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Abstract

A graph G is called an odd (even) graph if for every vertex v ∈ V (G),
dG(v) is odd (even). Let G be a graph of even order. Scott in 1992 proved
that the vertices of every connected graph of even order can be partitioned
into some odd induced forests. We denote the minimum number of odd
induced subgraphs which partition V (G) by od(G). If all of the subgraphs
are forests, then we denote it by odF (G). In this paper, we show that if
G is a connected subcubic graph of even order or G is a connected planar
graph of even order, then odF (G) ≤ 4. Moreover, we show that for every
tree T of even order odF (T ) ≤ 2 and for every unicyclic graph G of even
order odF (G) ≤ 3. Also, we prove that if G is claw-free, then V (G) can be
partitioned into at most ∆(G)−1 induced forests and possibly one indepen-
dent set. Furthermore, we demonstrate that the vertex set of the line graph
of a tree can be partitioned into at most two odd induced subgraphs and
possibly one independent set.
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1. Introduction

All graphs considered in this paper are simple, that is, with no loops or multiple
edges. Let G be a graph with the vertex set V (G) and the edge set E(G).
The number of vertices of G is called the order of G. Also, δ(G) and ∆(G)
denote the minimum degree and the maximum degree of G, respectively. For a
vertex v ∈ V (G), dG(v) and NG(v) denote the degree of v in G and the set of
all the neighbors of v in G, respectively. Also, for a subset S ⊆ V (G), define
NG(S) =

⋃

v∈S NG(v).

Definition. A graph G is called an odd (even) graph if for every vertex v ∈ V (G),
dG(v) is odd (even).

For a subset X ⊆ V (G), we denote the induced subgraph on X by 〈X〉. By
G \H, we mean the induced subgraph on V (G) \ V (H).

Definition. An induced matching in a graph G is a set of edges, no two of which
meet a common vertex or are joined by an edge of G.

For two vertex disjoint subgraphs S and T of G, eG(S, T ) denotes the number
of edges with one end in S and the other one in T .

Definition. The line graph L(G) of a graph G, is obtained by associating a
vertex with each edge of G and joining two vertices with an edge if and only if
the corresponding edges of G have a vertex in common.

Definition. A cubic graph G is a graph with ∆(G) = δ(G) = 3, and a subcubic

graph G is a graph with ∆(G) ≤ 3.

Definition. A claw-free graph is a graph that does not have a claw as an induced
subgraph, where a claw is the complete bipartite graph K1,3.

Definition. A graph G is called unicyclic if it is connected and contains exactly
one cycle.

Definition. An outerplanar graph is a planar graph such that all vertices lie on
a single face.

Moreover, the complete graph of order n is denoted by Kn.

Definition. A cut vertex is a vertex whose removal from a graph creates more
components than the previous graph. Also, a graph is called k-connected if the
minimum number of vertices whose removal would disconnect the graph is at
least k.
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Definition. A block of a graph is a maximal 2-connected subgraph. The block

decomposition of a graph is just the set of all blocks of the graph. A leaf block of
a graph G is a block containing at most one cut vertex of G.

Definition. A proper k-coloring of a graph G is an assignment of k colors to the
vertices of G such that no two adjacent vertices have the same colors.

Definition. The chromatic number of G is the minimum number of colors to
color the vertices of G such that no two adjacent vertices have the same color
and is denoted by χ(G).

We denote the minimum number of odd induced subgraphs which partition
V (G) by od(G). Moreover, we denote the minimum number of odd induced
forests which partition V (G) by odF (G). Clearly, od(G) ≤ odF (G). It was
proved that the vertices of every graph G can be partitioned into at most two
even induced subgraphs, see [7, Exercise 5.19]. A spanning subgraph S of G is
called a perfect forest if S is a forest and each tree of S is an odd induced subgraph
of G. Scott proved that the vertices of every connected graph G of even order can
be partitioned into some odd induced subgraphs, see [10] and [11]. The following
theorem was proved in [5].

Theorem A. Every connected graph of even order contains a perfect forest.

In this paper, we show that if G is a connected subcubic graph of even order
or G is a connected planar graph of even order, then odF (G) ≤ 4. By a computer
search, we see that the smallest graph with od(G) = odF (G) = 4 is the graph
given in Figure 1. This graph shows that 4 is sharp.
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Figure 1. A graph G with od(G) = odF (G) = 4.

