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Abstract

This paper completes our studies on the Ramsey number r(T,,G) for
trees T, of order m and connected graphs G of order six. If x(G) > 4,
then the values of r(T,,,G) are already known for any tree T,,. Moreover,
r(Sp, G), where S,, denotes the star of order n, has been investigated in
case of x(G) < 3. If x(G) = 3 and G # K322, then r(S,,G) has been
determined except for some G and some small n. Partial results have been
obtained for r(Sy, K222) and for r(S,,G) with x(G) = 2. In the present
paper we investigate r(T,,, G) for non-star trees T,, and x(G) < 3. Especially,
(T, G) is completely evaluated for any non-star tree T), if x(G) = 3 where
G # K29, and 7(T},, K22 2) is determined for a class of trees T}, with small
maximum degree. In case of x(G) = 2, r(T},, G) is investigated for T,, = P,,,
the path of order n, and for 7;,, = By, _2, the special broom of order n
obtained by identifying the centre of a star S3 with an end-vertex of a path
P, _5. Furthermore, the values of r(Bs 52, Sp) are determined for all n and
m with n > m — 1. As a consequence of this paper, r(F, @) is known for all
trees F' of order at most five and all connected graphs G of order at most
six.
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1. INTRODUCTION

Ramsey number and Ramsey goodness. For graphs F' and G the Ramsey
number 7(F, G) is the smallest integer p such that in every 2-coloring of the edges
of K, there is a copy of F' in the first color or a copy of G in the second color.
The chromatic surplus s(G) is defined to be the smallest number of vertices in a
color class under any y(G)-coloring of the vertices of G, where x(G) denotes the
chromatic number of G. It is well-known (see [6] or [7]) that for any connected
graph F' with n vertices and any graph G with s(G) < n the Ramsey number
r(F,G) satisfies

(1) F(F,G) > (n— 1)(x(G) — 1) + 5(G).

If equality occurs, then F is said to be G-good. Chvétal [3] has proved that every
tree T), of order n is K,,-good, i.e., (T, Kyn) = (n — 1)(m — 1) + 1. Moreover,
several classes of non-complete graphs G are known where every tree T, is G-
good, but there are also graphs G and trees T), such that r(7,,G) differs even
considerably from the lower bound given in (1) — a survey on results for r(7;,, G)
can be found in [17].

Our contribution. Faudree, Rousseau and Schelp [7] initiated the systematic
study of (7T}, G) for graphs G of small order p(G) and investigated the case
p(G) < 5. In [11] and [12] we started to extend these investigations to graphs
G with p(G) = 6. Using the result on r(T},, K,,) due to Chvétal and results on
r(T,, G) for nearly complete graphs G due to Chartrand, Gould and Polimeni [2]
and Gould and Jacobson [8] it was not difficult to derive that any tree T, with
n > 5 is G-good for all graphs G with p(G) = 6 and x(G) > 4. In [11] our main
focus was on 7(S,, G) where S,, denotes the star of order n and G is a connected
graph of order six with G # K322 and x(G) < 3, in [12] we studied (S, K222).
Especially we proved that in case of x(G) = 3 and G # K22 the star S, is
G-good or, in a few cases, 7(Sy,, G) differs by 1 or 2 from the lower bound (1). In
contrast, for n sufficiently large, (S, K222) > 2n—2+ L\/n —1—-6(n— 1)11/40J ,
i.e., 7(Sp, Ka22) differs considerably from the lower bound 2n given in (1).

In this paper we study r(7},,G) for non-star trees 7,, and connected graphs
G with p(G) = 6 and x(G) < 3. We prove that every non-star tree T}, is G-good
for every connected graph G & {K11,4,K222} with p(G) = 6 and x(G) =3. A
more general result on (75, K1 1,m) due to Erdds, Faudree, Rousseau and Schelp
[6] and our results from [13] show that, except for n < 5, every non-star tree T,
is also K7 14-good. The case G = Kg 22 remains to a great extent unsolved. We
present several K32 o-good non-star trees 7;, with small maximum degree, but
the behavior of (S, K222) implies that non-star trees 7, with sufficiently large
n and maximum degree close to n — 1 cannot be K3 2 2-good.

To determine 7(7T,,G) for every tree T;, and all connected graphs G of order
six with x(G) = 2, i.e., the star Sg and the connected spanning subgraphs of K 4
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and K33, seems to be a hard problem. Partial results on (S, G) were obtained
n [11]. In this paper we investigate r(T},, G) for two non-star trees 7,,, namely
T, = P,, the path on n vertices, and 7,, = Ba,_2, a special case of a broom
By, ;-1 defined as a tree of order n > 5 obtained by identifying the centre of a
star Sgy1, k > 2, with an end-vertex of a path P, . The choice of these two
non-star trees is due to the project to evaluate r(F,G) for graphs F' of order
at most five and graphs G of order six — the only non-star trees on at most
five vertices are the paths P, with 4 < n < 5 and the broom Bs3. Instead of
(T, S¢) we consider the more general case (T}, Sy,). Parsons [14] has already
determined 7 (P, Sy,) for all n and m by explicit formulas and a recurrence, and
we evaluate r(Bg 2, Sp) for all n and m with n > m — 1. The results in this
paper together with the results in [11] and [12] imply that r(F,G) is known for
all trees T), of order at most five and all connected graphs G of order six.

