ABOUT AN EXTREMAL PROBLEM OF BIGRAPHIC PAIRS WITH A REALIZATION CONTAINING $\boldsymbol{K}_{s, t}{ }^{1}$

Jian-Hua Yin and Bing Wang
School of Science, Hainan University
Haikou 570228, P.R. China
e-mail: yinjh@hainanu.edu.cn

Abstract

Let $\pi=\left(f_{1}, \ldots, f_{m} ; g_{1}, \ldots, g_{n}\right)$, where f_{1}, \ldots, f_{m} and g_{1}, \ldots, g_{n} are two non-increasing sequences of nonnegative integers. The pair $\pi=\left(f_{1}, \ldots, f_{m}\right.$; $\left.g_{1}, \ldots, g_{n}\right)$ is said to be a bigraphic pair if there is a simple bipartite graph $G=(X \cup Y, E)$ such that f_{1}, \ldots, f_{m} and g_{1}, \ldots, g_{n} are the degrees of the vertices in X and Y, respectively. In this case, G is referred to as a realization of π. We say that π is a potentially $K_{s, t}$-bigraphic pair if some realization of π contains $K_{s, t}$ (with s vertices in the part of size m and t in the part of size n). Ferrara et al. [Potentially H-bigraphic sequences, Discuss. Math. Graph Theory 29 (2009) 583-596] defined $\sigma\left(K_{s, t}, m, n\right)$ to be the minimum integer k such that every bigraphic pair $\pi=\left(f_{1}, \ldots, f_{m} ; g_{1}, \ldots, g_{n}\right)$ with $\sigma(\pi)=$ $f_{1}+\cdots+f_{m} \geq k$ is potentially $K_{s, t}$-bigraphic. They determined $\sigma\left(K_{s, t}, m, n\right)$ for $n \geq m \geq 9 s^{4} t^{4}$. In this paper, we first give a procedure and two sufficient conditions to determine if π is a potentially $K_{s, t}$-bigraphic pair. Then, we determine $\sigma\left(K_{s, t}, m, n\right)$ for $n \geq m \geq s$ and $n \geq(s+1) t^{2}-(2 s-1) t+s-1$. This provides a solution to a problem due to Ferrara et al.

Keywords: bigraphic pair, realization, potentially $K_{s, t}$-bigraphic pair.
2010 Mathematics Subject Classification: 05C35, 05C07.

1. Introduction

Let $\pi=\left(f_{1}, \ldots, f_{m} ; g_{1}, \ldots, g_{n}\right)$, where f_{1}, \ldots, f_{m} and g_{1}, \ldots, g_{n} are two sequences of nonnegative integers with $f_{1} \geq \cdots \geq f_{m}$ and $g_{1} \geq \cdots \geq g_{n}$. We say that π is a bigraphic pair if there is a simple bipartite graph G with partite sets $\left\{x_{1}, \ldots, x_{m}\right\}$ and $\left\{y_{1}, \ldots, y_{n}\right\}$ such that the degree of x_{i} is f_{i} and the degree of y_{j} is g_{j}. In this case, we say that G is a realization of π.

[^0]Theorem $1[2,3] . \pi$ is a bigraphic pair if and only if $\sum_{i=1}^{m} f_{i}=\sum_{i=1}^{n} g_{i}$ and $\sum_{i=1}^{k} f_{i} \leq \sum_{i=1}^{n} \min \left\{k, g_{i}\right\}$ for $k=1, \ldots, m\left(\right.$ or $\sum_{i=1}^{k} g_{i} \leq \sum_{i=1}^{m} \min \left\{k, f_{i}\right\}$ for $k=1, \ldots, n)$.

We define $\pi\left(f_{p}\right)$ (respectively, $\left.\pi\left(g_{q}\right)\right)$ to be the pair of two non-increasing sequences of nonnegative integers so that $\pi\left(f_{p}\right)$ (respectively, $\pi\left(g_{q}\right)$) is obtained from π by deleting f_{p} (respectively, g_{q}) and decreasing f_{p} (respectively, g_{q}) largest terms from g_{1}, \ldots, g_{n} each by 1 (respectively, from f_{1}, \ldots, f_{m} each by 1). We say that $\pi\left(f_{p}\right)$ (respectively, $\left.\pi\left(g_{q}\right)\right)$ is the residual pair obtained from π by laying off f_{p} (respectively, g_{q}).
Theorem 2 [4]. π is a bigraphic pair if and only if $\pi\left(f_{p}\right)\left(\right.$ respectively, $\left.\pi\left(g_{q}\right)\right)$ is a bigraphic pair.

Let $\pi=\left(f_{1}, \ldots, f_{m} ; g_{1}, \ldots, g_{n}\right)$ be a bigraphic pair, and let $K_{s, t}$ be the complete bipartite graph with partite sets of size s and t. We say that π is a potentially $K_{s, t}$-bigraphic pair if some realization of π contains $K_{s, t}$ (with s vertices in the part of size m and t in the part of size n). If some realization of π contains $K_{s, t}$ on those vertices having degree $f_{1}, \ldots, f_{s}, g_{1}, \ldots, g_{t}$, we say that π is a potentially $A_{s, t}$-bigraphic pair. Ferrara et al. [1] proved that π is a potentially $A_{s, t}$-bigraphic pair if and only if it is a potentially $K_{s, t}$-bigraphic pair. We now give a procedure to determine if π is a potentially $K_{s, t}$-bigraphic pair.