Moreover, we prove that for every tree T of even order, odF (T ) ≤ 2 and
for every unicyclic graph G of even order, odF (G) ≤ 3. Also we show that for
every positive integer k, there exists a graph of even order such that od(G) > k.
Furthermore, we show that if G is a claw-free graph, then V (G) can be partitioned
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into at most ∆(G) − 1 odd induced forests and possibly one independent set.
Besides, we demonstrate that if T is a tree, then V (L(T )) can be partitioned into
at most two odd induced subgraphs and possibly one independent set.

2. Upper Bounds for Odd Induced Number of Some Families

of Graphs

Let G be a graph of even order. By Theorem A, there exists a vertex partitioning
Ω in which V (G) can be partitioned into some odd induced trees. Now, define a
new graph. Assign a vertex to each odd induced tree and join two vertices if there
exists at least one edge between the corresponding odd induced trees. Denote
this graph by HΩ(G). For instance, consider the graph G shown in Figure 1.
There exists a vertex partitioning Ω as follows.

Ω = {{a, b, c, d}, {e, f}, {g, h}, {i, j}}.

So, HΩ(G) is the graph shown in Figure 2.

{a, b, c, d} {e, f}

{g, h} {i, j}

Figure 2. HΩ(G).

In this section, we apply Theorem A to prove that the vertices of every tree
of even order can be partitioned into at most two odd induced forests. First we
start with the following lemma.

Lemma 1. Let G be a graph of even order. Then odF (G) ≤ χ(HΩ(G)), where Ω
partitions V (G) into odd induced trees.

Proof. Consider a proper χ(HΩ(G))-coloring of HΩ(G). Note that the union of
all trees corresponding to vertices of each color class forms an odd induced forest
in G. So, odF (G) ≤ χ(HΩ(G)).

Corollary 2. The following statements hold.

(i) For every tree T of even order, odF (T ) ≤ 2.

(ii) For every unicyclic graph G of even order, odF (G) ≤ 3.

Proof. (i) Clearly, HΩ(T ) is a tree, where Ω partitions V (G) into odd induced
forests. Since χ(HΩ(T )) ≤ 2, Lemma 1 completes the proof.
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(ii) It is clear that HΩ(G) has at most one cycle and so χ(HΩ(G)) ≤ 3. Now,
by Lemma 1, we are done.

Remark 3. For every graph G of even order, one can see that odF (G) =
minΩ(χ(HΩ(G))), where Ω is taken over all odd induced forest partitions of
V (G). To see this, by Lemma 1, odF (G) ≤ minΩ(χ(HΩ(G))). Now, consider
an odd induced forest partitioning of size odF (G) and call it by Ω. This yields
that odF (G) ≥ minΩ(χ(HΩ(G))) and so, odF (G) = minΩ(χ(HΩ(G))).

The next result shows that the minimum number of odd induced forests,
which partition a planar graph does not exceed 4.

Theorem 4. If G is a connected planar graph of even order, then odF (G) ≤ 4.

Proof. Let Ω be a partition of V (G) into odd induced forests. Consider HΩ(G).
We claim that HΩ(G) is planar. To see this, suppose that F is one of the odd
induced forests which partition V (G). By contraction of |E(F )| edges, F leads
to one independent set. If we do the same for every odd induced forest and join
two vertices if there exists at least one edge between corresponding forests, this
graph is indeed HΩ(G). Notice that the contraction of a planar graph in an
edge is planar, see [12]. So, HΩ(G) is planar. By Four-Color Theorem, see [3],
χ(HΩ(G)) ≤ 4 and so, Lemma 1 completes the proof.

Remark 5. IfG is a connected outerplanar graph of even order, then odF (G) ≤ 3.
First, notice that for every outerplanar graph G, HΩ(G) is an outerplanar graph.
Now, apply the method used in the proof of Theorem 4 to obtain χ(HΩ(G)) ≤ 3,
see [4].

Now, we want to determine od(G∗), whereG∗ is a graph obtained by replacing
each edge with a path of length 2.

Theorem 6. If G is a connected graph of even (odd) order with even (odd)
number of edges, then od(G∗) = odF (G

∗) = χ(G).