Notation and terminology. Some specialized notation and terminology will be
used. The vertex set of a graph G is denoted by V(G). We write G’ C G if G' is a
subgraph of G and, for U C V(K,,), [U] is the subgraph induced by U. A coloring
of a graph here always means a 2-coloring of its edges with colors red and green.
An (F, Fy)-coloring is a coloring containing neither a red copy of F} nor a green
copy of Fy. Given a coloring of K,,, we define the r-degree d,(v) to be the number
of red edges incident to v € V(Kj). Moreover, A, = max,cy (k) dr(v). The set
of vertices joined red to v is denoted by N, (v). Similarly we define dy(v), A4 and
Ngy(v). Furthermore, [U], and [U], are the red and the green subgraphs induced
by U. For disjoint subsets Uy, Uy C V(K,,), ¢-(U1,Us) denotes the number of
red edges between U; and U, and ¢4(Ui, Us) is defined similarly. The vertex
of degree n — 1 in a star S, with n > 3 is called the centre of the star. We
write P, = ujuse - - - uy for the path Py with vertices u1,...,u; and edges u;u;y1
for i = 1,...,k — 1. Moreover, (ujus---u) means the cycle Cj obtained from
P, = uqug - - - uy, by adding the edge ujuy, and an edge w;u; is called a diagonal
of length ¢ of C}, if u; and u; are vertices with distance ¢ on C}. The bristles of
a broom By, ,,—j are the k edges joining the vertex v* of degree k + 1 to a vertex
of degree 1 and the path P,_; with end-vertex v* is said to be the handle of
the broom. The complement K,, of K,, is denoted by F,,, and for the complete
k-partite graph Ky, no....np = Eny + Eny + -+ - + By, with V(E,,) = U; we write
Ui+ Us+---+ Ug.

2. NON-STAR TREES 7,, AND THE GRAPHS G WITH x(G) =3
First we consider the graphs G of order six with chromatic number x(G) = 3

and G ¢ {K114,K222}. The following theorem states that for all these graphs
G every non-star tree T, is G-good.
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Theorem 2.1. Let n > 4, T,, # S,, and let G be a graph of order sixz with
X(G) =3 where G # K14 and G # Ka22. Then

2n—1 if G C K23,

2n otherwise.

r(Th,G) = {

To prove Theorem 2.1 by induction on n the following properties of trees T),
are essential.

Lemma 2.2. (i) Ifn>6 and T,, ¢ {S,, Bn—33}, then T}, contains vertices v;
and vy of degree 1 with distance d(vi,ve) > 3 such that T,, — {v1,va} is a
non-star tree of order n — 2.

(ii) If n > 5 and T,, # Sy, then T, contains a vertex v of degree 1 such that
T, — {v} is a non-star tree of order n — 1.

Proof. Let P = wuguy---uy be a path of maximum length ¢ in T,. Clearly,
d(ug) = d(ug) = 1. Moreover, T,, # S,, implies ¢ > 3.

(i) Since in a tree any two vertices are connected by a unique path, d(ug, uy) =
¢ > 3. Consider the tree T* = T,, — {ug, ug} of order n—2. Obviously, T* # S,,_2
for £ > 5. In case of £ = 3, T* # S,,_2 also holds, since otherwise one of the
vertices u; and uy has to be the centre of S,_2, and this yields 7}, = B,,—33, a
contradiction. It remains ¢ = 4. Then we are done if T* # S,,_o2. In case of
T* = 5,_9, uz has to be the centre of S,,_2 and among the n — 3 > 3 vertices
of degree 1 in T™ adjacent to uo we find a vertex w of degree 1 in T},. But then
up and w are vertices of degree 1 with d(up,w) > 3 such that T,, — {ug, w} is a
non-star tree of order n — 2.

(ii) Consider the tree 7" = T,, — {ug} of order n — 1. Clearly, 7" # S,,_; for
¢ > 4. It remains £ = 3. Then we are done if 77 # S,,_1. In case of T' = S,,_1,
ug has to be the centre of S,_1 forcing T;, = B, _33 where n — 3 > 2. But then
T, — {us} is a non-star tree of order n — 1. |

Besides Lemma 2.2 the values of (1), P3) and r(T,, Py) for T,, # S,, will be
used to prove Theorem 2.1. Chvétal and Harary [4] obtained a formula to derive
r(G, P3) for any graph G depending on the edge independence number $;(G) of
the complement G of G.

Theorem 2.3 (Chvatal and Harary [4]). Let G be a graph of order n. Then

n if G contains a 1-factor,
2n —2B1(G) — 1 otherwise.

T(G, Pg) = {

For every tree T, # Sy, $1(T,) = |n/2]. Applying Theorem 2.3 we obtain
the following result.
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Corollary 2.4. Letn >4 and T,, # Sy,. Then r(T,, P3) = n.

The next result on r(7,,, Py) was already mentioned without proof by Faudree,
Rousseau and Schelp in [7].

Theorem 2.5. Letn >4 and T,, # S,.. Then r(T,,P1) =n+ 1.

Proof. Since x(P1) = 2 and s(Py) = 2 we obtain (T, Py) > n+ 1 from (1).
To prove that (T}, Py) < n+ 1 we use induction on n. It is easy to check that
r(Th,P1) < n+1holds for 4 <n <5if T, # S,, ie., T, € {Py, P5, B3} (cf.
also [4] and [5]). Now let n > 6. By the induction hypothesis, (T, P1) < k + 1
for every tree Ty, # Sy with 4 < k < n. Suppose that a (7, Py)-coloring of K41
with vertex set V' exists for some tree T;, # S, of order n.

Case 1. K3 C [V]g. Let U = {u1,u2,us} be the vertex set of a green K3
and W = V \U. Since Py € [V],, all edges between U and W have to be
red. Thus K,_23 C [V],. Since B,_33 C K23 and T,, € [V], it follows that
T, # Bp—33. By Lemma 2.2(i), T}, contains two vertices v; and vy of degree 1
with d(v1,v2) > 3 such that the tree T* = T,, — {v1, v2} of order n—2 is not a star.
The induction hypothesis yields r(T%*, Py) < n — 1. Consider V' = V' \ {u1, u2}.
Since |V'| =n —1 and Py Z [V'],, we obtain that 7% C [V’],. Let a; and as be
the two vertices in 7™ such that a; is adjacent to v; in T},. Since d(vy,va) > 3,
a1 # ag. If {a1,a2} C W, then the edges aju; and agug together with 7 would
yield a red T, a contradiciton. If a; = us or ag = us, say a; = ug, then a vertex
w € W exists where w ¢ V(T*). But then the edges ajw and agus together with
T* again yield a red T,,.