Let $f_{s} \geq t$ and $g_{t} \geq s$. We define pairs π_{0}, \ldots, π_{s} as follows. Let $\pi_{0}=\pi$. Let

$$
\pi_{1}=\left(f_{2}, \ldots, f_{m} ; g_{1}-1, \ldots, g_{t}-1, g_{t+1}^{(1)}, \ldots, g_{n}^{(1)}\right)
$$

where $g_{t+1}^{(1)} \geq \cdots \geq g_{n}^{(1)}$ is a rearrangement in nonincreasing order of $g_{t+1}-1, \ldots$, $g_{f_{1}}-1, g_{f_{1}+1}, \ldots, g_{n}$. For $2 \leq i \leq s$, given $\pi_{i-1}=\left(f_{i}, \ldots, f_{m} ; g_{1}-i+1, \ldots, g_{t}-\right.$ $\left.i+1, g_{t+1}^{(i-1)}, \ldots, g_{n}^{(i-1)}\right)$, let

$$
\pi_{i}=\left(f_{i+1}, \ldots, f_{m} ; g_{1}-i, \ldots, g_{t}-i, g_{t+1}^{(i)}, \ldots, g_{n}^{(i)}\right)
$$

where $g_{t+1}^{(i)} \geq \cdots \geq g_{n}^{(i)}$ is a rearrangement in nonincreasing order of $g_{t+1}^{(i-1)}-1, \ldots$, $g_{f_{i}}^{(i-1)}-1, g_{f_{i}+1}^{(i-1)}, \ldots, g_{n}^{(i-1)}$.

We now define pairs $\pi_{0}^{\prime}, \ldots, \pi_{t}^{\prime}$ as follows. Let $\pi_{0}^{\prime}=\pi$. Let

$$
\pi_{1}^{\prime}=\left(f_{1}-1, \ldots, f_{s}-1, f_{s+1}^{(1)}, \ldots, f_{m}^{(1)} ; g_{2}, \ldots, g_{n}\right)
$$

where $f_{s+1}^{(1)} \geq \cdots \geq f_{m}^{(1)}$ is a rearrangement in nonincreasing order of $f_{s+1}-1, \ldots$, $f_{g_{1}}-1, f_{g_{1}+1}, \ldots, f_{m}$. For $2 \leq i \leq t$, given $\pi_{i-1}^{\prime}=\left(f_{1}-i+1, \ldots, f_{s}-i+1\right.$, $\left.f_{s+1}^{(i-1)}, \ldots, f_{m}^{(i-1)} ; g_{i}, \ldots, g_{n}\right)$, let

$$
\pi_{i}^{\prime}=\left(f_{1}-i, \ldots, f_{s}-i, f_{s+1}^{(i)}, \ldots, f_{m}^{(i)} ; g_{i+1}, \ldots, g_{n}\right)
$$

where $f_{s+1}^{(i)} \geq \cdots \geq f_{m}^{(i)}$ is a rearrangement in nonincreasing order of $f_{s+1}^{(i-1)}-1, \ldots$, $f_{g_{i}}^{(i-1)}-1, f_{g_{i}+1}^{(i-1)}, \ldots, f_{m}^{(i-1)}$.
Theorem 3. Let $f_{s} \geq t$ and $g_{t} \geq s$. Then π is a potentially $K_{s, t}$-bigraphic pair if and only if π_{s} (respectively, π_{t}^{\prime}) is a bigraphic pair.

We also give two sufficient conditions of π that is potentially $K_{s, t}$-bigraphic.
Theorem 4. Let $\pi=\left(f_{1}, \ldots, f_{m} ; g_{1}, \ldots, g_{n}\right)$ be a bigraphic pair with $f_{s} \geq t$ and $g_{t} \geq s$. If $n \geq f_{s+1}+t$ and $g_{f_{s+1}+t} \geq s-1$, then π is a potentially $K_{s, t}$-bigraphic pair.

Theorem 5. Let $\pi=\left(f_{1}, \ldots, f_{m} ; g_{1}, \ldots, g_{n}\right)$ be a bigraphic pair with $f_{s} \geq t$ and $g_{t} \geq s$. If $m \geq g_{t+1}+s$ and $f_{g_{t+1}+s} \geq t-1$, then π is a potentially $K_{s, t}$-bigraphic pair.

