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Abstract

Let t be a positive real number. A graph is called t-tough if the removal of
any vertex set S that disconnects the graph leaves at most |S|/t components.
The toughness of a graph is the largest t for which the graph is t-tough.

The main results of this paper are the following. For any positive rational
number t ≤ 1 and for any k ≥ 2 and r ≥ 6 integers recognizing t-tough
bipartite graphs is coNP-complete (the case t = 1 was already known), and
this problem remains coNP-complete for k-connected bipartite graphs, and
so does the problem of recognizing 1-tough r-regular bipartite graphs. To
prove these statements we also deal with other related complexity problems
on toughness.
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1. Introduction

All graphs considered in this paper are finite, simple and undirected. Let ω(G)
denote the number of components, α(G) the independence number, κ(G) the
connectivity number and δ(G) the minimum degree of a graph G. For a vertex
v of G the degree of v is denoted by d(v). (Using ω(G) to denote the number of
components may be confusing, however, most of the literature on toughness uses
this notation.)

The notion of toughness was introduced by Chvátal [6] to investigate Hamil-
tonicity.

Definition. Let t be a real number. A graph G is called t-tough if |S| ≥ tω(G−S)
holds for any vertex set S ⊆ V (G) that disconnects the graph (i.e., for any
S ⊆ V (G) with ω(G − S) > 1). The toughness of G, denoted by τ(G), is the
largest t for which G is t-tough, taking τ(Kn) = ∞ for all n ≥ 1.

We say that a cutset S ⊆ V (G) is a tough set if ω(G− S) = |S|/τ(G).

Clearly, if a graph is Hamiltonian, then it must be 1-tough. However, not
every 1-tough graph contains a Hamiltonian cycle. A well-known counterexample
is the Petersen graph. On the other hand, Chvátal conjectured that there exists
a constant t0 such that every t0-tough graph is Hamiltonian [6]. This conjecture
is still open, but it is known that, if exists, t0 must be at least 9/4 [5].

The complexity of recognizing t-tough graphs has also been in the interest
of research. This paper is motivated by two open problems regarding the com-
plexity of recognizing 1-tough 3-connected bipartite graphs and 1-tough 3-regular
bipartite graphs.

Let t be an arbitrary positive rational number and consider the following
problem.

t-Tough

Instance: a graph G.
Question: is it true that τ(G) ≥ t?

It is easy to see that for any positive rational number t the problem t-Tough
is in coNP: a witness is a vertex set S whose removal disconnects the graph and
leaves more than |S|/t components. Bauer et al. proved that this problem is
coNP-complete [1] and the problem 1-Tough remains coNP-complete for at least
3-regular graphs [4].

Theorem 1 [1]. For any positive rational number t the problem t-Tough is

coNP-complete.

Theorem 2 [4]. For any fixed integer r ≥ 3 the problem 1-Tough is coNP-

complete for r-regular graphs.
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Although the toughness of any bipartite graph (except for the graphs K1 and
K2) is at most one, the problem 1-Tough does not become easier for bipartite
graphs.

Theorem 3 [8]. The problem 1-Tough is coNP-complete for bipartite graphs.

Let t be an arbitrary positive rational number and now consider a variant of
the problem t-Tough.

Exact-t-Tough

Instance: a graph G.
Question: is it true that τ(G) = t?

Extremal problems usually seem not to belong to NP ∪ coNP, therefore a
complexity class called DP was introduced by Papadimitriou and Yannakakis [9].

Definition. A language L is in the class DP if there exist two languages L1 ∈ NP
and L2 ∈ coNP such that L = L1 ∩ L2.

A language is called DP-hard if all problems in DP can be reduced to it in
polynomial time. A language is DP-complete if it is in DP and it is DP-hard.

We mention that DP 6= NP ∩ coNP if NP 6= coNP. Moreover, NP ∪ coNP ⊆
DP. Now we present some related DP-complete problem.

ExactClique

Instance: a graph G and a positive rational number k.
Question: is it true that the largest clique of G has size exactly k?

Theorem 4 [9]. The problem ExactClique is DP-complete.

By taking the complement of the graph, we can obtain ExactIndependen-
ceNumber from ExactClique.

ExactIndependenceNumber

Instance: a graph G and a positive rational number k.
Question: is it true that α(G) = k?

Since the clique number of a graph is exactly k if and only if the independence
number of its complement is exactly k, it follows from Theorem 4 that the problem
ExactIndependenceNumber is also DP-complete.