Case 2. K3 Z [V],. Let v be a vertex in V with d4(v) = A,. Corollary 2.4
and T, Z [V], force P3 C [V]4, and this implies Ay > 2. Let W =V \ {v}. As
K3 Z [V]g and Py € [V]g, in [W] every w € Ny(v) is incident to red edges only.
By Lemma 2.2(ii), T;, must contain a vertex u of degree 1 such that 7" = T,, — {u}
is a tree of order n— 1 different from S,,_;. Let w € V(T”) be the neighbor of u in
T,. By the induction hypothesis, r(1", Py) < n. Since |[W| =n and Py Z [W],,
ared T" occurs in [W]. If w € N,(v), then T” together with vw yields a red T,
a contradiction. It remains that w € Ny(v). We already know that in [IW] every
w € Ny(v) is incident to red edges only. Since |W| = n, there is a vertex w’ € W
with w’ ¢ V(T"). But then 7" together with ww' yields a red T,, and the proof is
complete. [

With these preparations we can now prove Theorem 2.1.

Proof of Theorem 2.1. By (1), r(T,,G) > 2n—1 for any graph G with x(G) =
3. If G # Ki14 and G € K23, then s(G) = 2, and (1) yields r(T,,G) > 2n.
Moreover, s(G) = 2 and G # Ka22 imply G C K99 — e. Thus, it suffices to
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prove r(Ty, Ki23) < 2n —1 and r(T5, K222 —€) < 2n for every tree T, # S,
where n > 4. We use that the join Fo + P is isomorphic to K222 — e and we
write {v1,va} + Py if V(E2) = {v1,v2}. The proof consists of two parts: in (i)
we derive the desired results for T,, = Bj,_33, and in (ii) we consider the trees
Tn Qf {Srm Bn—3,3}-

(i) Let T}, = Bj—33 where the degenerated broom Bj3 = P, is included.
Suppose we have a (By_33, K1 23)-coloring of Ko,_1 or a (By_33,K222 — €)-
coloring of Ka,. Let V denote the vertex sets of the complete graphs.

Claim 2.6. S,,—; C [V],.

Proof. From [11] we know that r(S,—1,G) < 2n—1if G = Kj230r G = Ka22—e€
and n > 5. Because of S35 = P3, r(P3,G) = r(G, P3) and Theorem 2.3 this upper
bound also holds for n = 4. Thus, if K123 € [V]s or K229 —e € [V]g, then
Snfl - [V]r O

Claim 2.7. S, Z [V],.

Proof. Assume that S,, C [V], and let U be the vertex set of a red S,, with centre
ug. Since a red By,_3 3 is forbidden, [U \ {uo}] has to be a green K,,_1. Moreover,
all edges between W =V \ U and U \ {ug} have to be green. This gives a green
Kg — K3 in case of |V| =2n — 1, ie., |W| =n — 1, contradicting K; 23 Z [V],.
In case of |[V| = 2n, i.e., |W| = n, Corollary 2.4 and B,,_33 Z [V], imply that
a green P3 must occur in [W]. This yields a green Kg — e, a contradiction to
Ko —eZ[V],. 0

Now we use Claim 2.6 and consider a red S,,_1 with vertex set U and centre
ug. By Claim 2.7 and B,,—33 Z [V],, all edges between U and W = V \ U have
to be green. In case of |V| = 2n — 1 it follows that |W| = n, and Corollary
2.4 together with B,_33 < [V], imply that a green P; = wjwyws occurs in
[W]. But then {wa} + {w1,ws} + {uo, u1,uz} where {uj,ug} C U \ {up} is a
green K23, a contradiction. In case of |V| = 2n we obtain |W| = n + 1, and
Theorem 2.5 together with B,,_33 Z [V], guarantee a green Pj in [W]. But this
forces {u1,ug} + Py to be a green K» 52 — e, a contradiction, and we are done for
T, = Bn—3,3-

(ii) It remains that T,, ¢ {S,,Bn—33}. We use induction on n to prove
r(Th, K123) <2n—1and r(T),, K222 —e) < 2n for every tree T, ¢ {Sy, Bn—33}
with n > 4.

First we derive the desired results for 4 < n < 5. There is only one tree
T, ¢ {Sn,Bn-33} with 4 < n < 5, namely P5. To prove r(Ps, Ki23) < 9
and r(Ps, K222 —e) < 10 assume we have a (Ps, K 23)-coloring of Ky or a
(Ps, K222 — e)-coloring of Kig. Let V denote the vertex sets of the complete
graphs. Since Py = B 3, by the above result on brooms we already know that
(P, K123) < 7andr(Py, Kg29—e) <8. Thus, ared Py = ujugugug must occur
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in [V], and Ps € [V], forces all edges between {u;,us} and the vertices in W =
V\ {u1, u2,u3, us} to be green. In K9 we obtain |W| =5, and r(Ps, S4) =5 (cf.
[5]) guarantees a green Sy in [W] with centre wg and vertices wy, we, w3 of degree
1 yielding the green Kj 23 = {wo} + {w1,us} + {w1, w2, w3}, a contradiction. In
K19 we have |W| =6, and r(Ps, Py) = 6 (see Theorem 2.5) forces a green Py in
[W]. But then {u1,us} + Py is a green K322 — e, a contradiction.

