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Abstract

Let G be a graph and S ⊆ V (G) represent a subset of vertices having
installed “detectors,” each of which is capable of sensing an “intruder” in
its open-neighborhood. The open-locating-code of v ∈ V (G) is the set of
neighboring detectors, N(v) ∩ S. The set S is said to be an open-locating-
dominating set if every open-locating-code is unique and non-empty. In
this paper we focus on error-detecting open-locating-dominating sets on the
infinite triangular grid, present a solution with density 1

2 , and prove it is
optimal.
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1. Introduction

Let G be an (undirected) graph with vertex set V (G) and edge set E(G). The
open neighborhood of a vertex v ∈ V (G), denoted by N(v), is the set of vertices
adjacent to v: N(v) ≡ {w ∈ V (G) : vw ∈ E(G)}.

Definition 1 [6]. Vertex v ∈ V (G) openly dominates its neighbors, that is, every
vertex in N(v) and vertex set D ⊆ V (G) is an open-dominating (also called total
dominating) set if every vertex is dominated by at least one v ∈ D, that is,
V (G) =

⋃
v∈D N(v).
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Definition 2. Given an open-dominating set S ⊆ V (G) and a vertex v ∈ V (G),
the open-locating code of v, denoted LS(v), is defined as the set of all open-
neighbors of v which are in S: LS(v) ≡ N(v) ∩ S.

Definition 3 [4]. A vertex is said to be k-dominated by an open-dominating
set S ⊆ V (G) if it is adjacent to exactly k vertices in S, that is, v ∈ V (G) is
k-dominated if and only if |LS(v)| = k.

Definition 4. An open-dominating set S ⊆ V (G) is k-distinguishing if for any
distinct vertices u, v ∈ V (G) we have that |LS(u)4LS(v)| ≥ k, where 4 denotes
the symmetric difference.

Definition 5. An open-dominating set S ⊆ V (G) is k#-distinguishing if for any
distinct vertices u, v ∈ V (G) we have that |LS(u) − LS(v)| ≥ k or |LS(v) −
LS(u)| ≥ k.

Note that Definitions 4 and 5 are pre-existing concepts from other papers
which were phrased in different notation [4, 7].

Distinguishing sets provide a way to uniquely identify some target vertex
in the graph, traditionally known as the “intruder” [4, 5]. In this context, the
distinguishing set represents the subset of vertices which have some form of de-
tector installed on them. This could represent any type of sensor detecting any
type of event. The notion of a distinguishing set is a general term which includes
many different types of sets with various properties; at least 424 papers have been
published on such related concepts [10].

The goal in constructing a distinguishing set is to use as few detectors as pos-
sible while still covering the entire graph. The problem of finding open-locating-
dominating (OLD) sets is a conservative instance of this general problem, which
only requires the sensors be able to detect an intruder up to one vertex away and
does not require them to be able to detect an intruder at their position. Making
such a conservative assumption about the capabilities of the sensors is important
in contexts where an intruder could pose significant harm.

Definition 6 [9]. An open-dominating set S ⊆ V (G) is called an open-locating-
dominating (OLD) set if the open-locating codes for all vertices are unique.

There are several more-restrictive specializations of OLD sets, such as redun-
dant open-locating-dominating (RED:OLD) sets, which are resilient to a detector
being destroyed or going offline [7]. In this paper, we explore an even more re-
strictive, but more powerful specialization of OLD sets known as error-detecting
open-locating-dominating (DET:OLD) sets, which are described by Definition 8.
In addition to having all the properties of RED:OLD sets, DET:OLD sets are
capable of correctly identifying an intruder even when at most one sensor incor-
rectly reports that there is no intruder in its detection range [7]. Note that this
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is different from a RED:OLD set, in which the malfunctioning sensor does not
report anything at all. In this way, DET:OLD sets allow for uniquely locating an
intruder in a way which is resilient to up to one false negative.

Definition 7 [9]. An open-dominating set S ⊆ V (G) is called a redundant open-
locating-dominating (RED:OLD) set if for all v ∈ S, S − {v} is an OLD set.

Definition 8 [9]. An open-dominating set S ⊆ V (G) is called an error-detecting
open-locating-dominating (DET:OLD) if an “intruder” is correctly located even
when at most one of the detectors reports a false negative.

Although Definitions 6–8 are useful to understand the concepts and purposes
for these sets, they are perhaps less conducive to actually constructing or verifying
that a given set meets its requirements. Instead, we use Theorems 9–11, which
have been proven to be equivalent constraints.