Proof. Obviously, G∗ is a graph of even order. Now, by Theorem A, V (G∗) can
be partitioned into some odd induced subgraphs. In the partition of V (G∗) into
odd induced subgraphs, note that if u, v ∈ V (G) and uv ∈ E(G), then u and v do
not belong to the same odd induced subgraphs of V (G∗), because otherwise the
vertex adjacent to u and v has degree zero or two in the odd induced subgraph,
a contradiction. Clearly, every connected odd induced subgraph is a star whose
center belongs to V (G). Thus, odF (G

∗) = od(G∗). Let Ω be the partitioning
of V (G∗) into odd induced forests, say F1, . . . , FodF (G∗). Then color all vertices
of V (G) which are contained in Fi by color i, for i = 1, . . . , odF (G

∗). Since the
colored vertices of G are independent, we conclude that odF (G

∗) ≥ χ(G). Now,
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we show that odF (G
∗) ≤ χ(G). Consider a proper χ(G)-coloring of G. For each

i, 1 ≤ i ≤ χ(G), we define Ai to be all vertices of G∗ which belong to a star
in the partition Ω whose center has color i in G. Obviously, {A1, . . . , Aχ(G)} is
an odd induced forest partitioning of V (G∗). Therefore, odF (G

∗) ≤ χ(G). So,
χ(G) ≤ od(G∗) = odF (G

∗) ≤ χ(G) and the proof is complete.

Remark 7. If n = 0, 3 (mod 4), then od(K∗
n) = n. Thus, for every positive

integer k, there exists a graph of even order that od(G) > k.

3. Vertex Partitioning of Subcubic Graphs into Odd

Induced Forests

In this section, we would like to investigate odF (G) for a subcubic graph G.

Theorem 8. Let G be a connected subcubic graph of even order. Then odF (G)
≤ 4.

Proof. The proof is by induction on |V (G)|. Clearly, the assertion holds for
|V (G)| = 2. Now, two cases may be occurred.

Case 1. Suppose that G has a cut vertex u. Since G \ {u} is a graph of
odd order, so it has at least one connected component of odd order. Call this
component by H1 and let H ′

1 = 〈V (H1) ∪ {u}〉 and H2 = G \ H ′
1. By the

induction hypothesis, odF (H
′
1) ≤ 4. Suppose that V (H ′

1) is partitioned into odd
induced forests {O1, . . . , Ol}, where l ≤ 4 and u ∈ V (O1). We define OD(H ′

1) =
{O1, . . . , Ol, ∅, . . . , ∅}, in which the number of ∅ is 4− l. Now, add a new vertex
v to 〈V (H2) ∪ {u}〉 and join v to u. Call the new graph by H ′

2. Clearly, H ′
2 has

even order. Two cases can be considered.

(i) H ′
2 6≃ G. Then by the induction hypothesis, odF (H

′
2) ≤ 4. Let {O′

1, . . . ,

O′
t}, t ≤ 4 be the set of odd induced forests which partition V (H ′

2) such that
u, v ∈ V (O′

1). We define OD(H ′
2) = {O′

1, . . . , O
′
4}, where O′

i may be empty for
some i. Now, since dO1(u) + dO′

1\{v}
(u) is odd, it is easy to see that {O1 ∪ (O′

1 \
{v}), O2 ∪O′

2, O3 ∪O′
3, O4 ∪O′

4}, after removing the empty sets, is a partitioning
of V (G) into odd induced forests and we are done.

(ii) H ′
2 ≃ G. Now, if H2 is connected, then by the induction hypothesis,

odF (H2) ≤ 4. Let OD(H2) = {Ô1, . . . , Ô4}. Now, since G is a subcubic graph,
with no loss of generality, one may assume that eG(〈u, v

′〉, Ô1) = 0, where v′ is
the corresponding vertex v in G. This implies that {〈Ô1 ∪ {u, v′}〉, Ô2, . . . , Ô4},
after removing the empty sets, is a partitioning of V (G) into odd induced forests.
Now, assume that H2 is not connected. Clearly, since G is subcubic, we have
dG(u) = 3 and H2 = W1 ∪ W2, where W1 and W2 are two connected com-
ponents of H2. Let w1 ∈ V (W1), w2 ∈ V (W2) and uw1, uw2 ∈ E(G). Since
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H2 is of even order, the orders of W1 and W2 have the same parity. Now, if
|V (W1)| = |V (W2)| = 0 (mod 2), then by the induction hypothesis, there are odd
induced forest partitioning of V (W1) and V (W2), say OD(W1) = {O1 . . . , O4}
and OD(W2) = {O′