Now let n > 6. By the induction hypothesis, r(T}, K123) < 2k — 1 and
r(Tk, K222 — €) < 2k for every tree Ty, ¢ {Sk, Br—33} with 4 < k < n. Suppose
we have a (T}, K 2 3)-coloring of Ko, 1 or a (T}, K222 — €)-coloring of Ky, for
some tree T;, where T}, ¢ {S,, Bn,—33}. Again we use V to denote the vertex sets
of the complete graphs. By Lemma 2.2(i), T, contains two vertices v; and v9
of degree 1 with distance d(vi,v2) > 3 such that the tree T* = T,, — {v1,va} of
order n — 2 is not a star. By the induction hypothesis and the above result on
brooms, 7(T%, K1 23) < 2n —>5 and r(T*, K22 — e) < 2n — 4. Let a1 and az be
the two vertices in T* such that a; is adjacent to v; in T,,, where 1 < i < 2. Since
7(Tn, K4 —e) = 2n — 1 (see [2]), one of the following two cases must occur.

Case 1. Ky C [V]g. Let U = {u1,u2,u3,us} be the vertex set of a green
K, with minimal sum d,(u1) + d,(u2) + dr(u3) + dr(ug) of r-degrees, and let
W =V \U. Since |[W| = 2n —5 in case of K,_1 and |W| = 2n — 4 in case of
Koy, T* C [W],. We distinguish two subcases depending on g, (a;, U).

Case 1.1. ¢gr(a1,U) > 1 and gy(az,U) > 1. Then T,, C [V],, except for
qr(a1,U) = g-(a2,U) = 1 where a; and ay have the same red neighbor in U, say
w;. But this gives the green K1 23 = {ug}+{us, us} +{u1, a1, a2}, a contradiction
for |V| = 2n — 1. In the remaining case |V| = 2n let W/ = W\ V(T*). Note that
|[W'| =n — 2. If a1 or ag has a red neighbor in W', then again a red T, occurs.
Otherwise all n + 1 vertices in W/ U {ug, ug,us} are common green neighbors of
a; and ag, and Theorem 2.5 guarantees a green Py in [W’' U {ug,us,us}]. But
this forces {a1, a2} + Py to be a green Ka 22 — e, a contradiction.

Case 1.2. ¢,(a1,U) = 0 or ¢,(az,U) = 0, say ¢,(a1,U) = 0. Now let U’ =
UU{a1} and W =V \U’. Note that [U'] is a green K5 and that |[W' NV (T*)| =
n—3. If g (w,U’) < 2 for some w € W', then we find a green K 23 and a green
Kj99 — e in [U' U {w}], a contradiction. Thus ¢,(w,U’) > 3 for every w € W’
yielding ¢, (W', U’) > 3|W'| > 3(2n — 6). This implies g, (u, W') = d,(u) > n —2
for some u € U’. In case of d,(a1) < n — 3 we may assume that d,(ug) > n — 2.
But then the green Ky = [{a1, u1, u2,us}] would have a smaller sum of r-degrees
than the green Ky = [{u1,u2,us,us}]. It remains d,(a;) > n — 2. This forces
¢r(a1,W') > n — 2 and we find a red neighbor w* of a; in W'\ V(T™*) since
W' NV (T*)| = n — 3. Moreover, q.(w,U’) > 3 for every w € W’ yields a red
neighbor u* of as in U. But then T™ together with w* and u* produce a red T,
a contradiction.
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Case 2. Ky—e C [V]yand K4 € [V],. Let U = {u1, ug, u3, us} be the vertex
set of a green K4 — e where ujuy is red, and let W =V \ U. Since K4 Z [V],,
¢r(w,U) > 1 for every w € W. As in Case 1, T* C [W],, and T,, € [V],
forces ¢r(a1,U) = gr(az,U) = 1. Moreover, a; and ay must have the same red
neighbor in U, and K4 Z [V], implies that up or us, say us, is the common red
neighbor. But then we obtain the green K23 = {ug} + {u1,us} + {u2, a1, a2},
a contradiction for |[V| = 2n — 1. In the remaining case |V| = 2n let W’/ =
W\ V(T*). Note that |W’'| = n — 2. If a1 or ag has a red neighbor in W/,
then a red T, occurs. Otherwise, the n + 1 vertices in W/ U {uy,us,us} are
common green neighbors of a; and as, and Theorem 2.5 guarantees a green Py
in W' U {u1,us,us}]. But this gives a green Ky99 — e and we are done. [

The two graphs G of order six with x(G) = 3 not considered in Theorem
2.1 are G = K; 14 and G = Ky22. The values of r(T;,, K;1.4) for n > 9 follow
from a more general result due to Erdds, Faudree, Rousseau and Schelp [6] who
investigated r(T},, By,) for any tree T), and the book-graph By, = Kj 1 m.

Theorem 2.8 (Erdds, Faudree, Rousseau and Schelp [6]). If n > 3m — 3, then
7(Tn, Bm) = 2n — 1.

Applying Theorem 2.8 for By = K14 we obtain r(T},, K114) = 2n — 1 for
any tree T, with n > 9. A result due to Rousseau and Sheehan [18] implies
r(Pn, Ki1,1,4) =10 for 4 <n <5 and r(P,, K1,14) = 2n — 1 for n > 6. Moreover,
in [13] we determined the missing values of r(T},, K 1.4) for n < 8. This proves
that any non-star tree T;, with n > 6 is K 1 4-good.

Theorem 2.9. Letn >4 and T,, # S,. Then

10 if 4<n <5,

TGEKEM):{2n—1 if n>06

For the remaining graph G' = Kj 3 5 the situation is much more complicated.
From (1) we obtain r(7},, K222) > 2n. On the other hand, for n sufficiently large
we know that r(S,, K222) > 2n—2+ [v/n—1 —6(n — 1)11/40J (see [12], note
that Ky29 = K¢ —3K>) forcing (7}, K222) > 2n also for non-star trees 7T}, with
maximum degree close to n — 1 if n is sufficiently large. Nevertheless, there are
non-star trees with small maximum degree where the lower bound 2n is attained.
For T,, = P, this follows from a more general result due to Gould and Jacobson
[8] who proved that any path P, with n > 3 is (Ka,, — mK2)-good.

