{4}\right),\left(v_{4}, v_{5}\right)$ but not the edges $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right)$. Now if $\left(v_{3}, v_{5}\right) \in E$, then $\left\{v_{3}, v_{4}, v_{5}\right\}$ is a good set. Hence we may assume that $\left(v_{3}, v_{5}\right) \notin E$. Furthermore if $\left(v_{1}, v_{3}\right) \notin E$, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a good set. Hence we may assume that $\left(v_{1}, v_{3}\right) \in E$. Now since $\left(v_{1}, v_{3}\right) \in E$ and $\left(v_{3}, v_{5}\right) \notin E$ we conclude that $\left\{v_{1}, v_{3}, v_{5}\right\}$ is a good set.

This finishes the proof.

3. Proof of Theorem 1.3

We will need the following theorem proven in [3].
Theorem 3.1. Let G be a triangle-free graphs without three vertices of the same degree and without isolated vertices. Let the vertices of G be v_{1}, \ldots, v_{n} such that $d\left(v_{1}\right) \leq d\left(v_{2}\right) \leq \cdots \leq d\left(v_{n}\right)$. Then $d\left(v_{1}\right)=1$ and for all $1 \leq i \leq n-2$ we have $d\left(v_{i+2}\right)-d\left(v_{i}\right)=1$.

We start by proving the following.
Theorem 3.2. For any triangle-free graph G with at least 5 vertices and no isolated vertices, one can delete at most one vertex such that the subgraph obtained has at least three vertices with the same degree.

Proof. Suppose that G contains $n \geq 5$ vertices and the vertices of G are v_{1}, \ldots, v_{n} such that $d\left(v_{1}\right) \leq d\left(v_{2}\right) \leq \cdots \leq d\left(v_{n}\right)$. By Theorem 3.1 we may consider two cases.

Case 1. $d\left(v_{1}\right)=1$ and $d\left(v_{2}\right)=1$ and for all $1 \leq i \leq n-2$ we have $d\left(v_{i+2}\right)-d\left(v_{i}\right)=1$. In this case the degree sequence of G starts with $1,1,2,2,3$.

If v_{1} is not adjacent to v_{i} for some $2 \leq i \leq 4$, we can remove v_{1} and obtain a graph with three vertices of the same degree. If v_{2} is not adjacent to v_{i} for some $3 \leq i \leq 4$ or $i=1$, we can remove v_{2} and obtain a graph with three vertices of the same degree. Hence we need to only consider the case where v_{n} is not adjacent to both v_{1} and v_{2}. Thus the neighbor v_{j} of v_{n} with the smallest index j satisfies $j \geq 3$, so we can remove v_{n} and obtain a graph with three vertices of the same degree.

Case 2. $d\left(v_{1}\right)=1$ and $d\left(v_{2}\right)=2$ and for all $1 \leq i \leq n-2$ we have $d\left(v_{i+2}\right)-$ $d\left(v_{i}\right)=1$. As the sum of degrees in a graph is even we may assume that $n \geq 8$ in this case. Hence the degree sequence of G starts with $1,2,2,3,3,4,4,5$.

If v_{1} is not adjacent to v_{i} for some $2 \leq i \leq 3$, we can remove v_{1} and obtain a graph with three vertices of the same degree. Assume without loss of generality that v_{1} is adjacent to v_{2} (as $d\left(v_{3}\right)=d\left(v_{2}\right)=2$). Removing v_{1} we obtain a graph
G^{\prime} in which the degree sequence starts with $1,2,3$ and this graph must contain three vertices of the same degree by Theorem 3.1.

Theorem 1.3 follows as if graph G has two isolated vertices we can remove a neighbor of a vertex of degree 1 to obtain three vertices of degree 0 .

Acknowledgements

Work supported in part by the Israel Science Foundation (grant No. 1388/16). I would like to thank Uriel Feige and Yair Caro for helpful discussions. I would like to thank the anonymous referee for simplifying the proof of Theorem 1.3.

References

[1] Y. Caro, A. Shapira and R. Yuster, Forcing k-repetitions in degree sequences, Electron. J. Combin. 21 (2014) \#P1.24. https://doi.org/10.37236/3503
[2] P. Erdős, G. Chen, C.C. Rousseau and R.H. Schelp, Ramsey problems involving degrees in edge-colored complete graphs of vertices belonging to monochromatic subgraphs, European J. Combin. 14 (1993) 183-189. https://doi.org/10.1006/eujc.1993.1023
[3] P. Erdős, S. Fajtlowicz and W. Staton, Degree sequences in triangle-free graphs, Discrete Math. 92 (1991) 85-88. https://doi.org/10.1016/0012-365X(91)90269-8