Ferrara et al. [1] investigated an extremal problem of potentially $K_{s, t}$-bigraphic pairs. They defined $\sigma\left(K_{s, t}, m, n\right)$ to be the minimum integer k such that every bigraphic pair $\pi=\left(f_{1}, \ldots, f_{m} ; g_{1}, \ldots, g_{n}\right)$ with $\sigma(\pi)=f_{1}+\cdots+f_{m} \geq k$ is potentially $K_{s, t}$-bigraphic. They determined $\sigma\left(K_{s, t}, m, n\right)$ when m and n are sufficiently large in terms of s and t. This problem can be viewed as a "potential" degree sequence relaxation of the (forcible) Turán problem.
Theorem 6 [1]. If $1 \leq s \leq t$ and $n \geq m \geq 9 s^{4} t^{4}$, then $\sigma\left(K_{s, t}, m, n\right)=n(s-$ $1)+m(t-1)-(t-1)(s-1)+1$.

In [1], Ferrara et al. also proposed a problem as follows.
Problem 1. This would be useful if one were interested in finding smaller bounds on the n and m necessary to assure Theorem 6 .

As an application of Theorems 4 and 5 , we determine $\sigma\left(K_{s, t}, m, n\right)$ for $n \geq$ $m \geq s$ and $n \geq(s+1) t^{2}-(2 s-1) t+s-1$ (Theorem 7), which is a solution to Problem 1.

Theorem 7. If $1 \leq s \leq t, n \geq m \geq s$ and $n \geq(s+1) t^{2}-(2 s-1) t+s-1$, then $\sigma\left(K_{s, t}, m, n\right)=n(s-1)+m(t-1)-(t-1)(s-1)+1$.

2. Proofs of Theorems $3-5$ and 7

Proof of Theorem 3. We only need to prove that π is a potentially $A_{s, t^{-}}$ bigraphic pair if and only if π_{s} is a bigraphic pair. The proof for π_{t}^{\prime} is similar. If π is a potentially $A_{s, t}$-bigraphic pair, then π has a realization G with partite sets $\left\{x_{1}, \ldots, x_{m}\right\}$ and $\left\{y_{1}, \ldots, y_{n}\right\}$ such that $d_{G}\left(x_{i}\right)=f_{i}$ for $1 \leq i \leq m, d_{G}\left(y_{j}\right)=g_{j}$
for $1 \leq j \leq n$ and the subgraph of G induced by $\left\{x_{1}, \ldots, x_{s}\right\} \cup\left\{y_{1}, \ldots, y_{t}\right\}$ is a $K_{s, t}$. We now show that π has such a realization G such that x_{1} is adjacent to vertices $y_{t+1}, \ldots, y_{f_{1}}$. Otherwise, we may choose such a realization H of π so that the number of vertices adjacent to x_{1} in $\left\{y_{t+1}, \ldots, y_{f_{1}}\right\}$ is maximum. Let $y_{i} \in\left\{y_{t+1}, \ldots, y_{f_{1}}\right\}$ and $x_{1} y_{i} \notin E(H)$, and let $y_{j} \in\left\{y_{f_{1}+1}, \ldots, y_{n}\right\}$ and $x_{1} y_{j} \in E(H)$. We may assume $g_{i}>g_{j}$. Hence there is a vertex x_{t} such that $y_{i} x_{t} \in E(H)$ and $y_{j} x_{t} \notin E(H)$. Clearly, $H^{\prime}=\left(H \backslash\left\{x_{1} y_{j}, y_{i} x_{t}\right\}\right) \cup\left\{x_{1} y_{i}, y_{j} x_{t}\right\}$ is a realization of π such that $d_{H^{\prime}}\left(x_{i}\right)=f_{i}$ for $1 \leq i \leq m, d_{H^{\prime}}\left(y_{j}\right)=g_{j}$ for $1 \leq j \leq n$ and the subgraph of H^{\prime} induced by $\left\{x_{1}, \ldots, x_{s}\right\} \cup\left\{y_{1}, \ldots, y_{t}\right\}$ is a $K_{s, t}$, and H^{\prime} has the number of vertices adjacent to x_{1} in $\left\{y_{t+1}, \ldots, y_{f_{1}}\right\}$ larger than that of H. This contradicts to the choice of H. Clearly, π_{1} is the degree sequence pair of $G-x_{1}$ and is a potentially $A_{s-1, t}$-bigraphic pair. Repeating this method, we can see that π_{i} is a potentially $A_{s-i, t}$-bigraphic pair for $i=2, \ldots, s$ in turn. In particular, π_{s} is a bigraphic pair.