Corollary 5. The problem ExactIndependenceNumber is DP-complete.

In this paper, first, we prove that Exact-t-Tough is DP-complete for any
positive rational number t, moreover, if t < 1, then the problem remains DP-
complete for bipartite graphs. Note that since the toughness of any bipartite
graph (except for K1 and K2) is at most 1, the problem Exact-1-Tough-
Bipartite is coNP-complete as stated in Theorem 3.
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Theorem 6. For any positive rational number t the problem Exact-t-Tough
is DP-complete.

Theorem 7. For any positive rational number t < 1 the problem Exact-t-
Tough remains DP-complete for bipartite graphs.

Theorem 8. For any positive rational number t ≤ 1 the problem t-Tough re-

mains coNP-complete for bipartite graphs.

Note that Theorem 8 contains Theorem 3 as a special case.
Our constructions used in the proofs of the above three theorems also provide

alternative proofs for Theorems 1 and 3. Furthermore, using the same construc-
tion as in the proof of Theorem 7, we also prove that t-Tough remains coNP-
complete for k-connected bipartite graphs and so does 1-Tough for r-regular
bipartite graphs, where t ≤ 1 is an arbitrary rational number and k ≥ 2 and
r ≥ 6 are integers. Determining the complexity of recognizing k-connected bipar-
tite graphs and 1-tough 3-regular bipartite graphs was posed as an open problem
in [3]. The latter problem remains open along with the problems of recognizing
1-tough 4-regular and 5-regular bipartite graphs.

Theorem 9. For any fixed integer k ≥ 2 and positive rational number t ≤ 1 the

problem t-Tough remains coNP-complete for k-connected bipartite graphs.

Theorem 10. For any fixed integer r ≥ 6 the problem 1-Tough remains coNP-

complete for r-regular bipartite graphs.

In order to prove Theorem 10, we study the problem 1/2-Tough in the class
of r-regular graphs. We show that it is coNP-complete if r ≥ 5 but is in P if
r ≤ 4. (Note that the cases r = 1 and r = 2 are trivial.)

Theorem 11. For any fixed integer r ≥ 5 the problem 1/2-Tough remains

coNP-complete for r-regular graphs.

Theorem 12. For any positive rational number t < 2/3 there is a polynomial

time algorithm to recognize t-tough 3-regular graphs.

Theorem 13. There is a polynomial time algorithm to recognize 1/2-tough 4-
regular graphs.

Note that by Theorem 2, recognizing 1-tough 3-regular graphs is coNP-
complete. We remark that the toughness of a 3-regular graph (except for K4)
is at most 3/2 and Jackson and Katerinis gave a characterization of cubic 3/2-
tough graphs and these graphs can be recognized in polynomial time [7]. Their
characterization uses the concept of inflation, which was introduced by Chvátal
in [6], but is not presented here.
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Theorem 14 [7]. A cubic graph G is 3/2-tough if and only if G ≃ K4, G ≃
K2 ×K3, or G is the inflation of a 3-connected cubic graph.

This paper is structured as follows. After proving some useful lemmas in
Section 2, we prove Theorem 6 in Section 3. In Section 4 we prove two theorems
about bipartite graphs, Theorems 7 and 9. Section 5 is about regular graphs,
where we prove Theorems 10–13.

2. Preliminaries

In this section we prove some useful lemmas.

Proposition 15. Let G ≇ K1,K2 be a 1/2-tough graph. Then there exists a

spanning subgraph H of G for which τ(H) = 1/2.

Proof. Let H be a spanning subgraph of G so that τ(H) ≥ 1/2 and there exists
an edge e ∈ E(H) for which τ(H−e) < 1/2. (Note that since τ(G) ≥ 1/2, such a
spanning subgraph H can be obtained by repeatedly deleting some edges of G.)
Now we show that τ(H) ≤ 1/2, which implies that τ(H) = 1/2. Let e ∈ E(G)
be an edge for which τ(H − e) < 1/2.

Case 1. e is a bridge in H. Since G is 1/2-tough, it is connected. Since
G ≇ K1,K2 and G is connected, the graphs G and H have at least three vertices.
Hence, at least one of the endpoint of e is a cut-vertex in H, so τ(H) ≤ 1/2.

Case 2. e is not a bridge in H. Then there exists a cutset S in H − e for
which

ω
(

(H − e)− S
)

> 2|S|.