Theorem 9. An open-dominating set is an OLD set if and only if every pair of
vertices is 1-distinguished.

Theorem 10 [7,9]. An open-dominating set is a RED:OLD set if and only if all
vertices are at least 2-dominated and all pairs are 2-distinguished.

Theorem 11 [7,9]. An open-dominating set is a DET:OLD set if and only if all
vertices are at least 2-dominated and all pairs are 2#-distinguished.

(a) (b) (c)

Figure 1. Optimal OLD (a), RED:OLD (b), and DET:OLD (c) sets on the same (finite)
graph. Shaded vertices represent detectors.

For finite graphs, the notations OLD(G), RED:OLD(G), and DET:OLD(G)
represent the cardinality of the smallest possible OLD, RED:OLD, and DET:OLD
sets on graph G, respectively [7]. From Figure 1, which shows optimal solutions on
the given graph which we will call G, we see that OLD(G)=6, RED:OLD(G)=7,
and DET:OLD(G)=10.

For infinite graphs, instead of the cardinality, we measure via the density
of the subset, which is defined as the ratio of the number of detectors to the
total number of vertices. The notations OLD%(G), RED:OLD%(G), and DET:
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(a) (b)

Figure 2. Optimal OLD (a) and RED:OLD (b) sets on the TRI graph.

OLD%(G) represent the minimum density of such a set on G [4]. Note that the
notion of density is also defined for finite graphs.

One common method for constructing distinguishing sets on infinite graphs
is through the use of tessellation. To do this, one begins by constructing some
tile shape spanning a finite number of vertices. One or more detectors is then
selected in the tile. Lastly, the tile is duplicated, along with its detectors, in order
to cover every vertex in the infinite graph with no overlapping. Thus, there are
an infinite number of detectors and an infinite number of vertices, but the density
remains equal to the density in the selected shape, which is trivial to determine.

In this paper, we will explore the optimal construction of a DET:OLD set on
the infinite triangular grid, which for convenience is shortened to TRI. The TRI
graph is a regular graph of degree six (or 6-regular). While it can be depicted as
a square grid with additional edges along a diagonal, it is often easier to think of
it in terms of triangles or hexagons.

Much study has been done concerning various graphical parameters and dis-
tinguishing sets on the TRI graph [1–3,7]. For instance, optimal constructions of
OLD sets [3] and RED:OLD sets [7] on the TRI graph have already been explored.
For examples of these optimal constructions, see Figure 2. These are constructed
via tessellation, with the tiles used to create them shaded and outlined. The
OLD set (a) has a tile size of 13 and uses 4 detectors, and thus has a density of
4
13 . The RED:OLD set (b) has density 6

16 = 3
8 . As these constructions have been

proven to be optimal, this means that OLD%(TRI) = 4
13 and RED:OLD%(TRI)

= 3
8 .

In order to find the value for DET:OLD%(TRI), we will begin by demonstrat-
ing a particular tessellated solution—effectively establishing an upper bound for
DET:OLD%(TRI)—and then employ theory to establish a lower bound.
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2. Upper Bound

Figure 3. A 36-vertex tile DET:OLD tessellation demonstrating a density of 1
2 . Shaded

vertices are in the DET:OLD set.

Seo and Slater [7] previously found an upper bound of 5
9 for the DET:OLD

set problem on the TRI graph. We have improved the bound by constructing
a 36-vertex tile with 18 detectors which can be tessellated to form a DET:OLD
set with density 1

2 . Figure 3 shows this particular solution; it is easy to verify
that every vertex is at least 2-dominated and all pairs are 2#-distinguished, thus
satisfying the requirements for a DET:OLD set given in Theorem 11. Therefore,
DET:OLD%(TRI) ≤ 1

2 .

3. Lower Bound

For constructing a lower bound, we will use the notion of a share argument
introduced by Slater [8] and used extensively by Seo and Slater [4–7]. In essence,
a share argument inverts the problem, so instead of trying to find a lower bound
on the density of a dominating set directly, we find an upper bound on the average
share of a vertex in the set, i.e., its contribution in the domination of its neighbors.
Once an upper bound for the average share is constructed, its reciprocal acts as
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a lower bound for the density.

For an open-dominating set S ⊆ V (G) of G, a vertex u ∈ S, and a vertex
v ∈ N(u), let shv(u) ≡ 1

|LS(v)| denote u’s share of v, that is u’s contribution to

the domination of v. Further, we let sh(u) ≡
∑

w∈N(u) shw(u) denote the total
share of u, or u’s total contribution to the domination of its neighbors.