1 . . . , O
′
4}, where w1 ∈ V (O1) and w2 ∈ V (O′

1). Then clearly,
{O1∪O′

1, 〈O2∪O′
2∪{u, v′}〉, O3∪O′

3, O4∪O′
4}, after removing the empty sets, is a

partitioning of V (G) into odd induced forests. Now, assume that |W1| = |W2| = 1
(mod 2). Add two new vertices s1 and s2 to W1 and W2, join s1 to w1 and s2 to
w2 and call the resultant graphs by G1 and G2, respectively. By the induction
hypothesis, there are odd induced forests which partition V (G1) and V (G2), say
OD(G1) = {O1 . . . , O4} and OD(G2) = {O′

1 . . . , O
′
4} such that w1, s1 ∈ V (O1)

and w2, s2 ∈ V (O′
1). Thus, OD(G) = {(O1 \ {s1}) ∪ (O′

1 \ {s′1}) ∪ {u, v′}, O2 ∪
O′

2, O3 ∪ O′
3, O4 ∪ O′

4}, after removing the empty sets, is a partitioning of V (G)
into odd induced forests and we are done.

Case 2. Suppose that G is 2-connected. First, let us assume that G is cubic.
Since G is 2-connected, by Petersen Theorem [9], G has a perfect matching. Form
a new graph H by assigning a vertex to each edge of this perfect matching and
joining two vertices if there exists at least one edge between the corresponding
edges. Since G is cubic, ∆(H) ≤ 4. Now, connectivity of G implies that H is
connected as well. If H 6≃ K5, then by Brooks’ Theorem, see [13, p. 197], one
can properly color the vertices of H with 4 colors. Then, the induced subgraph
corresponding to every color class of V (H) forms an induced perfect matching in
G, so odF (G) ≤ 4. Thus, we can assume that H ≃ K5. Since every cubic graph of
order 10 has 15 edges, there is exactly one edge between any pair of the edges of
the perfect matching. If G is claw-free, consider a triangle with vertices u, v and
w. Since G is a claw-free graph of even order, every edge is contained in a perfect
matching, see [6]. Therefore, uv can be extended to a perfect matching. Now,
consider that edge in perfect matching which is incident with w. Since there are
at least two edges between this edge and uv, we obtain a contradiction. Now,
assume that G is not claw-free. So, G contains an induced subgraph K1,3. Let
L = G\V (K1,3). Clearly, L is a connected graph of order 6. By Theorem A, V (L)
can be partitioned into at most three odd induced forests. Thus, odF (G) ≤ 4, as
desired.

Now, assume that G is not cubic. By [13, p. 208], for every 2-connected graph
G and for every vertex u ∈ V (G), there exists v ∈ NG(u) such that G \ {u, v} is
connected. Then we can assume that there exist two adjacent vertices u and v,
such that G \ {u, v} is connected and dG(u) = 2. Set H ′ = G \ {u, v}. By the
induction hypothesis, there is an odd induced forest partitioning of V (H ′) such
that OD(H ′) = {O1, . . . , O4}. It is easy to see that eG(O1 ∪ · · · ∪O4, 〈u, v〉) ≤ 3.
Thus with no loss of generality, one can assume that eG(O1, 〈u, v〉) = 0 and so
OD(G) = {O1 ∪ {u, v}, . . . , O4}. By removing the empty sets, we have an odd
induced forest partitioning of V (G) and the proof is complete.
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Now, we propose the following conjecture.

Conjecture 9. Let G be a connected graph of even order. Then, odF (G) ≤
∆(G) + 1.

Theorem 10. Let G be a subcubic graph. Then V (G) can be partitioned into at

most three odd induced subgraphs and possibly one independent set.

Proof. We know that V (G) can be partitioned into two induced subgraphs, one
odd and one even, see [7]. Let us denote the odd induced subgraph by O1. Also,
the even induced subgraph is a disjoint union of cycles and an independent set,
say S. It is not hard to see that the vertices of all cycles can be partitioned
into two induced matchings and possibly one independent set. We show them
by O2, O3 and S′, respectively. Obviously, O1, O2, O3 and S ∪ S′ are the desired
partitioning of V (G) and the proof is complete.

We close this section with the following conjecture.

Conjecture 11. The vertices of every graph G can be partitioned into at most

∆(G)− 1 odd induced subgraphs and possibly one independent set.