Theorem 2.10 (Gould and Jacobson [8]). If n > 3 and m > 2, then

r(Pp, Kom — mKg) = (n—1)(m —1) + 2.
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The following theorem shows that r(7},, K222) = 2n also holds for a special
class of trees T,, with A(T},) = 3.

Theorem 2.11. Let T, be a tree of order n > 5 with A(T,,) = 3 containing a
path P,_1. Then
T’(Tn, K272’2) = 2n.

To prove Theorem 2.11 we use a result due to Burr, Erdés, Faudree, Rousseau
and Schelp [1] who obtained a formula to determine r(7,,,C4) depending on
r(Sm+1,C4) where m = A(T),).

Theorem 2.12 (Burr, Erdds, Faudree, Rousseau and Schelp [1]). If T), is a tree
with A(T,,) = m, then r(T,,Cy) = max{4,n + 1,7(Spm+1,C4)}.

Thus, r(T,,,C4) is easily evaluated if r(Sp+1,C4) is known, but r(Sp4+1,Ca)
has not yet been completely determined (see Parsons [15] and Wu, Sun, Zhang
and Radziszowski [19]).

Proof of Theorem 2.11. It suffices to prove that r(7},, K222) < 2n. Let T}, be
a tree with A(7},) = 3 containing a path P,,_; and suppose we have a (T},, K222)-
coloring of Ko, with vertex set V.

Claim 2.13. |Ny(v1) N Ng(v2)| < n for any two vertices vi and vs.

Proof. Assume that there are vertices vy and vy with |Ng(vi) N Ng(v2)| > n+1.
Since 7(S4,Cy) = 6 (cf. [4]), Theorem 2.12 states r(1,,Cs) = n + 1. Thus,
T, € [V, forces a green Cy = (wiwawzwy) in [Ng(vi) N Ng(vz)]. But this gives
the green Ky 99 = {v1,v2} + {w1, w3} + {w2, w4}, a contradiction. 0

By Theorem 2.10 and K922 = Kg — 3K>, a red P,,_1 = ujug - - - uy—1 must
occur. First let n be odd or, in case of n even, let T}, not be isomorphic to the tree
obtained from wjug - - up—1 by joining a vertex w € W =V \ {ug,...,up_1} to
Uy /9. Then T, Z [V], implies that there is some i with 1 <4 < |(n—1)/2]—1 such
that ui4; and u,_1_; are joined green to all n 4 1 vertices in W, a contradiction
to Claim 2.13. Consider now the remaining case for n even. Since T,, Z [V],, all
edges from wu,, /5 to W have to be green, and then Claim 2.13 forces at least one
red edge from every w; with i # n/2 to W. Moreover, two independent red edges
between {u1,uy,/5_1} and W would yield a red T,,. Thus we may assume that
uy and u, /51 have a common red neighbor w* € W and that all edges between
{u1,up o1} and W\ {w*} are green. Then T), £ [V], forces uju,—1 to be green.
Furthermore, by Claim 2.13, the edges u,/2_1un—1 and u,/u,—1 have to be red.
Remind that a red edge u,—1w with w € W must occur. But then the red path
P,1=u- “Up /2 1Un—1Up 2 * " * Un—2 together with the red edge u,—1w yields
the forbidden red T;,, a contradiction, and we are done. [
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3. TREES T), € {P,, Ban,—2} AND THE GRAPHS G WITH x(G) = 2

It seems to be out of reach to determine the exact value of r(7),,G) for every
tree T}, and all connected bipartite graphs G of order six, i.e., the star S¢ = K15
and the connected spanning subgraphs of K4 and K33. Burr, Erdds, Faudree,
Rousseau and Schelp [1] derived upper bounds for (T, K24) and r(T,, K33).
They proved that for all sufficiently large n,

r(Th, Ko4) <n+ 3nt/2,

Moreover they showed that there exists a constant ¢ such that for every tree T,
with maximum degree A(T,,) = m,

r(Tn Kaa) < max {n+ [en'/3]  1(Ss1, Kaa) |

and

r(Sms1, Ks3) < m+ 3m?/3

for m sufficiently large. Lower bounds can be obtained from r(7T,,Cy) since
Cy C Ky 4 and Cy C K3 3. In [1] it was proved that for all sufficiently large n,

(St C1) >+ 2 — 10

This together with Theorem 2.12 implies that r(7T},, K24) and (7T}, K33) differ
considerably from the lower bound (1) if n is sufficiently large and A(T},) = m
is close to n — 1. Clearly, the same holds for r(T,,, G) if G is any bipartite graph
with Cy C G. Here we restrict ourselves to study r(7),,G) for two trees with
small maximum degree, namely T, € {P,, B2 ,—2}. The choice of these two trees
is essentielly due to our project to determine r(7},, G) for every connected graph
of order six and all trees of order at most five — the only non-star trees on at
most five vertices are the paths P, and P5 and the broom Bs 3. Our results show
that, except for some small n, the trees T,, € {P,, Ba,—2} are G-good for any
connected bipartite graph G of order p(G) = 6, i.e., r(T,,,G) attains the general
lower bound from (1). Instead of r(75,,Se) here we consider the more general
case r(Ty, Sy). We start by improving the lower bound (1) for T}, € {P,,, B2 ,—2}
and any connected bipartite graph G in case of small n.

Lemma 3.1. Let G C K, m, be a connected graph of order m = my+msa where
1 <my <mgy. Then r(P,,G) > m — 1+ |n/2] forn > 2 and r(Byyn—2,G) >
m—1+ [(n—1)/2| forn >5.