Case 2.1. (e is not a bridge in H) and S is a cutset in H. Then

ω(H − S) ≤ 2|S|,

which is only possible if

ω(H − S) = 2|S| and ω
(

(H − e)− S
)

= 2|S|+ 1.

Therefore, τ(H) ≤ 1/2.

Case 2.2. (e is not a bridge in H) and S is not a cutset in H. This is only
possible if

ω
(

(H − e)− S
)

= 2.

Hence
2 = ω

(

(H − e)− S
)

> 2|S|,

i.e., |S| < 1, which means that S = ∅, so e is a bridge H, which is a contradic-
tion.
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Proposition 16. Let t ≤ 1 be a positive rational number and G a t-tough graph.

Then

ω(G− S) ≤ |S|/t

for any proper subset S of V (G).

Proof. If S is a cutset in G, then by the definition of toughness ω(G−S) ≤ |S|/t
holds.

If S is not a cutset in G, then ω(G − S) = 1 since S 6= V (G). On the other
hand, |S|/t ≥ 1 since S 6= ∅ and t ≤ 1. Therefore, ω(G− S) ≤ |S|/t holds in this
case as well.

As is clear from its proof, the above proposition holds even if S is not a
cutset. However, it does not hold if t > 1 and S is not a cutset: if t > 1, then
the graph cannot contain a cut-vertex; therefore ω(G− S) = 1 for any subset S
with |S| = 1, while |S|/t = 1/t < 1.

Proposition 17. Let G be a connected noncomplete graph on n vertices. Then

τ(G) is a positive rational number, and if τ(G) = a/b, where a, b are relatively

prime positive integers, then 1 ≤ a, b ≤ n− 1.

Proof. By definition,

τ(G) = min
S⊆V (G)

ω(G−S)≥2

|S|

ω(G− S)

for a noncomplete graph G. Since G is connected and noncomplete, 1 ≤ |S| ≤
n− 2 for every S ⊆ V (G) with ω(G−S) ≥ 2. Obviously, ω(G−S) ≥ 2 and since
G is connected, ω(G− S) ≤ n− 1.

The following is a trivial consequence of Proposition 17.

Corollary 18. Let G and H be two connected noncomplete graphs on n vertices.

If τ(G) 6= τ(H), then
∣

∣τ(G)− τ(H)
∣

∣ >
1

n2
.

Claim 19. For any positive rational number t the problem Exact-t-Tough
belongs to DP.

Proof. For any positive rational number t,

Exact-t-Tough = {G graph | τ(G) = t}

= {G graph | τ(G) ≥ t} ∩ {G graph | τ(G) ≤ t}.

Let
L1 = {G graph | τ(G) ≤ t}
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and
L2 = {G graph | τ(G) ≥ t}.

Notice that L2 = t-Tough and it is known to be in coNP: a witness is a vertex set
S ⊆ V (G) whose removal disconnects G and leaves more than |S|/t components.

Now we show that L1 ∈ NP, i.e., we can express L1 in the form

L1 = {G graph | τ(G) < t+ ε},

which is the complement of a language belonging to coNP. Let G be an arbitrary
graph on n vertices. If G is disconnected, then τ(G) = 0, and if G is complete,
then τ(G) = ∞, so in both cases τ(G) ≤ t if and only if τ(G) < t + ε for any
positive ε. If G is connected and noncomplete, then from Corollary 18 it follows
that τ(G) ≤ t if and only if τ(G) < t+ 1/n2. Therefore,

L1 = {G graph | τ(G) ≤ t} =

{

G graph

∣

∣

∣

∣

τ(G) < t+
1

|V (G)|2

}

,

so L1 ∈ NP. Hence, we can conclude that Exact-t-Tough = L1 ∩ L2 ∈ DP. �

For any positive rational number t let Exact-t-Tough-Bipartite denote
the problem of determining whether a given bipartite graph has toughness t.
Since the toughness of a bipartite graph is at most 1 (except for the graphs K1

and K2), we can conclude the following.

Corollary 20. For any positive rational number t ≤ 1 the problem Exact-t-
Tough-Bipartite belongs to DP. Moreover, Exact-1-Tough-Bipartite be-

longs to coNP.

3. The Complexity of Determining the Toughness of General
Graphs, Proof of Theorem 6

Proof of Theorem 6. In Claim 19 we already proved that Exact-t-Tough ∈
DP . To prove Exact-t-Tough is DP-hard, we reduce ExactIndependen-
ceNumber (which is DP-complete by Corollary 5) to it.