4. Vertex Partitioning of Claw-Free Graphs into Odd

Induced Forests and One Independent Set

In this section, we focus on claw-free graphs.

Theorem 12. If G is a cubic claw-free graph, then V (G) can be partitioned into

two induced matchings and possibly one independent set.

Proof. Let H and L partition V (G) such that eG(H,L) is maximum among
all possible partitions of V (G) into two parts. This implies that ∆(H) ≤ 1 and
∆(L) ≤ 1. Since ∆(H) ≤ 1, H is the union of two subgraphs H0 and H1 such that
H0 is an independent set and H1 is 1-regular. Similarly, define L0 and L1. Let
S = 〈H0 ∪ L0〉. Since G is claw-free and eG(H0, H1) = eG(L0, L1) = 0, one can
easily see that S is the union of isolated edges and some isolated vertices. Among
all partitions of V (G) into (H0, H1, L0, L1), consider that partition such that
|E(S)| is minimum. By switching some vertices between three sets L1, H1 and
S and updating them, we want to remove all edges in S such that the remaining
would be just isolated vertices. Note that if S includes only isolated vertices,
then H1, L1 and S would be the desired partition. Now, assume that there exists
an edge uv ∈ E(S). Without loss of generality, suppose that u ∈ V (H0) and
v ∈ V (L0). Since G is a cubic claw-free graph, u is adjacent to two vertices
x, y ∈ V (L1) such that xy ∈ E(L1). Now, two cases may occur.
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First, suppose that |NH0(y)| = 1. Then, add u to L1 \ {y} and y to L0.
Now, assume that |NH0(y)| = 2 and y is adjacent to u′, u′ ∈ V (H0). Add u

to L1 \ {y} and {y, u′} to H1. It is not hard to see that this procedure will not
add any new edge to S. This leads to a new S which has at least one less edge.
By removing each edge in S step by step, we find the desired partition.

Now, we generalize the previous result to subcubic claw-free graphs.

Theorem 13. If G is a subcubic claw-free graph, then V (G) can be partitioned

into at most two induced matchings and possibly one independent set.

Proof. Clearly, we can assume that G is connected. If ∆(G) ≤ 2, then G is a
disjoint union of paths and cycles and since the vertices of each path and each
cycle can be partitioned into at most two induced matchings and one independent
set, we are done. So, we can assume that there is at least one vertex v of degree
3. Since G is claw-free, at least two neighbors of v, say u and w, are adjacent.
Now, we prove the assertion by induction on |V (G)|. The assertion holds for
|V (G)| = 2. Let X = {u, v, w} and G′ = G \ X. Then, G′ is a claw-free graph
with ∆(G′) ≤ 3 and V (G′) can be partitioned into at most two induced matchings
A,B and one independent set S (Note that maybe A,B or S do not exist). First
we prove the theorem if u or w, say u, has degree 2. With no loss of generality,
we can suppose that NG(v)∩ V (A) = ∅. If NG(w)∩ V (A) = ∅, then A∪ {vw}, B
and S ∪ {u} are the desired partition. Moreover, if NG(w) ∩ V (A) 6= ∅, then
A ∪ {u, v}, B and S ∪ {w} are the desired partition. Thus, we can suppose that
dG(u) = dG(v) = dG(w) = 3. Now, four cases may occur.

Case 1. V (A) ∩ NG(X) 6= ∅, V (B) ∩ NG(X) 6= ∅ and V (S) ∩ NG(X) 6= ∅.
Without loss of generality, suppose that NG(u) ∈ V (A), NG(v) ∈ V (B) and
NG(w) ∈ V (S). So, A ∪ {vw}, B and S ∪ {u} is the desired partition of V (G).

Case 2. V (S) ∩ NG(X) = ∅. Two cases can be considered. Without
loss of generality, suppose that NG(u) ∈ V (A) and NG(v), NG(w) ∈ V (B) or
NG(u), NG(v), NG(w) ∈ V (B). Obviously, in both cases A∪{vw}, B and S∪{u}
are the desired partition of V (G).

Case 3. V (A) ∩ NG(X) 6= ∅ and V (B) ∩ NG(X) = ∅. Without loss of
generality, suppose that NG(u) ∈ V (A). Then one can see that A, B ∪ {vw} and
S ∪ {u} is the desired partition of V (G).