Proof. From (1) it follows that r(G,T,,) > m — 1 + s(T3,). Due to r(F,G) =
r(G,F), s(P,) = [n/2] for n > 2 and s(Byp—2) = [(n—1)/2] for n > 5 we
obtain the desired results. |
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If G is a connected spanning subgraph of K, m, with 1 < m; < mg, then
s(G) = mq, and the general lower bound (1) implies r(7,,, G) > n+mj —1 for any
tree T,. Hence the general lower bound is improved by the lower bounds from
Lemma 3.1 for T;, = P, if n < 2mo — 2 and for T}, = By ,,—2 if n < 2my — 3. The
following lemma shows that in case of T}, = By ,_2 the general lower bound can
also be improved for n = 2mo — 2 or n = 2ms and certain graphs G C K, m,.

Lemma 3.2. Let n > 6 be even and let my < ma. Then r(Ban—2,G) > n+my
ifmi > 1, n=2mg and G = Ky m, or if my > 2, n = 2mg —2 and G €
{Kmimo — € Kmyms — 2Ka}. Moreover, r(Ba3, K, m,) > mi1 + ma + 2.

Proof. For n = 2mg, the coloring of Ky ym,—1 with [V], = 2K, + K -1
contains no red By, 2 and no green K, m,. For n = 2mo — 2, the coloring
of Kptm,—1 with [V], = 2K,,,_1 + Ky, —1 contains no red B ,_» and no green
Ky ms — 2K5. Moreover, the coloring of Ky, 4mo+1 with [V], = Cpyytmot1
contains no red Bs 3 and no green Ky, ym,. [ ]

Now we consider 7(7},, Sp,). Parsons [14] has already determined the exact
value of r(P,, Sy,) by explicit formulas and a recurrence.

Theorem 3.3 (Parsons [14]). Let n >4 and m > 4. Then

2m—3 if m—1<n<2m — 3,
n if n>2m—3,

r(Py, Sm) = {

and r(Pp, Sp) = max{r(Py—1,Sm), "(Pn, Sp—n-1)) +n — 1} if n<m — 1.

Remark. For n > 4 and m = 5 only (P, Sg) is not explicitely given by Theorem
3.3. Applying the recurrence and Theorem 2.3 we derive r(Py, Sg) = 7.

We use the result of Parsons to completely determine the exact values of
r(B2n—2,m) if n >m — 1.

Theorem 3.4. Let n > 5 and m > 4. Then r(Ba3,S54) =6 and

2m—3 if m—1<n<2m—3 and m > 5,
7(Bop-2,Sm) =< n+1 if n=2m—2,
n if n>2m— 1.

To prove Theorem 3.4 the straightforward statements of the following lemma
will be used.

Lemma 3.5. Let n > 5 and let x be a coloring of a complete graph with vertex
set V and P, = uy---uy, C [V],, but Bop—o € [V],. Then uiug, uitp—1, gty
and un_osuy, have to be green. Furthermore, if n > 7 and uyu; is red for some i
with 5 <1 <n — 2, then u;—_su, has to be green.
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Proof of Theorem 3.4. In [5] it was already shown that r(By 3, S4) = 6. From
(1) we obtain r(Bgy,—2,5n) > n. Lemma 3.2 yields r(B2,—2,5») > n+ 1
if n = 2m — 2. Moreover, the coloring of Ky,,—o with [V], = 2K,,_2 shows
r(B2n-2,5m) > 2m — 3 for n > m — 1. Thus, to establish the results from
Theorem 3.4 it suffices to prove that r(Bgn—2,Sm,) < n for n > 2m — 1 with
m > 4 and for n = 2m — 3 with m > 5 by using the monotonicity property
r(Ban—2,Sm) < r(Ban—2,Sm) for n < n/. To obtain the desired upper bounds
suppose that we have a (Bs,—2,Sy,)-coloring of K, with vertex set V' where
n > 2m—1 with m > 4 or n = 2m — 3 with m > 5. Then, by Theorem 3.3, a red
P, = ujuy - - - uy, occurs. Note that S, € [V], forces A; < m — 2. By Lemma
3.5, urus, U1U,—1,u2uy and u,_su, have to be green.

Case 1. n > 2m — 1 where m > 4. Since dg(u1) < m — 2, gg(u1, {us, ...,
Un—2}) < m—4. Thus, ¢-(u1,{us,...,up—2}) >n—6—(m—4) >2m—-1-m—-2 =
m — 3, and Lemma 3.5 implies qq(un, {us,...,un—a}) > m — 3. But this yields
dg(un) > m — 1, a contradiction.

Case 2. n = 2m — 3 where m > 5. We distinguish two subcases depending
on the color of ujuy,.

Case 2.1. ujuy, is green. Then gg(ui,{us,...,un—2}) < m — 5 because
dg(u1) < m — 2. This forces gy(ui,{us,...,un—2}) > n—6 —(m —5) =
2m —3 —m —1=m — 4, and Lemma 3.5 yields q4(un, {us, ..., un—a}) >m —4.
Again we obtain dg(u,) > m — 1, a contradiction.

Case 2.2. ujuy, is red, i.e., C, = (ujug -+ - uy,) is a red cycle. The remaining
edges are the diagonals w;u; ¢ of length ¢ with £ =2,... . m—2andi=1,...,n,
where the indices should be read modulo n. To finish Case 2.2 we use the following
properties of the diagonals of C,,.

Claim 3.6. If a diagonal uju; ¢ of length £ with2 < <m—2and1<i<nis
red, then also wi41uito+1 has to be red.

Proof. If uju;yp is red and wu;yiu;ey1 is green, then the end-vertices of the red
P, = Uigpr1Uirpro - UpUl - - - UilljrpUipe—1 - - - Uig1 are joined green, a situation
already considered in Case 2.1. 0

Claim 3.7. For 2 < { < m — 2, all diagonals of length £ must have the same
color.