Let G be an arbitrary connected graph on the vertices v1, . . . , vn and let a, b
be positive integers such that t = a/b. Let k be a positive integer and let Gk be
the following graph. For all i ∈ [n] let

Vi =
{

vi,1, vi,2, . . . , vi,a
}

,

and let

V =
n
⋃

i=1

Vi, U =
n
⋃

i=1

b
⋃

j=1

ui,j , U ′ =
{

u′1, . . . , u
′
(b−1)k

}

, W = {w1, . . . , wak},

V (Gk) = V ∪ U ∪ U ′ ∪W.
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For all i ∈ [n] place a clique on Vi. For all i1, i2 ∈ [n] if vi1vi2 ∈ E(G), then place
a complete bipartite graph on (Vi1 ;Vi2). For all i ∈ [n] and j ∈ [b] connect ui,j to
every vertex of Vi. Place a clique on W and connect every vertex of W to every
vertex of V ∪ U ∪ U ′, see Figure 1.

G̃

V1

V2

Vn

Ka

Ka

Ka

u1,1

u1,b

u2,1

u2,b

un,1

un,b

U

W

U ′

Kak

K(b−1)k

Figure 1. The graph Gk.

Obviously, Gk can be constructed from G in polynomial time. Now we show
that α(G) = k if and only if τ(Gk) = t = a/b, i.e.,

– if α(G) > k, then
|S|

ω(Gk − S)
> t

for any cutset S of Gk;

– if α(G) < k, then there exists a cutset S0 of Gk such that

|S0|

ω(Gk − S0)
< t;

– if α(G) = k, then
|S|

ω(Gk − S)
> t
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for any cutset S of Gk and there exists a cutset S0 of Gk such that

|S0|

ω(Gk − S0)
< t.

Let S ⊆ V (Gk) be an arbitrary cutset of Gk. Since S is a cutset, it must
contain W . Let

I = {i ∈ [n] | Vi ⊆ S}.

After the removal of W , the removal of any vertex of U ∪ U ′ or the removal of
only a proper subset of Vi for any i ∈ [n] does not disconnect anything in the
graph. So consider the cutset

S′ = S \



(U ∪ U ′) ∪





⋃

i 6∈I

Vi







 .

In Gk − S′ there are two types of components: isolated vertices from U ∪ U ′

and components containing at least one vertex from V . There are at most α(G)
components of the second type since picking a vertex from each such component
forms an independent set of G[V ]. On the other hand, there are exactly b|I| +
|U ′| = b|I|+ (b− 1)k components of the first type. So

|S| ≥ |S′| =
∑

i∈I

|Vi|+ |W | = a|I|+ ak = a
(

|I|+ k
)

and

ω(Gk − S) = ω(Gk − S′) ≤ α(G) + b|I|+ (b− 1)k = b
(

|I|+ k
)

+
(

α(G)− k
)

.

Therefore,

|S|

ω(Gk − S)
≥

|S′|

ω(Gk − S′)
≥

a
(

|I|+ k
)

b
(

|I|+ k
)

+
(

α(G)− k
) .

Let {vj ∈ V (G) | j ∈ J} be an independent set of size α(G) in the graph G
for some J ⊆ [n], and consider another cutset

S0 =





⋃

i 6∈J

Vi



 ∪W

in Gk. Then

|S0| = a
(

n− α(G)
)

+ ak = a
(

n− α(G) + k
)
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and (similarly as before)

ω(Gk − S0) = α(G) + b
(

n− α(G)
)

+ (b− 1)k = b
(

n− α(G) + k
)

+
(

α(G)− k
)

,

so
|S0|

ω(Gk − S0)
=

a
(

n− α(G) + k
)

b
(

n− α(G) + k
)

+
(

α(G)− k
) .

Case 1. α(G) < k. Then

|S|

ω(Gk − S)
≥

a
(

|I|+ k
)

b
(

|I|+ k
)

+
(

α(G)− k
) >

a
(

|I|+ k
)

b
(

|I|+ k
) =

a

b
= t

holds for every cutset S of Gk, which implies that τ(Gk) > t.

Case 2. α(G) = k. Then

|S|

ω(Gk − S)
≥

a
(

|I|+ k
)

b
(

|I|+ k
)

+
(

α(G)− k
) =

a
(

|I|+ k
)

b
(

|I|+ k
) =

a

b
= t

holds for every cutset S of Gk, which implies that τ(Gk) ≥ t.