Case 4. (V (A) ∪ V (B)) ∩ NG(X) = ∅. Let call the neighbors of u, v, w in
S, by u′, v′, w′, respectively. Two cases may occur. First, assume that at least
two neighbors of X are the same and without loss of generality, suppose that
u′ = v′. Since dG(u

′) ≤ 3, |NA(u
′) ∪ NB(u

′)| ≤ 1. So, we can assume that
NA(u

′) = ∅. It is obvious that A∪ {uu′}, B ∪ {vw} and S \ {u′} partition V (G).
Thus suppose that {u′, v′, w′} are different. Now, if one of the {u′, v′, w′}, say u′,
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has degree two in G, then by the same method used in the previous argument we
are done. Thus one may assume that dG(u

′) = dG(v
′) = dG(w

′) = 3. Therefore
we can assume that every vertex of each triangle in G has degree 3. Also, the
neighbors of vertices of any triangle in G are independent. Clearly, G is cubic
and by Theorem 12, the proof is complete.

Theorem 14. If G is a claw-free graph with ∆(G) ≥ 3, then V (G) can be

partitioned into at most ∆(G)−1 induced matchings and possibly one independent

set.

Proof. If ∆(G) = 3, then by Theorem 13, the assertion is trivial. So, assume
that ∆(G) ≥ 4. It was proved that if there are non-negative integers k1, . . . , km
such that

m
∑

i=1

ki ≥ ∆(G) + 1−m,

then V (G) can be partitioned into m induced subgraphs, each of which has max-
imum degree at most ki, see [8]. Now, define k1 = 3 and k2 = ∆(G) − 4. Since
k1 + k2 = ∆(G) − 1 ≥ ∆(G) + 1 − 2, V (G) can be partitioned into two induced
subgraphs H1 and H2 such that ∆(H1) ≤ 3 and ∆(H2) ≤ ∆(G) − 4. Moreover,
since G is claw-free, H1 and H2 are both claw-free. Now, we prove the theorem
by induction on ∆(G). Since ∆(H1) ≤ 3, V (H1) can be partitioned into at most
two induced matchings O1, O2 and one independent set S. Now, by induction
hypothesis V (H2) can be partitioned into at most ∆(H2)−1 ≤ ∆(G)−5 induced
matchings O′

1, . . . , O
′
∆(H2)−1 and one independent set S′. Let K = 〈S∪S′〉. Since

S and S′ are independent sets, K is a bipartite graph and moreover since G is
claw-free, ∆(K) ≤ 2. Consequently, K is a disjoint union of some paths and
even cycles. Notice that the vertices of every path and cycle can be partitioned
into at most two odd induced matchings and one independent set. Thus V (K)
can be partitioned into at most two induced matchings and one independent set.
Call the induced matchings of K by Õ1, Õ2, and the independent set by S̃. It
is obvious that O1, O2, O

′
1, . . . , O

′
∆(H2)−1, Õ1, Õ2 and S̃ partition V (G) and the

proof is complete.

5. Vertex Partitioning of Line Graphs into Odd

Induced Subgraphs and Independent Sets

In this section, we study the partitioning of the vertices of line graphs into odd
induced subgraphs and independent sets.

Theorem 15. If G is a graph, then V (L(G)) can be partitioned into at most
⌈

3∆(G)+2
5

⌉

induced matchings and possibly
⌈

3∆(G)+2
5

⌉

independent sets.
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Proof. In [2], it is proved that the edges of every graph G can be partitioned

into at most
⌈

3∆(G)+2
5

⌉

forests such that each component is a path. Denote these

forests by F1, . . . , F⌈ 3∆(G)+2
5

⌉. Now, consider L(F1), . . . , L
(

F⌈ 3∆(G)+2
5

⌉

)

. Each

L(Fi) is an induced subgraph of L(G) which consists of paths. Since the vertices
of every induced path can be partitioned into at most one induced matching and

one independent set, V (L(G)) can be partitioned into at most
⌈

3∆(G)+2
5

⌉

induced

matchings and
⌈

3∆(G)+2
5

⌉

independent sets, as desired.

The following conjecture is due to [1].

Conjecture 16. The edges of every graph G can be partitioned into
⌈

∆(G)+1
2

⌉

forests such that each component is a path.

Remark 17. We note that if Conjecture 16 holds, then for every graph G,

V (L(G)) can be partitioned into at most
⌈

∆(G)+1
2

⌉

induced matchings and
⌈

∆(G)+1
2

⌉

independent sets.