Proof. This is an immediate consequence of Claim 3.6. 0

Claim 3.8. If the diagonals of length ¢ with 2 < £ < m — 3 are red, then the
diagonals of length £ + 1 have to be green.
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Proof. Assume that the diagonals of length ¢ + 1 are also red. Using the di-
agonal ujugsq of length ¢, the diagonal ugupys of lenght £ + 1 and edges from
the red C), we obtain the red By ,_o with bristles uju¢;1, uer1ur+2 and handle
Ugp1Ug - - - UUg43 - - - Up, & contradiction. 0

Claim 3.9. The diagonals of length £ with 2 < £ < 3 and, for m > 6, also the
diagonals of lenght £ = 4 have to be green.

Proof. Assume that for some ¢ with 2 < ¢ < 4 the diagonals of length ¢ are red.
If ¢ = 2, then ujuz together with edges of the red (), give the red By, _» with
bristles ujus, usug and handle uguy - - - u,, a contradiction. If £ = 3, then the
red By o with bristles ujug, uiu, and handle ujugusue - - - Up—aUp—1Upn—2 would
occur. If £ =4 and m > 6, then the diagonals ujus and usuy together with edges
from the red C,, would yield the red B ,_o with bristles usus, uzus and handle
UIUTUUS U] UpUp—1 * * * US. 0

Now we finish Case 2.2 by deriving a contradiction to A, < m — 2. Note
that for 2 < £ < m — 2 every wu; is incident to two diagonals of lenght ¢. Thus,
Claim 3.9 yields the desired contradiction for 5 < m < 7. In the remaining
case m > 8 we additionally have to consider the diagonals of length ¢ > 5.
There are m — 6 different diagonal lengths ¢ with 5 < £ < m — 2 and Claim
3.8 implies that at least [(m — 6)/2] of them belong to green diagonals. Hence
dg(u;) > 64 2[(m —6)/2] > m — 1, a contradiction, and we are done. |

In the following two theorems r(P,,G) and r(Bg,—_2,G) are determined for
any connected spanning subgraph G of Ka 4.

Theorem 3.10. Let n > 4 and let G be a connected graph of order six where
G g K2’4. Then
7 if 4<n <5,
r(P,,G) =14 8 if n=6,

n+1 otherwise.

Proof. From (1) we obtain r(P,,G) > n + 1. Moreover, Lemma 3.1 implies
r(P,,G) > Tfor 4 <n <5 and r(Ps;,G) > 8. To establish equality it suffices to
show 7(Ps, K24) < 7 and r(P,,K24) < n+ 1 for n > 7. Consider any coloring
of K7 not containing a red Ps and any coloring of K,, 11, n > 7, not containing a
red P,. We have to prove that a green Kj4 occurs. Let P, = uq---uy be a red
path of maximum length, U = {u1,...,ux} and W = V' \ U where V' denotes the
vertex sets of the complete graphs. If K = 1, then only green edges occur and we
find a green Ks4. Now let k > 2. The maximality of k forces that u; and uy are
joined green to all vertices in W. This yields a green Ky 4 if [IW| > 4. It remains
|W| =3 in case of K7 and 2 < |W| < 3 in case of K41, n > 7.
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Casel. |W|=3. Thenk=n—1=4incaseof Ky and k=n—2>51in
case of K11, n > 7. Let W = {wy, w2, ws}. Only green edges between W and
{ug, ug_1} imply a green K> 4. Otherwise we may assume that usw; is red. Since
P11 Z [V];, w1 has to be joined green to weg, w3 and us. Furthermore, ujus and
uiug, have to be green, and we obtain the green Ko 4 = {u1, w1} +{w2, w3, us, uy}.

Case 2. |W| = 2 in case of K, 11, n > 7. This implies Kk = n — 1. Let
W = {wi,wa}. If K4 Z [V]y, then at most one vertex from {ua, ..., up—2} is
joined green to wi and to wy. Therefore we may assume that every vertex in
{u2, ..., u|(n-1)/2)} is joined red to wy or to wp. Note that [(n —1)/2] > 3.
Since Pyi1 € [V]r, a common red neighbor of uy and us in W is forbidden.
Thus, we may assume that uow; and uszws are red. Then Py q Z [V], forces
WiWse, W1U3, Wik, U1U3, U1ug and uiju,—1 to be green, and this yields the green
Ko 4 = {u1, w1} + {wa, u3, ua, up_1}. L

Theorem 3.11. Let n > 5 and let G be a connected graph of order six where
G C Ko 4. Then, if G # Ko 4,

7 if n=2>5,
r(B2n—2,G) =14 8 if n="06 and Ko4 — 2K C G,

n—+1 otherwise,

and
8 if n<7,

r(B2n—2,K24) = ¢ 10 if n=23,

n+1 otherwise.

Proof. From (1) we obtain r(Bsy ,,—2,G) > n+1, and Lemma 3.1 yields r(Bz 3, G)
> 7. Lemma 3.2 gives r(Ba23, K24) > 8, 1(B24, K24 —2K5) > 8 and (B2, K2.4)
> 10. To establish equality it suffices to show that r(Ba3, K24 —e€) < 7,
r(B24,G*) < 7 for G* obtained from Kj4 by deleting two edges incident to
the same vertex of degree 4 and r(B2y,—2,G) < n+1for G =Kyyifn=7o0r
n>9and for G = Ko 4 —eif n =38.

To verify that r(Bg 3, Ko4 —e) < 7 and r(Bg 4, G*) < 7 consider any coloring
of K7 with vertex set V. If a green K4 occurs, then we are done. Otherwise,
by Theorem 3.10, a red Ps = uj - - - us must occur. Let U = {uq,...,us} and let
W =V \U = {w;,wz}. Assume first that By 3 Z [V],. Then all edges between
W and {ug,us,us} have to be green. Moreover, at least one edge from u; to W
must be green yielding a green K3 4 —e. Suppose now that By 4 Z [V],. Then all
edges between W and {ug,us} have to be green. If w; or wy is joined green to
both u; and us, then a green G* occurs. Neither u; nor us can be joined red to
wy and to we since By € [V];. Thus we may assume that ujw; and uswy are
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green and that ujwy and usw; are red. But then By 4 Z [V, forces uzw to be
green, and we obtain a green G*.