On the other hand,

τ(Gk) ≤
|S0|

ω(Gk − S0)
=

a
(

n− α(G) + k
)

b
(

n− α(G) + k
)

+
(

α(G)− k
) =

an

bn
=

a

b
= t.

Hence, τ(Gk) = t.

Case 3. α(G) > k. Then

τ(Gk) ≤
|S0|

ω(Gk − S0)
=

a
(

n− α(G) + k
)

b
(

n− α(G) + k
)

+
(

α(G)− k
)

<
a
(

n− α(G) + k
)

b
(

n− α(G) + k
) =

a

b
= t.

This means that α(G) = k if and only if τ(Gk) = t = a/b.

The construction we used here is a slight modification of the one that Bauer et
al. used in [2] for proving that for any rational number t ≥ 1 recognizing t-tough
graphs is coNP-complete; in their proof a variant of IndependenceNumber is
reduced to the complement of t-Tough.

Since in our proof α(G) > k if and only if τ(Gk) < t, we can reduce Inde-
pendenceNumber to the complement of t-Tough, therefore providing another
proof of Theorem 1.
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−→

G B(G)

vi

vj

vi,1 vi,2

vj,1 vj,2

Figure 2. The construction of the bipartite graph B(G).

4. The Complexity of Determining the Toughness of Bipartite
Graphs, Proofs of Theorems 7 and 9

Let G be an arbitrary connected graph on the vertices v1, . . . , vn and let B(G)
be the following bipartite graph. Let

V
(

B(G)
)

=
{

vi,1, vi,2 | i ∈ [n]
}

and for all i, j ∈ [n] if vivj ∈ E(G), then connect vi,1 to vj,2 and vi,2 to vj,1. Also
for all i ∈ [n] connect vi,1 to vi,2, see Figure 2.

To prove Theorems 7 and 9, first we show how the toughness of B(G) can be
computed from the toughness of G.

Claim 21. Let G be an arbitrary connected graph. Then τ(B(G))=min(2τ(G), 1).

Proof. Let G be an arbitrary graph on the vertices v1, . . . , vn with τ(G) = t.

Case 1. t ≤ 1/2. Let G′ = B(G) and let S0 ⊆ V (G) be an arbitrary tough
set in G. (Note that since τ(G) ≤ 1/2, the graph G is noncomplete, therefore it
has a tough set.) Consider the vertex set

S′
0 =

{

vi,1, vi,2 | vi ∈ S0

}

.

Clearly, S′
0 is a cutset in G′ and

ω
(

G′ − S′
0

)

= ω(G− S0) =
|S0|

t
=

|S′
0|

2t
,

so τ(G′) ≤ 2t.
Now we prove that τ(G′) ≥ 2t, i.e.,

ω(G′ − S′) ≤
|S′|

2t

holds for any cutset S′ of G′. Therefore, let S′ be an arbitrary cutset in G′ and
let

S′
1 =

{

vi,1 ∈ S′ | vi,2 6∈ S′
}

∪
{

vi,2 ∈ S′ | vi,1 6∈ S′
}
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and
S′
2 = S′ \ S′

1.

Consider the components of G′ − S′ which contain either both or none of the
vertices vi,1, vi,2 for any i ∈ [n]. These components of G′−S′ are also components
of G′ − S′

2, so (similarly as before) the number of these components is at most
|S′

2|/2t. The number of the remaining components — so in which there is at least
one vertex without its pair — can be at most |S′

1|, because the pair of the vertex
mentioned before must be in S′

1. Since t ≤ 1/2,

ω(G′ − S′) ≤
|S′

2|

2t
+ |S′

1| ≤
|S′

2|

2t
+

|S′
1|

2t
=

|S′|

2t
,

which implies that τ(G′) ≥ 2t.
Hence,

τ(G′) = 2t = 2τ(G) = min
(

2τ(G), 1
)

.

Case 2. t > 1/2. By Proposition 15, there exists a spanning subgraph H
with τ(H) = 1/2. Then B(H) is a spanning subgraph of B(G), so

τ
(

B(G)
)

≥ τ
(

B(H)
)

,

and as we saw in Case 1,

τ
(

B(H)
)

= 2τ(H) = 1.