Suppose that π_{s} is a bigraphic pair and is realized by bipartite graph G_{s} with partite sets $\left\{x_{s+1}, \ldots, x_{m}\right\}$ and $\left\{y_{1}, \ldots, y_{n}\right\}$ such that $d_{G_{s}}\left(x_{i}\right)=f_{i}$ for $s+1 \leq i \leq m, d_{G_{s}}\left(y_{i}\right)=g_{i}-s$ for $1 \leq i \leq t$ and $d_{G_{s}}\left(y_{i}\right)=g_{i}^{(s)}$ for $t+$ $1 \leq i \leq n$. For $i=s, \ldots, 1$ in turn, form G_{i-1} from G_{i} by adding a new vertex x_{i} that is adjacent to y_{1}, \ldots, y_{t} and also adjacent to vertices of G_{i} with degrees $g_{t+1}^{(i-1)}-1, \ldots, g_{f_{i}}^{(i-1)}-1$. Then, for each i, G_{i} has the degree sequence pair given by π_{i}, and G_{i} contains $K_{s-i, t}$ on vertices $x_{i+1}, \ldots, x_{s}, y_{1}, \ldots, y_{t}$ whose degrees are $f_{i+1}, \ldots, f_{s}, g_{1}-i, \ldots, g_{t}-i$ so that $\left\{x_{i+1}, \ldots, x_{s}\right\}$ and $\left\{y_{1}, \ldots, y_{t}\right\}$ is the partite sets of $K_{s-i, t}$. In particular, G_{0} has the degree sequence pair given by π and contains $K_{s, t}$ on vertices $x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{t}$ whose degrees are $f_{1}, \ldots, f_{s}, g_{1}, \ldots, g_{t}$ so that $\left\{x_{1}, \ldots, x_{s}\right\}$ and $\left\{y_{1}, \ldots, y_{t}\right\}$ is the partite sets of $K_{s, t}$.

In order to prove Theorem 4, we need the following lemmas.
Lemma 8 [5]. Theorem 1 remains valid if $\sum_{i=1}^{k} f_{i} \leq \sum_{i=1}^{n} \min \left\{k, g_{i}\right\}$ is assumed only for those k for which $f_{k}>f_{k+1}$ or $k=m\left(\right.$ or $\sum_{i=1}^{k} g_{i} \leq \sum_{i=1}^{m} \min \left\{k, f_{i}\right\}$ is assumed only for those k for which $g_{k}>g_{k+1}$ or $k=n$).

Lemma 9. Let $\pi=\left(f_{1}, \ldots, f_{m} ; g_{1}, \ldots, g_{n}\right)$ be a bigraphic pair with $f_{s} \geq t, g_{t} \geq s$, $m-1 \geq g_{1} \geq \cdots \geq g_{t}=\cdots=g_{f_{1}+1} \geq g_{f_{1}+2} \geq \cdots \geq g_{n}$ and $n-1 \geq f_{1} \geq \cdots \geq$ $f_{s}=\cdots=f_{g_{1}+1} \geq f_{g_{1}+2} \geq \cdots \geq f_{m}$. For $\pi_{i}=\left(f_{i+1}, \ldots, f_{m} ; g_{1}-i, \ldots, g_{t}-i\right.$, $\left.g_{t+1}^{(i)}, \ldots, g_{n}^{(i)}\right)$ with $0 \leq i \leq s$, let $t_{i}=\max \left\{j \mid g_{t+1}^{(i)}-g_{t+j}^{(i)} \leq 1\right\}$. Then
(1) $t_{s} \geq t_{s-1} \geq \cdots \geq t_{0} \geq f_{1}+1-t$.
(2) For $i, 1 \leq i \leq s$, we have $g_{t+k}^{(i)}=g_{t+k}^{(i-1)}$ for $k>t_{i}$. Thus, $g_{t+k}^{(s)}=g_{t+k}$ for $k>t_{s}$.

Proof. (1) Clearly, $t+t_{0} \geq f_{1}+1$, i.e., $t_{0} \geq f_{1}+1-t$. Moreover, $g_{t+1}^{(i-1)}-g_{t+t_{i-1}}^{(i-1)}$ ≤ 1, which implies $g_{t+1}^{(i)}-g_{t+t_{i-1}}^{(i)} \leq 1$ for $1 \leq i \leq s$. Hence $t_{i} \geq t_{i-1}$ for $1 \leq i \leq s$.
(2) By $\min \left\{g_{t+1}^{(i-1)}-1, \ldots, g_{f_{i}}^{(i-1)}-1, g_{f_{i}+1}^{(i-1)}, \ldots, g_{t+t_{i-1}}^{(i-1)}\right\} \geq g_{t+1}^{(i-1)}-2 \geq$ $g_{t+t_{i-1}+1}^{(i-1)} \geq \cdots \geq g_{n}^{(i-1)}$, we have $g_{t+t_{i-1}+k^{\prime}}^{(i)}=g_{t+t_{i-1}+k^{\prime}}^{(i-1)}$ for $k^{\prime} \geq 1$. Thus $g_{t+k}^{(i)}=$ $g_{t+k}^{(i-1)}$ for $k>t_{i}$.

Lemma 10. Let $\pi=\left(f_{1}, \ldots, f_{m} ; g_{1}, \ldots, g_{n}\right)$ be a bigraphic pair with $f_{s} \geq t$, $g_{t} \geq s, m-1 \geq g_{1} \geq \cdots \geq g_{t}=\cdots=g_{f_{1}+1} \geq g_{f_{1}+2} \geq \cdots \geq g_{n}$ and $n-1 \geq f_{1} \geq$ $\cdots \geq f_{s}=\cdots=f_{g_{1}+1} \geq f_{g_{1}+2} \geq \cdots \geq f_{m}$. If $n \geq f_{s+1}+t$ and $g_{f_{s+1}+t} \geq s-1$, then π is a potentially $A_{s, t}$-bigraphic pair.