Now, we focus on the line graph of trees. We prove the following theorem.

Theorem 18. If T is a tree, then V (L(T )) can be partitioned into at most two

odd induced subgraphs and possibly one independent set.

Proof. The proof is by induction on |V (L(T ))|. Obviously, the assertion holds
for |V (L(T ))| ≤ 2. Now, consider the block decomposition of G = L(T ). It is
not hard to see that since T is a tree, each block of G is a complete graph. Now,
if G is 2-connected, then G is a complete graph and we are done. Thus, we can
assume that G has at least one cut vertex. Moreover, since G is claw-free, every
cut vertex of G is included in at most two blocks. Suppose that B is a leaf block
of G containing the cut vertex w. Note that B \ {w} = Kr, for some positive
integer r. Now, two cases may occur.

First, suppose that r ≥ 2. Since r ≥ 2, there are at least two vertices u and
v, such that uv ∈ E(B \ {w}). Remove u and v. Clearly, G \ {u, v} is the line
graph of a tree. So, by induction hypothesis, V (G \ {u, v}) can be partitioned
into at most two odd induced subgraphs and one independent set. If there is no
edge with one endpoint in {u, v} and another endpoint in one of the odd induced
subgraphs of G\{u, v}, then we add uv to that odd induced subgraph and we are
done. So, we can assume that there is at least one edge between each odd induced
subgraph ofG\{u, v} and {u, v}. If there exists exactly one odd induced subgraph
of G \ {u, v}, then by considering the odd induced subgraph {u, v}, we are done.
Thus assume that there are two odd induced subgraphs for G \ {u, v}. Since w

can be contained in at most one of the odd induced subgraphs of G\{u, v}, there



396 A. Aashtab, S. Akbari, M. Ghanbari and A. Shidani

is at least an odd induced subgraph O1 which does not contain w. Now, clearly
there is an odd component in O1, call K, such that NO1(u) = NO1(v) = V (K).
Thus, 〈K ∪ {u, v}〉 is a complete graph of even order and we are done.

Therefore, one may assume that all leaf blocks of G are K2. If we remove
all pendant vertices, the remaining graph S, will also be the line graph of a tree
and the remaining blocks form the block decomposition of S. Let B′ be a leaf
block of S. Obviously, B′ is a block in the block decomposition of G and all
blocks in G that have a common vertex with B′ are K2 except at most one block.
Now, suppose that B is the leaf block of G, such that V (B) ∩ V (B′) = {t}. If
G = B ∪ B′, then clearly we are done. Therefore B′ contains a cut vertex of G,
say z 6= t. Two cases may be considered.

First, assume that dB′\{z}(t) is odd. Define H to be B′ \ {z} union all leaf
blocks containing a vertex in B′ \ {z}. By induction hypothesis, every connected
component of G \H can be partitioned into at most two odd induced subgraphs
O1, O2 and one independent set I. Since NG\H(t) = {z}, there is one odd induced
subgraph, say O1, such that eG(t, O1) = 0. Now, add B′\{z} to O1 and call it O′

1.
Also add the remaining vertices of H to I and call it by I ′. Clearly, {O′

1, O2, I
′}

is the desired partition of G. So, we can assume that dB′\{z}(t) is even. Two
cases may occur.

(i) Every vertex of B′\{z} is adjacent to a leaf block. LetH be that subgraph
of G as defined before. Clearly, H is an odd graph. By induction hypothesis,
G \ H can be partitioned into at most two odd induced subgraphs O1, O2 and
one independent set I. With no loss of generality, assume that z ∈ V (O1). Then
clearly, {O1, O2 ∪H, I} is the desired partition of G and we are done.

(ii) There is a vertex x ∈ B′ \ {z} which is not contained in a leaf block. Let
H be the union of B′ \ {z, x} and all leaf blocks adjacent to B′ \ {z, x}. Clearly,
B′ \ {z, x} is an odd graph. By the induction hypothesis, V (G \ H) can be
partitioned into at most two odd induced subgraphs O1, O2 and one independent
set I. Note that since x is a pendant vertex in G \ H, {x, z} appears in at
most one of the odd induced subgraphs of G \ H. Suppose that O1 is the odd
induced subgraph of G \H such that there is no edge between O1 and H. Now,
denote O′

1 = O1 ∪ (B′ \ {z, x}). Also, add the remaining vertices H \B′ to I and
denote the resulting set by I ′. It is not hard to see that {O′

1, O2, I
′} is the desired

partition and the proof is complete.