Since B(G) is a bipartite graph, τ
(

B(H)
)

≤ 1. Hence,

τ
(

B(G)
)

= 1 = min
(

2τ(G), 1
)

. �

Proof of Theorem 7 and alternative proof of Theorem 3. In Corollary 20
we already proved that if t ≤ 1, then Exact-t-Tough-Bipartite ∈ DP, more-
over, (Exact-)1-Tough-Bipartite ∈ coNP.

Now we reduce the DP-complete problem Exact-t/2-Tough to Exact-
t-Tough-Bipartite if t < 1, and the coNP-complete problem 1/2-Tough to
(Exact-)1-Tough-Bipartite.

Let t < 1 be a positive rational number and let G be an arbitrary connected
graph. By Claim 21,

– τ
(

B(G)
)

= t if and only if τ(G) = t/2, and

– τ
(

B(G)
)

= 1 if and only if τ(G) ≥ 1/2,

thus the statement of the theorem follows.

Proof of Theorem 8. Since in the above proof τ
(

B(G)
)

≥ t if and only if
τ(G) ≥ t/2 for any positive rational number t ≤ 1, we can reduce t/2-Tough to
t-Tough-Bipartite, so the statement of the theorem follows.
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Note that the case t = 1 was already proved by Kratsch et al. in [8]. In their
proof the vertices vi,1 and vi,2 are not connected by an edge, but by a path with
two inner vertices. With that construction the original graph is 1-tough if and
only if the obtained bipartite graph is exactly 1-tough. However, due to the inner
vertices of the paths mentioned before, the constructed bipartite graph has a lot
of vertices of degree 2, so these graphs are neither regular (except for cycles) nor
3-connected.

To deal with the problem of determining the complexity of recognizing 3-
connected bipartite graphs, we only need one more proposition.

Proposition 22. Let G be an arbitrary graph. Then κ
(

B(G)
)

≥ κ(G).

Proof. Let S be an arbitrary cutset in B(G). We need to show that |S| ≥ κ(G).
Let

W =
{

vi,1, vi,2
∣

∣ {vi,1, vi,2} ∩ S = ∅
}

.

Case 1. The vertices of W belong to at least two components of B(G) − S.
Then

S′ =
{

vj ∈ V (G) | vj,1, vj,2 /∈ W
}

is a cutset in G. Its removal from G disconnects the corresponding vertices of W
that belong to different components of B(G)− S. Obviously,

|S| ≥ |S′| ≥ κ(G).

Case 2. All vertices of W belong to one component of B(G) − S. Since S
is a cutset in B(G), there exists a component L for which L ∩W = ∅. We can
assume that vi,1 ∈ L for some i ∈ [n]. Then vi,2 ∈ S since L ∩W = ∅. Also, for
every j ∈ [n], if vivj ∈ E(G), then either vj,2 ∈ S or vj,2 ∈ L, and in the latter
case vj,1 ∈ S holds since L ∩W = ∅. Therefore,

|S| ≥ d(vi,1) = d(vi) + 1 ≥ δ(G) + 1 > κ(G).

Hence, κ
(

B(G)
)

≥ κ(G).

Proof of Theorem 9. Let k ≥ 2 be an integer and t ≤ 1 positive rational
number. Applying the proof of Theorem 8 for k-connected bipartite graphs, the
statement of theorem follows from Proposition 22.

5. On the Toughness of Regular Graphs, Proofs of Theorems 10,
11, and 12

For any positive rational number t and positive integer r let t-Tough-r-Regular
denote the problem of determining whether a given r-regular graph is t-tough,
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and let t-Tough-r-Regular-Bipartite denote the same problem for bipartite
graphs.

For any odd number r ≥ 5 let Hr be the complement of the graph whose
vertex set is

V =
{

w, u1, . . . , ur+1

}

and whose edge set is

E =





r−1

2
⋃

i=1

{ui, ur−i+2}



 ∪
{

w, u(r+1)/2

}

∪
{

w, u(r+3)/2

}

.

For any even number r ≥ 6 let Hr be a bipartite graph with color classes

A =
{

wa, a1, . . . , ar−1

}

and B =
{

wb, b1, . . . , br−1

}

,

which can be obtained from the complete bipartite graph by removing the edge
{wa, wb}. (See the graphs H5, H5 and H6 in Figure 3.)

H5

w

u1
u2

u3

u4

u5
u6

H5

w

u1
u2

u3

u4

u5
u6

H6
wa

wb

a1 a5

b1 b5

Figure 3. The graphs H5, H5 and H6.