Proof. It is trivial for $s=1$. Assume $s \geq 2$. By Theorem 3, we only need to check that $\pi_{s}=\left(f_{s+1}, \ldots, f_{m} ; g_{1}-s, \ldots, g_{t}-s, g_{t+1}^{(s)}, \ldots, g_{n}^{(s)}\right)$ is a bigraphic pair. Clearly, $f_{s+1}+\cdots+f_{m}=\left(g_{1}-s\right)+\cdots+\left(g_{t}-s\right)+g_{t+1}^{(s)}+\cdots+g_{n}^{(s)}$. Denote $p=\max \left\{i \mid f_{s+i}=f_{s}\right\}$. Then $s+p \geq g_{1}+1$, i.e., $p \geq g_{1}+1-s$. By Lemma 8 , it is enough to check that $\sum_{i=1}^{k} f_{s+i} \leq \sum_{i=1}^{t} \min \left\{k, g_{i}-s\right\}+\sum_{i=t+1}^{n} \min \left\{k, g_{i}^{(s)}\right\}$ for $p \leq k \leq m-s$. Denote $x=g_{t+1}^{(s)}$ and $y=g_{t}-s$. If $k \geq x$, by $k \geq p \geq g_{1}+1-s>$ $g_{i}-s$ for $1 \leq i \leq t$, then $\sum_{i=1}^{t} \min \left\{k, g_{i}-s\right\}+\sum_{i=t+1}^{n} \min \left\{k, g_{i}^{(s)}\right\}=\sum_{i=1}^{t}\left(g_{i}-\right.$ $s)+\sum_{i=t+1}^{n} g_{i}^{(s)}=f_{s+1}+\cdots+f_{m} \geq \sum_{i=1}^{k} f_{s+i}$. Assume $p \leq k \leq x-1$. Clearly, $y+s=g_{t} \geq g_{t+1} \geq x$, i.e., $(x-1)-y \leq s-1$. This implies $k-y \leq s-1$. Moreover, by Lemma $9, g_{f_{s+1}+t}^{(s)} \geq x-1$ if $t+t_{s} \geq f_{s+1}+t$, and $g_{f_{s+1}+t}^{(s)}=g_{f_{s+1}+t} \geq s-1$ if $t+t_{s}<f_{s+1}+t$. Hence $g_{f_{s+1}+t}^{(s)} \geq \min \{x-1, s-1\} \geq k-y$. Thus by $t+t_{s} \geq$ $f_{1}+1>f_{s+1}$, we have $\sum_{i=1}^{t} \min \left\{k, g_{i}-s\right\}+\sum_{i=t+1}^{n} \min \left\{k, g_{i}^{(s)}\right\}=\sum_{i=1}^{t}\left(g_{i}-\right.$ $s)+\sum_{i=t+1}^{f_{s+1}} \min \left\{k, g_{i}^{(s)}\right\}+\sum_{i=f_{s+1}+1}^{f_{s+1}+t} \min \left\{k, g_{i}^{(s)}\right\}+\sum_{i=f_{s+1}+t+1}^{n} \min \left\{k, g_{i}^{(s)}\right\} \geq$ $y t+\left(f_{s+1}-t\right) k+(k-y) t=f_{s+1} k \geq \sum_{i=1}^{k} f_{s+i}$.

Proof of Theorem 4. We use induction on $s+t$. It is trivial for $s=1$ or $t=1$. Assume $s \geq 2$ and $t \geq 2$. If $f_{1}=n$ or there exists an integer k with $t \leq k \leq f_{1}$ such that $g_{k}>g_{k+1}$, then the residual pair $\pi\left(f_{1}\right)=\left(f_{2}, \ldots, f_{m} ; g_{1}^{\prime}, \ldots, g_{n}^{\prime}\right)$ obtained from π by laying off f_{1} satisfies $g_{t}^{\prime} \geq g_{t}-1 \geq s-1, g_{f_{s+1}+t}^{\prime} \geq g_{f_{s+1}+t}-1 \geq s-2$ and $g_{1}^{\prime}=g_{1}-1, \ldots, g_{t}^{\prime}=g_{t}-1$. By Theorem 2 and the induction hypothesis, $\pi\left(f_{1}\right)$ is a potentially $A_{s-1, t}$-bigraphic pair, and hence π is a potentially $A_{s, t}$-bigraphic pair. So we may assume $f_{1} \leq n-1$ and $g_{1} \geq \cdots \geq g_{t}=\cdots=g_{f_{1}+1} \geq g_{f_{1}+2} \geq \cdots \geq g_{n}$. If $g_{1}=m$ or there exists an integer k with $s \leq k \leq g_{1}$ such that $f_{k}>f_{k+1}$, then the residual pair $\pi\left(g_{1}\right)=\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime} ; g_{2}, \ldots, g_{n}\right)$ obtained from π by laying off g_{1} satisfies $f_{s}^{\prime} \geq f_{s}-1 \geq t-1, n-1 \geq f_{s+1}+(t-1) \geq f_{s+1}^{\prime}+(t-1)$, $g_{1+\left(f_{s+1}^{\prime}+(t-1)\right)} \geq g_{f_{s+1}+t} \geq s-1$ and $f_{1}^{\prime}=f_{1}-1, \ldots, f_{s}^{\prime}=f_{s}-1$. By Theorem 2 and the induction hypothesis, $\pi\left(g_{1}\right)$ is a potentially $A_{s, t-1}$-bigraphic pair, and
hence π is a potentially $A_{s, t}$-bigraphic pair. So we may further assume $g_{1} \leq m-1$ and $f_{1} \geq \cdots \geq f_{s}=\cdots=f_{g_{1}+1} \geq f_{g_{1}+2} \geq \cdots \geq f_{m}$. Thus by Lemma $10, \pi$ is a potentially $A_{s, t}$-bigraphic pair.