Remark 19. Obviously, the previous result holds if we replace the tree with a
forest.

In the sequel, we translate the vertex partitioning problem of a graph into odd
or even induced subgraphs to linear algebraic language. If V (G) = {v1, . . . , vn},
then the adjacency matrix of G is a symmetric n×n matrix A, such that aij = 1
if and only if vi and vj are adjacent, otherwise aij = 0. Now, using a linear
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algebraic method, we would like to present an algorithm in order to partition
an even or odd graph into two even subgraphs, two odd subgraphs, or one even
subgraph and one odd subgraph.

Remark 20. Let G be a graph with the adjacency matrix A. Table 1 shows
how the solutions of the system of linear equations over integers modulo 2 give
us the possible vertex partitioning of G into odd or even induced subgraphs. Let
V0 = {vi |xi = 0} and V1 = {vi |xi = 1}, where x is defined in Table 1. In the
following table, j denotes a vector whose all entries are 1.

Graph Type Odd Even

Ax = 0
V0 Odd Even
V1 Even Even

Ax = x
V0 Odd Even
V1 Odd Odd

Ax = j
V0 Even Odd
V1 Odd Odd

(A+ I)x = j
V0 Even Odd
V1 Even Even

Table 1

For instance, let G be an odd graph of order n and z be a solution of Ax = j

(mod 2). Assume that for i = 1, . . . , n, Ai denotes the i-th column of A. Since
Az = j, we conclude that

∑n
i=1 ziAi = j, where zT = [z1, . . . , zn]. Consider

those entries of z which are 1. Thus we have
∑

vi∈V1
Ai = j. This means that

every vertex in V (G), has an odd number of neighbors in V1. Hence, 〈V1〉 is an
odd subgraph. Since each vertex of G has odd degree, any vertex of G has even
number of neighbors in V0. This yields that 〈V0〉 is an even subgraph. Other
cases appeared in Table 1 are similarly discussed.

Now, we close the paper with the following result.

Theorem 21. For every forest F , V (F ) can be partitioned into one odd induced

forest and possibly one independent set.

Proof. It is well-known that the vertices of each graph can be partitioned into
two induced subgraphs, which one is odd and one is even, see [7]. We prove this
result using linear algebraic methods. Let V (G) = {v1, . . . , vn} and A be the
adjacency matrix of G. Define an n × n matrix B = [bij ], bij = aij if i 6= j and
bii = 1+d(vi) (mod 2). Consider the equation Bx = [b11, . . . , bnn]

T . By [7, p. 44],
this equation has at least one solution (mod 2). It is not hard to see that V0

forms an odd induced subgraph and V1 forms an even induced subgraph. Since
F is a forest, V1 is an independent set and we are done.
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[9] J. Petersen, Die Theorie der regulären graphs , Acta Math. 15 (1891) 193–220.
https://doi.org/10.1007/BF02392606

[10] A.D. Scott, Large induced subgraphs with all degrees odd , Combin. Probab. Comput.
1 (1992) 335–349.
https://doi.org/10.1017/S0963548300000389

[11] A.D. Scott, On induced subgraphs with all degrees odd , Graphs Combin. 17 (2001)
539–553.
https://doi.org/10.1007/s003730170028

https://doi.org/10.1007/BF02783300
https://doi.org/10.1215/ijm/1256049011
https://doi.org/10.1002/\(SICI\)1097-0118\(199703\)24:3<205::AID-JGT2>3.0.CO;2-T
https://doi.org/10.1002/jgt.21897
https://doi.org/10.1007/s00373-016-1713-z
https://doi.org/10.1007/BF02392606
https://doi.org/10.1017/S0963548300000389
https://doi.org/10.1007/s003730170028


Vertex Partitioning of Graphs into Odd Induced Subgraphs 399

[12] C. Thomassen, Kuratowski’s theorem, J. Graph Theory 5 (1981) 225–241.
https://doi.org/10.1002/jgt.3190050304

[13] D. West, Introduction to Graph Theory, Second Edition, 197–199, 208–209 (Prentice
Hall, 2001).

Received 6 January 2020
Revised 12 October 2020

Accepted 12 October 2020

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1002/jgt.3190050304
http://www.tcpdf.org