Claim 23. For any integer r ≥ 5, τ(Hr) ≥ 1.

Proof. There is a Hamiltonian cycle in Hr, namely

wu1u2 · · ·ur+1w

if r is odd, and

wab1a1wba2b2a3b3 · · · ar−1br−1wa

if r is even, so τ(Hr) ≥ 1. �

Lemma 24. For any fixed odd number r ≥ 5 the problem 1/2-Tough is coNP-

complete for r-regular graphs.
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Proof. Obviously, 1/2-Tough-r-Regular ∈ coNP. To prove that it is coNP-
hard we reduce 1-Tough-(r − 1)-Regular (which is coNP-complete by Theo-
rem 2) to it.

LetG be an arbitrary connected (r−1)-regular graph on the vertices v1, . . . , vn
and let G′ be defined as follows. For all i ∈ [n] let

Vi =
{

wi, ui1, . . . , u
i
r+1

}

and place the graph Hr on the vertices of Vi and also connect vi to wi, see
Figure 4. It is easy to see that G′ is r-regular and can be constructed from G in
polynomial time. Now we prove that G is 1-tough if and only if G′ is 1/2-tough.

G

v1

vn

w1

u11 u12

u1ru1r+1

Hr

wn

un1 un2

unrunr+1

Hr

Figure 4. The graph G′ constructed in the proof of Lemma 24.

If G is not 1-tough, then there exists a cutset S ⊆ V (G) satisfying ω(G−S) >
|S|. Then S is also a cutset in G′ and

ω(G′ − S) = ω(G− S) + |S| > 2|S|,

so τ(G′) < 1/2.

Now assume that G is 1-tough. Let S ⊆ V (G′) be an arbitrary cutset in G′,
and let S0 = V (G) ∩ S and Si = Vi ∩ S for all i ∈ [n]. Using these notations it is
clear that

S = S0 ∪

(

n
⋃

i=1

Si

)

and

ω(G′ − S) ≤ ω
(

G− S0

)

+ |S0|+
n
∑

i=1

ω(H i
r − Si),
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where H i
r denotes the i-th copy of Hr, i.e., the graph on the vertex set Vi for all

i ∈ [n]. Since G is 1-tough and by Claim 23, so is Hr, it follows from Proposition
16 that

ω(G− S0) ≤ |S0|

and
ω(H i

r − Si) ≤ |Si|.

Therefore,

ω(G′ − S) ≤ |S0|+ |S0|+
n
∑

i=1

|Si| ≤ 2|S|,

so τ(G′) ≥ 1/2.

Lemma 25. For any fixed even number r ≥ 6 the problem 1/2-Tough is coNP-

complete for r-regular graphs.

Proof. Obviously, 1/2-Tough-r-Regular ∈ coNP. To prove that it is coNP-
hard we reduce 1-Tough-(r − 2)-Regular (which is coNP-complete by Theo-
rem 2) to it.

LetG be an arbitrary connected (r−2)-regular graph on the vertices v1, . . . , vn
and let G′ be defined as follows. For all i ∈ [n] let

Ai =
{

wi
a, a

i
1, . . . , a

i
r−1

}

, Bi =
{

wi
b, b

i
1, . . . , b

i
r−1

}

and place the graph Hr on the color classes Ai and Bi and also connect vi to wi
a

and wi
b, see Figure 5. It is easy to see that G′ is r-regular and can be constructed

from G in polynomial time.

G

v1

vn

w1
a

b11 b1r−1

a11
a1r−1

w1
b

Hr

wn
a

bn1 bnr−1

an1
anr−1

wn
b

Hr

Figure 5. The graph G′ constructed in the proof of Lemma 25.

Similarly as in the proof of Lemma 24, it can be shown that G is 1-tough if
and only if G′ is 1/2-tough.
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Proof of Theorem 11. The theorem directly follows from Lemmas 24 and 25.

Using this result, we can prove Theorem 10.

Proof of Theorem 10. Obviously, 1-Tough-r-Regular-Bipartite ∈ coNP.
To prove that it is coNP-hard we reduce 1/2-Tough-(r− 1)-Regular (which is
coNP-complete by Theorem 11) to it.

Let G be an arbitrary connected (r − 1)-regular graph and let B(G) denote
the bipartite graph defined at the beginning of Section 4. Then B(G) is r-regular
and by Claim 21, the graph G is 1/2-tough if and only if B(G) is 1-tough.