1

9

8

7

6

5

43

2

Figure 4. {3,4,7} is an open-
dominating set [4].

Figure 4 shows an example graph with its
open-dominating set, where the vertices with de-
tectors are shown as shaded vertices. As stated
above, share is only defined for a vertex which is
a detector, but all of its neighbors, detectors or
not, factor into its share value. Consider vertex 7,
which is adjacent to vertices 5, 6, 8, and 9. Vertices
5 and 9 are 3-dominated, so sh5(7) = sh9(7) = 1

3 .
Vertices 6 and 8 are 2-dominated, so sh6(7) =
sh8(7) = 1

2 . Thus, the (total) share of vertex 7 is
determined as sh(7) ≡ sh5(7) + sh6(7) + sh8(7) +
sh9(7) = 1

3 + 1
2 + 1

2 + 1
3 = 5

3 . As a second example,
consider vertex 3, which has neighbor vertices 2, 4,
5, 6, and 9. It can be easily checked that the share
of vertex 3, sh(3) = 1

2 + 1 + 1
3 + 1

2 + 1
3 = 8

3 .

In any DET:OLD set S ⊆ V (TRI), each vertex is by definition at least
2-dominated. Since the TRI graph is 6-regular, for any vertex u ∈ S we have
sh(u) ≤ 1

2+1
2+1

2+1
2+1

2+1
2 = 3. Thus, we have a trivial bound: DET:OLD%(TRI)

≥ 1
3 .

Lemma 12. For any graph G and for any DET:OLD set S ⊆ V (G), for any two
distinct vertices u, v ∈ V (G) where |LS(u) ∩ LS(v)| = k, at least one of them
must be at least (k + 2)-dominated.

Proof. Suppose G is a graph and S ⊆ V (G) is a DET:OLD set on G. Let
u, v ∈ V (G) be two distinct vertices with |LS(u) ∩LS(v)| = c. Suppose neither
u nor v is at least (c + 2)-dominated. This means that |LS(u)| ≤ c + 1 and
|LS(v)| ≤ c + 1. Then |LS(u) − LS(v)| ≤ 1 and |LS(v) − LS(u)| ≤ 1, which
means u and v are not 2#-distinguished. This contradicts that S is a DET:OLD
set on G.

Proposition 13. Let S be a DET:OLD set for a graph G. Then, a vertex in S
may have at most one 2-dominated neighbor.

Proof. Let x ∈ S and u, v ∈ N(x) with u 6= v. Because G is undirected, we
observe x ∈ N(u) ∩ N(v), which implies |N(u) ∩ N(v)| ≥ 1. Therefore, by
Lemma 12, at least one of u or v must be at least 3-dominated.
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By Proposition 13, we can impose a stricter bound on the maximum share:
for all u ∈ S, sh(u) ≤ 1

2 + 1
3 + 1

3 + 1
3 + 1

3 + 1
3 = 13

6 . Thus, we establish a better
lower bound: DET:OLD%(TRI) ≥ 6

13 . While this bound is certainly better than
our trivial bound of 1

3 , it is not sufficient to close the gap between the lower and
upper bounds.

The particular solution to the DET:OLD set problem on the TRI graph
depicted in Figure 3 shows that the share of every detector vertex is exactly
2. Next, we characterize two conditions which make the share of a vertex in a
DET:OLD(TRI) set at most 2. This result will be heavily utilized in proving
Theorem 15.

Observation 14. If a detector u ∈ S has at least two neighbors which are at
least 4-dominated then sh(u) ≤ 1

2 + 1
3 + 1

3 + 1
3 + 1

4 + 1
4 = 2. Also, if at least one

neighbor is 6-dominated then sh(u) ≤ 1
2 + 1

3 + 1
3 + 1

3 + 1
3 + 1

6 = 2.

Now we prove that the value of 2 is indeed an upper bound for the average
share of all the vertices in any DET:OLD set on the TRI graph.

Theorem 15. Let S ⊆ V (TRI) be a DET:OLD set on the TRI graph. Then,
the average share of all vertices in S is no more than 2.

Proof. To prove Theorem 15 we will consider every possible non-isomorphic case
for a “center” detector vertex x ∈ S being dominated by its neighbors. These
cases are shown in Figure 5. We will demonstrate that all of these cases result in
the average share being no more than 2.