Proof of Theorem 5. By symmetry, the proof of Theorem 5 is similar to that of Theorem 4.

As an application of Theorems 4 and 5 , we now prove Theorem 7 . We first need some lemmas.

Lemma 11 [5]. If $\pi=\left(f_{1}, \ldots, f_{m} ; g_{1}, \ldots, g_{n}\right)$ is a bigraphic pair with $f_{s} \geq 2 t-1$ and $g_{t} \geq 2 s-1$, then π is a potentially $K_{s, t}$-bigraphic pair.

Lemma 12. Let $\pi=\left(f_{1}, \ldots, f_{m} ; g_{1}, \ldots, g_{n}\right)$ be a bigraphic pair with $f_{s} \geq t$ and $g_{t} \geq s$. If $n \geq s t-s+t$ and $g_{n} \geq s-1$, then π is a potentially $K_{s, t}$-bigraphic pair.

Proof. If $f_{s+1} \leq n-t$, i.e., $n \geq f_{s+1}+t$, by Theorem $4, \pi$ is a potentially $A_{s, t}$-bigraphic pair. Assume $f_{s+1} \geq n-(t-1)$. Let G be a realization of π with partite sets $\left\{x_{1}, \ldots, x_{m}\right\}$ and $\left\{y_{1}, \ldots, y_{n}\right\}$ such that $d_{G}\left(x_{i}\right)=f_{i}$ for $1 \leq i \leq m$ and $d_{G}\left(y_{j}\right)=g_{j}$ for $1 \leq j \leq n$. For each i, denote $N_{G}\left(x_{i}\right)$ to be the neighbor set of x_{i} in G. Clearly, $\left|N_{G}\left(x_{i}\right)\right|=d_{G}\left(x_{i}\right)=f_{i} \geq n-(t-1)$ for $1 \leq i \leq s$. Moreover, we have the following Claim 1.

Claim 1. $\left|N_{G}\left(x_{1}\right) \cap \cdots \cap N_{G}\left(x_{s}\right)\right| \geq n-s(t-1)$.
Proof. Clearly, $\left|N_{G}\left(x_{1}\right)\right| \geq n-(t-1)$. Assume $2 \leq k \leq s$ and $\mid N_{G}\left(x_{1}\right) \cap \cdots \cap$ $N_{G}\left(x_{k-1}\right) \mid \geq n-(k-1)(t-1)$. Denote $A=N_{G}\left(x_{1}\right) \cap \cdots \cap N_{G}\left(x_{k-1}\right)$. Then $\left|N_{G}\left(x_{1}\right) \cap \cdots \cap N_{G}\left(x_{k}\right)\right|=\left|A \cap N_{G}\left(x_{k}\right)\right|=|A|+\left|N_{G}\left(x_{k}\right)\right|-\left|A \cup N_{G}\left(x_{k}\right)\right| \geq$ $(n-(k-1)(t-1))+(n-(t-1))-n=n-k(t-1)$. This proves Claim 1.

By Claim $1,\left|N_{G}\left(x_{1}\right) \cap \cdots \cap N_{G}\left(x_{s}\right)\right| \geq n-s(t-1) \geq t$. This implies that G contains $K_{s, t}$. Hence, π is a potentially $K_{s, t}$-bigraphic pair.

Lemma 13. Let $\pi=\left(f_{1}, \ldots, f_{m} ; g_{1}, \ldots, g_{n}\right)$ be a bigraphic pair with $f_{s} \geq t$ and $g_{t} \geq s$. If $m \geq s t-t+s$ and $f_{m} \geq t-1$, then π is a potentially $K_{s, t}$-bigraphic pair.

Proof. By symmetry, the proof of Lemma 13 is similar to that of Lemma 12.
Lemma 14. Let $1 \leq s \leq t, m \geq s, n \geq t$ and $n \geq m$. If $\pi=\left(f_{1}, \ldots, f_{m} ; g_{1}, \ldots\right.$, $\left.g_{n}\right)$ is a bigraphic pair with $\sigma(\pi) \geq n(s-1)+m(t-1)+n(t-1)-2(t-1)(s-1)+1$, then π is a potentially $K_{s, t}$-bigraphic pair.