For any r ∈ {3, 4, 5} the problem of determining the complexity of 1-Tough-
r-Regular-Bipartite remains open. The reason why our construction does not
work in these cases is that we can decide in polynomial time whether an at most
4 regular graph is 1/2-tough, which we prove in the rest of this paper.

Lemma 26. For any connected 3-regular graph G, the following are equivalent.

(1) There is a cut-vertex in G.

(2) τ(G) ≤ 1/2.

(3) τ(G) < 2/3.

Proof.

(1) =⇒ (2) : Trivial.

(2) =⇒ (3) : Trivial.

(3) =⇒ (1) : If τ(G) < 2/3, then there exists a cutset S ⊆ V (G) satisfying

ω(G− S) >
3

2
|S|.

Hence there must exist a component of G − S that has exactly one neighbor in
S: since G is connected, every component has at least one neighbor in S, and if
every component of G − S had at least two neighbors in S, then the number of
edges going into S would be at least 2ω(G − S) > 3|S|, which would contradict
the 3-regularity of G. Obviously, this neighbor in S is a cut-vertex in G.

Proof of Theorem 12. Let G be an arbitrary connected 3-regular graph. First
check whether G contains a cut-vertex. By Lemma 26, if it does not, then τ(G) ≥
2/3, but if it does, then τ(G) ≤ 1/2. We prove that in the latter case either
τ(G) = 1/3 or τ(G) = 1/2, and we can also decide in polynomial time which one
holds.

Since G is 3-regular, ω(G−S) ≤ 3|S| holds for any cutset S of G, so τ(G) ≥
1/3. Now we show that if τ(G) < 1/2, then τ(G) ≤ 1/3.
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So assume that τ(G) < 1/2 and let S be a tough set ofG and let k = ω(G−S).
Then k > 2|S|. Contract the components of G− S into single vertices u1, . . . , uk
while keeping the multiple edges and let H denote the obtained multigraph. Since
G is connected, d(ui) ≥ 1 holds for any i ∈ [k], so

k =
∣

∣{i ∈ [k] : d(ui) = 1}
∣

∣+
∣

∣{i ∈ [k] : d(ui) ≥ 2}
∣

∣.

Since G is 3-regular,

3|S| ≥
k
∑

i=1

d(ui) ≥
∣

∣{i ∈ [k] : d(ui) = 1}
∣

∣+ 2 ·
∣

∣{i ∈ [k] : d(ui) ≥ 2}
∣

∣

= k +
∣

∣{i ∈ [k] : d(ui) ≥ 2}
∣

∣ > 2|S|+
∣

∣{i ∈ [k] : d(ui) ≥ 2}
∣

∣,

so

|S| >
∣

∣{i ∈ [k] : d(ui) ≥ 2}
∣

∣.

Therefore,

∣

∣{i ∈ [k] : d(ui) = 1}
∣

∣ = k −
∣

∣{i ∈ [k] : d(ui) ≥ 2}
∣

∣ > 2|S| − |S| = |S|,

which means that there exists a vertex in S having at least two neighbors in
{u1, . . . , uk} of degree 1. Then the removal of this vertex leaves at least three
components (and note that since G is 3-regular, it cannot leave more than three
components), so τ(G) ≤ 1/3.

From this it also follows that τ(G) = 1/3 if and only if there exists a cut-
vertex whose removal leaves three components.

To summarize, it can be decided in polynomial time whether a connected
3-regular graph is 2/3-tough, and if it is not, then its toughness is either 1/3 or
1/2. In both cases the graph contains at least one cut-vertex, and if the removal
of any of them leaves (at least) three components, then the toughness of the
graph is 1/3, otherwise it is 1/2.

Claim 27. The toughness of any connected 4-regular graph is at least 1/2.

Proof. Let G be a connected 4-regular graph and let S be an arbitrary cutset
in G and L be a component of G− S. Since every vertex has degree 4 in G, the
number of edges between S and L is even (more precisely, it is equal to the sum
of the degrees in G of the vertices of L minus two times the number of edges
induced by L). Since G is connected, the number of these edges is at least two.
On the other hand, since G is 4-regular, there are at most 4|S| edges between S
and L. Therefore ω(G− S) ≤ 2|S|, which means that τ(G) ≥ 1/2. �

Proof of Theorem 13. It directly follows from Claim 27.
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