Case 1. Case 1 covers 8 sub-cases from Figure 5: 1–1, 1–2, 1–3, 1–4, 1–5, 1–6,
1–7, and 1-8. In all of these we have that {1, 2} ⊆ S. We see that vertices 2 and 6
are dominated by two common detectors, so by Lemma 12 we have that at least
one of them is at least 4-dominated. Similarly, we can use vertices 1 and 3 to
show that at least one of them is also at least 4-dominated. By Observation 14,
we now have that sh(x) ≤ 2 for any of these sub-cases.

Case 2. Consider Case 2 from Figure 5. Vertices 2 and 6 are dominated
by two common detectors, so Lemma 12 gives us that at least one of them is at
least 4-dominated. If both of them are at least 4-dominated, then Observation 14
immediately yields that sh(x) ≤ 2. Thus, we need only consider when exactly one
of vertices 2 or 6 is 4-dominated. Due to symmetry, without loss of generality we
can assume vertex 2 is 3-dominated. Then, we can apply Lemma 12 to vertices
2 and 4 to yield a second vertex which is at least 4-dominated, implying that
sh(x) ≤ 2.

Case 3. Consider Case 3 from Figure 5. Vertices 2 and 6 are dominated by
two common detectors, so Lemma 12 gives us that at least one of them is at least
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4-dominated. Similarly, we can use vertices 3 and 5 to show that at least one of
them is also at least 4-dominated. Thus, Observation 14 gives us that sh(x) ≤ 2.

6 1

5 2

4 3

Case 1-1

6 1

5 2

4 3

Case 1-2

6 1

5 2

4 3

Case 1-3

6 1

5 2

4 3

Case 1-4

6 1

5 2

4 3

Case 1-5

6 1

5 2

4 3

Case 1-6

6 1

5 2

4 3

Case 1-7

6 1

5 2

4 3

Case 1-8

6 1

5 2

4 3

Case 2

6 1

5 2

4 3

Case 3

6 1

5 2

4 3

Case 4

Figure 5. The 11 non-isomorphic cases for LS(x) in a DET:OLD set S ⊆ V (TRI).

Case 4. Lastly, we consider Case 4 from Figure 5. In order to continue
with this case, we must extend our view of the graph to radius 2, as shown in
Figure 6. If vertex 2 is 3-dominated, which implies 8 /∈ S, 9 /∈ S, and 10 /∈ S,
then we can apply Lemma 12 to vertex pairs {2,4} and {2,6} to show that both
vertices 4 and 6 must be at least 4-dominated. By Observation 14, this would
immediately give us that sh(x) ≤ 2. Furthermore, if vertex 2 is 6-dominated,
then by Observation 14 we have sh(x) ≤ 2. Thus, we need only consider when
vertex 2 is 4- or 5-dominated.

Suppose vertex 8 or vertex 10 is not in S, that is {8, 10} 6⊆ S. Due to
symmetry, without loss of generality let 10 /∈ S. Vertex 2 is currently at least 4-
dominated due to already handling when it is 3-dominated. Vertex 5 is currently
only 1-dominated in Figure 6, but it has be at least 2-dominated. If it is at least
4-dominated then we have our second neighbor of x which is at least 4-dominated
and are done. Therefore, we need only check when it is 2- or 3-dominated. If
14 ∈ S, then we can apply Lemma 12 to vertices 4 and 5 to show that another
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vertex exists which is at least 4-dominated. Similarly, if 16 ∈ S, then we can use
vertices 5 and 6 to arrive at a second vertex which is at least 4-dominated. In
either event, Observation 14 gives us that sh(x) ≤ 2. Otherwise we can assume
15 ∈ S, 14 /∈ S, and 16 /∈ S, which means vertex 5 is 2-dominated. Because vertex
5 is already 2-dominated, by Proposition 13 vertex 3 must be 3-dominated, which
implies {11, 12} ⊆ S. We then see that applying Lemma 12 to vertices 3 and 4
gives us a second vertex which is at least 4-dominated, which implies sh(x) ≤ 2.

1

2

34

5

6

10

9

8

7

11

17

16

15

14

13 12

18

x

Figure 6. Configuration 4, extended to radius 2 around x.