Proof. If $f_{s} \leq 2 t-2$, then $\sigma(\pi) \leq n(s-1)+(m-s+1)(2 t-2)=n(s-1)+$ $m(t-1)+m(t-1)-2(t-1)(s-1) \leq n(s-1)+m(t-1)+n(t-1)-2(t-1)(s-1)$,
a contradiction. Hence $f_{s} \geq 2 t-1$. If $g_{t} \leq 2 s-2$, then $\sigma(\pi) \leq m(t-1)+(n-$ $t+1)(2 s-2)=n(s-1)+m(t-1)+n(s-1)-2(t-1)(s-1) \leq n(s-1)+$ $m(t-1)+n(t-1)-2(t-1)(s-1)$, a contradiction. Hence $g_{t} \geq 2 s-1$. Thus by Lemma $11, \pi$ is a potentially $K_{s, t}$-bigraphic pair.

Lemma 15. Let $1 \leq s \leq t, n \geq m \geq s$ and $n=(s t-s+t)+k$ with $0 \leq k \leq$ $(t-1)(s t-2 s+t+1)$. If $\pi=\left(f_{1}, \ldots, f_{m} ; g_{1}, \ldots, g_{n}\right)$ is a bigraphic pair with $\sigma(\pi) \geq n(s-1)+m(t-1)-(t-1)(s-1)+1+(t-1)(s t-2 s+t+1)-k$, then π is a potentially $K_{s, t}$-bigraphic pair.

Proof. We use induction on k. If $k=0$, then $n=s t-s+t$ and $\sigma(\pi) \geq$ $n(s-1)+m(t-1)-(t-1)(s-1)+1+(t-1)(s t-2 s+t+1)=n(s-1)+$ $m(t-1)+n(t-1)-2(t-1)(s-1)+1$. By Lemma $14, \pi$ is a potentially $K_{s, t}$-bigraphic pair. Suppose that $1 \leq k \leq(t-1)(s t-2 s+t+1)$. Then $\sigma(\pi) \geq n(s-1)+m(t-1)-(t-1)(s-1)+1$. It is straightfoward to show that $f_{s} \geq t$ and $g_{t} \geq s$. If $g_{n} \geq s-1$, then by Lemma $12, \pi$ is a potentially $K_{s, t^{-}}$ bigraphic pair. Assume $g_{n} \leq s-2$. If $n \geq m+1$, then the residual pair $\pi\left(g_{n}\right)=$ $\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime} ; g_{1}, \ldots, g_{n-1}\right)$ obtained from π by laying off g_{n} satisfies $\sigma\left(\pi\left(g_{n}\right)\right)=$ $\sigma(\pi)-g_{n} \geq n(s-1)+m(t-1)-(t-1)(s-1)+1+(t-1)(s t-2 s+t+1)-k-(s-2)=$ $(n-1)(s-1)+m(t-1)-(t-1)(s-1)+1+(t-1)(s t-2 s+t+1)-(k-1)$. By Theorem 2 and the induction hypothesis, $\pi\left(g_{n}\right)$ is a potentially $K_{s, t}$-bigraphic pair, and hence so is π. Further assume $n=m$. Then $m \geq s t-s+t \geq s t-t+s$. If $f_{m} \geq t-1$, then by Lemma $13, \pi$ is a potentially $K_{s, t}$-bigraphic pair. If $f_{m} \leq t-2$, let $\pi\left(g_{n}, f_{m}^{\prime}\right)=\left(f_{1}^{\prime}, \ldots, f_{m-1}^{\prime} ; g_{1}^{\prime}, \ldots, g_{n-1}^{\prime}\right)$ be the residual pair obtained from $\pi\left(g_{n}\right)$ by laying off f_{m}^{\prime}, by $f_{m}^{\prime} \leq f_{m}$, then $\sigma\left(\pi\left(g_{n}, f_{m}^{\prime}\right)\right)=\sigma(\pi)-g_{n}-f_{m}^{\prime} \geq$ $n(s-1)+m(t-1)-(t-1)(s-1)+1+(t-1)(s t-2 s+t+1)-k-(s-2)-(t-2) \geq$ $(n-1)(s-1)+(m-1)(t-1)-(t-1)(s-1)+1+(t-1)(s t-2 s+t+1)-(k-1)$. By Theorem 2 and the induction hypothesis, it follows that $\pi\left(g_{n}, f_{m}^{\prime}\right)$ is a potentially $K_{s, t}$-bigraphic pair. Thus, both $\pi\left(g_{n}\right)$ and π are potentially $K_{s, t}$-bigraphic.

Lemma 16. Let $1 \leq s \leq t$, $n \geq m \geq s$ and $n \geq(s+1) t^{2}-(2 s-1) t+s-1$. If $\pi=\left(f_{1}, \ldots, f_{m} ; g_{1}, \ldots, g_{n}\right)$ is a bigraphic pair with $\sigma(\pi) \geq n(s-1)+m(t-1)-$ $(t-1)(s-1)+1$, then π is a potentially $K_{s, t}$-bigraphic pair.