The only remaining configuration is where both vertices 8 and 10 are de-
tectors, that is {8, 10} ⊆ S and vertex 2 is at least 5-dominated. If vertex 2 is
6-dominated, then sh(x) ≤ 2, so we assume vertex 2 is 5-dominated and 9 /∈ S.
Again, vertex 5 must be 2- or 3-dominated; 4-dominated is unnecessary to test,
as Observation 14 would immediately yield that sh(x) ≤ 2. As discussed in the
preceding paragraph, if 16 ∈ S or 14 ∈ S we can use Lemma 12 to arrive at a
second vertex which is at least 4-dominated. The only remaining possibility is
where 15 ∈ S, 14 /∈ S, and 16 /∈ S. Vertex 6 cannot be 2-dominated because
there is already vertex 5 being 2-dominated. If vertex 6 is 4-dominated then we
are done, so we need only consider when vertex 6 is 3-dominated, which implies
that |{17, 18} ∩ S| = 1.

If 18 ∈ S we can apply Lemma 12 to vertices 1 and 6 to give us a second
vertex which is at least 4-dominated, so sh(x) ≤ 2. Thus, we assume 17 ∈ S
and 18 /∈ S. We then see that vertex 1 must be 3-dominated because vertex
5 is already 2-dominated; so 7 ∈ S. We can apply the same arguments with
symmetry to show that 11 ∈ S, 12 /∈ S, and 13 ∈ S.

Figure 7 shows the last remaining configuration for Case 4 and the most
complicated, as sh(x) ≡ sh1(x) + sh2(x) + sh3(x) + sh4(x) + sh5(x) + sh6(x) =
1
3 + 1

5 + 1
3 + 1

3 + 1
2 + 1

3 = 61
30 > 2. Vertices 1–18 are known: shaded represent

detectors, non-shaded are not detectors. However, vertices 19–23 are unknown.
They are included here because in order to resolve this configuration we must
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find an upper bound for sh(3), which requires us to expand around vertex 3 with
radius 2. The strategy is to show that even in this configuration the average
share is still no larger than 2.

1

2

34

5

6

10

9

8

7

11

17

16

15

14

13 12

18

19

2123 22

20

x

Figure 7. Final sub-case of Case 4, extended to radius 2 around vertex 3.

From Figure 7 we see that vertex 3 has one 5-dominated neighbor, namely
vertex 2. Additionally, we see that applying Lemma 12 to vertices 4 and 12
gives us that vertex 12 is at least 4-dominated. Therefore, we have that sh(3) ≤
1
5 + 1

3 + 1
3 + 1

4 + 1
3 + 1

2 = 39
20 . By symmetry, we also have that sh(1) = sh(3) ≤ 39

20 .

Consider the average share of two vertices: 1
2 [sh(x) + sh(3)] = 1

2

[
61
30 + 39

20

]
=

239
120 < 2. As every other possible configuration around a given detector results in
a share of no more than 2, if we can prove that this averaging technique is sound
in any general construction, then we will have proven that the average share of
all detectors in S is no larger than 2. To prove this, it would be sufficient to show
that any arbitrary detector y ∈ S with sh(y) > 2 (x-like) has a neighbor detector
z ∈ N(y) ∩ S with sh(z) < 2 (3-like) and {v ∈ N(z) ∩ S : sh(v) > 2} = {y}. As
Figure 7 is the only legal construction for a vertex with share exceeding 2, we
know N(z)∩S = {y, v1, v2}, where y, v1, and v2 correspond to vertices 3, 10, and
11, respectively. Additionally, from Case 1 we know that if a detector vertex u has
two neighbor detectors which are adjacent to one another, then sh(u) ≤ 2. We
observe that {z, v2} ⊆ N(v1)∩S and v2 ∈ N(z), so z is adjacent to v2. Similarly,
{z, v1} ⊆ N(v2) ∩ S and v1 ∈ N(z) so z is adjacent to v1. Hence sh(v1) ≤ 2 and
sh(v2) ≤ 2. Therefore, {v ∈ N(z) ∩ S : sh(v) > 2} = {y}, as desired. Thus,
we can conclude that in any DET:OLD set on the TRI graph the average vertex
share is no more than 2, completing the proof.

We obtain the following lower bound for DET:OLD%(TRI) from Theorem 15.

Corollary 16. DET:OLD%(TRI) ≥ 1
2 .
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4. Conclusion

We have given a construction of a DET:OLD set on the infinite triangular grid
which demonstrates a density of 1

2 , giving us that DET:OLD%(TRI) ≤ 1
2 . Ad-

ditionally, Corollary 16 gives us that DET:OLD%(TRI) ≥ 1
2 . Therefore, by

antisymmetry, DET:OLD%(TRI) = 1
2 , and the provided construction in Figure

3 is proven to be optimal.
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