Proof. We use induction on n. Clearly, the result for $n=(s+1) t^{2}-(2 s-1) t+s-1$ follows from Lemma 15 by letting $k=(t-1)(s t-2 s+t+1)$. Assume $n \geq$ $(s+1) t^{2}-(2 s-1) t+s$. Clearly, $f_{s} \geq t, g_{t} \geq s$ and $n \geq s t-s+t$. If $g_{n} \geq s-1$, then by Lemma $12, \pi$ is a potentially $K_{s, t}$-bigraphic pair. Assume $g_{n} \leq s-2$. If $n \geq m+1$, then the residual pair $\pi\left(g_{n}\right)=\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime} ; g_{1}, \ldots, g_{n-1}\right)$ obtained from π by laying off g_{n} satisfies $\sigma\left(\pi\left(g_{n}\right)\right)=\sigma(\pi)-g_{n} \geq n(s-1)+m(t-1)-(t-1)(s-$ $1)+1-(s-2) \geq(n-1)(s-1)+m(t-1)-(t-1)(s-1)+1$. By Theorem 2 and the induction hypothesis, $\pi\left(g_{n}\right)$ is a potentially $K_{s, t}$-bigraphic pair, and hence so is π. Further assume $n=m$. Then $m \geq s t-s+t \geq s t-t+s$. If $f_{m} \geq t-1$, then
by Lemma $13, \pi$ is a potentially $K_{s, t}$-bigraphic pair. If $f_{m} \leq t-2$, let $\pi\left(g_{n}, f_{m}^{\prime}\right)=$ $\left(f_{1}^{\prime}, \ldots, f_{m-1}^{\prime} ; g_{1}^{\prime}, \ldots, g_{n-1}^{\prime}\right)$ be the residual pair obtained from $\pi\left(g_{n}\right)$ by laying off f_{m}^{\prime}, by $f_{m}^{\prime} \leq f_{m}$, then $\sigma\left(\pi\left(g_{n}, f_{m}^{\prime}\right)\right)=\sigma(\pi)-g_{n}-f_{m}^{\prime} \geq n(s-1)+m(t-1)-(t-$ 1) $(s-1)+1-(s-2)-(t-2) \geq(n-1)(s-1)+(m-1)(t-1)-(t-1)(s-1)+1$. By Theorem 2 and the induction hypothesis, it follows that $\pi\left(g_{n}, f_{m}^{\prime}\right)$ is a potentially $K_{s, t}$-bigraphic pair. Thus, both $\pi\left(g_{n}\right)$ and π are potentially $K_{s, t}$-bigraphic.

Proof of Theorem 7. Ferrara et al. [1] considered the bigraphic pair $\pi=$ $\left(n^{s-1},(t-1)^{m-s+1} ; m^{s-1},(t-1)^{m-s+1},(s-1)^{n-m}\right)$, where the symbol x^{y} stands for y consecutive terms, each equal to x. Clearly, π is not a potentially $K_{s, t}$-bigraphic pair. Thus $\sigma\left(K_{s, t}, m, n\right) \geq \sigma(\pi)+1=n(s-1)+m(t-1)-(t-1)(s-1)+1$. The upper bound directly follows from Lemma 16.

Remark. The lower bound $n \geq(s+1) t^{2}-(2 s-1) t+s-1$ in Theorem 7 is not the best lower bound. However, we will investigate a lower bound on $n+m$ so that the extremal function value $\sigma\left(K_{s, t}, m, n\right)=n(s-1)+m(t-1)-(t-1)(s-1)+1$, which implies a smaller bound on the n or m necessary to assure Theorem 7. It also would be a meaningful further research for $n \geq m \geq s$ and $s>t$. We will consider this problem in our future studies.

Acknowledgement

The authors would like to thank the referees for their helpful suggestions and comments.

References

[1] M.J. Ferrara, M.S. Jacobson, J.R. Schmitt and M. Siggers, Potentially H-bigraphic sequences, Discuss. Math. Graph Theory 29 (2009) 583-596. https://doi.org/10.7151/dmgt. 1466
[2] D. Gale, A theorem on flows in networks, Pacific J. Math. 7 (1957) 1073-1082. https://doi.org/10.2140/pjm.1957.7.1073
[3] H.J. Ryser, Combinatorial properties of matrices of zeros and ones, Canad. J. Math. 9 (1957) 371-377. https://doi.org/10.4153/CJM-1957-044-3
[4] J.H. Yin, An extremal problem on bigraphic pairs with an A-connected realization, Discrete Math. 339 (2016) 2018-2026.
https://doi.org/10.1016/j.disc.2016.02.014
[5] J.H. Yin, A note on potentially $K_{s, t}$-bigraphic pairs, Util. Math. 100 (2016) 407-410.

[^0]: ${ }^{1}$ Supported by National Natural Science Foundation of China (No. 11961019).