To prove that 7(B2,—2,G) <n+1for G = Ky if n=7o0rn >9 and for
G = Ky 4 — e if n = 8 consider any coloring of K,,11, n > 7, not containing a red
By p—2. Let V.=V (K,11). We have to show that a green K34 — e occurs in case
of n = 8 and a green K34 otherwise.

Case 1. There is a red cycle Cx, = (uy ---uy) of length k =n or k =n + 1.
Let U = {uq,...,ux}. We consider two subcases depending on k.

Case 1.1. k =n. Then By,_o Z [V], implies that all edges between U and
the vertex w € V '\ U are green. By Theorem 3.4, r(B2y,—2,55) =nif n =7 or
n > 9, and r(Bg,—2,51) = n if n = 8. This yields a green S5 in [U] for n =7
and for n > 9 and a green Sy in [U] for n = 8. Together with the green edges
incident to w we obtain a green Ks 4 and a green Ks 4 — e, respectively.

Case 1.2. k = n+ 1. Then By, Z [V], forces all diagonals of length
¢ < 3 to be green. If, in addition, all diagonals of length ¢ = 4 are green, then
{u1,ug} + {ua, us, up—1,un} is a green Ky 4. The remaining case is that at least
one diagonal of length 4, say wjus, is red. Any red diagonal of length ¢ > 4
incident to ug yields a red Ba, s with bristles uous and usu4, a contradiction.
Otherwise all diagonals of length ¢ > 2 incident to us are green. Thus, uy, ug
and w7 are common green neighbors of us and wg. If uqu,41 is also green, then
{us,us} + {u1, ue, ur, un+1} is a green Ko 4. On the other hand, if w4 is red,
then all diagonals incident to uy have to be green since By, Z [V],. But then
ug and ug have at least four common green neighbors and again a green Kj4
occurs.

Case 2. Every red cycle has length at most n — 1. If Koy C [V]4, then
we are done. Otherwise, by Theorem 3.10, a red P, = uj---u, occurs. Let
U = {ui,...,u,} and let w be the vertex in V' \ U. Since By,_2 < [V],, the
edges wug, wus, wuy—o and wu,—1 have to be green. By Lemma 3.5, the edges
ULUS, UL Up—1, U2Uy and u,—ou, are green. Moreover, C,, Z [V, forces ujuy, to be
green, and Cy 41 € [V], implies that at least one of the edges wu; and wu,, say
Wy, is green. To avoid a green K4 = {ui, w} + {ug, un—2, Un—1,un}, urtn—2
has to be red. Then, by Lemma 3.5, u,_4qu, must be green. Furthermore,
C, € [V], implies that w,_3u,—; is green, and Ba,—2 Z [V], forces u,_suy,
to be green. If n = 7, then wu;, wus and usug have to be red as otherwise
{w, ur} + {u1, u2, us,us, us} contains a green Ko 4 or {ug, ur} + {ur, us, ug,w} is
a green K3 4. But this yields a red Cy,, a contradiction. If n > 8, then wu,,—4 has
to be green if no red Bg,_» with bristles u,,_4u,—3 and u,,_4w shall occur. Hence
{w, u,} + {u1, ug, ug, up—4,u,—2} contains a green Ky 4 or uzu,, and wu,; are red.
But then we obtain a red By ,_o with bristles ujus and ujw, a contradiction. m
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Finally we determine r(P,,G) and 7(B2,—2,G) for all connected spanning
subgraphs G of K3 3.

Theorem 3.12. Let n > 4 and let G be a connected graph of order six where
G g K3’3. Then
r(Pn,G):{ T Un=4
n+2 otherwise.

Proof. By (1), r(P,,G) > n + 2. Moreover, Lemma 3.1 yields r(Py,G) > 7.
To establish equality it suffices to prove that r(P,, K3z3) < n + 2 for n > 5.
Consider any coloring of K42, n > 5, not containing a red P,. We have to
show that a green K33 occurs. Let P, = uj---u, be a red path of maximum
length, U = {uy,...,u;} and W = V\U = {wy,wa,...,wyio_}. In case of
k < 2 either at most one red edge occurs or any two red edges are independent.
This yields a green K¢ — 2K5 containing a green K3 3. Now let & > 3. All edges
between {u1,ux} and W have to be green. Since k <n—1, |W|=n+2—-k > 3.
If gg(u;, W) > 3 for some i with 2 < ¢ < k — 1, then a green K33 occurs.
Otherwise ¢, (u;, W) > 1 for every i with 2 < ¢ < k — 1, and we may assume
that ugw; is red. Since Pyy1 Z [V],, all edges incident to w; in [W] have to be
green. This produces a green K33 if |IW| > 4. The remaining case is |W| = 3
which implies Kk = n — 1 > 4. Again we apply Py+1 € [V],. Thus, ujug, uius
and ugzw; must be green. Moreover we may assume that uzws is red, and this
forces ugwo and woug to be green. If wows is green, then we obtain the green
K33 = {u1,uz, w1} + {ug, wa,ws}. If ugws is red, then wows and uzws have to
be green yielding the green K33 = {uj, wy,ws} + {us, u, w2}, and the proof is
complete. [

Theorem 3.13. Let n > 5 and let G be a connected graph of order six where
G g K373. Then

n+3 if G=Kz3and5<n<6,

r(Bapn-2,G) = { n+2 otherwise.

Proof. By (1), r(Ban—2,G) > n+2. Moreover, Lemma 3.2 yields r(Bz 3, K33) >
8 and r(Bg4, K33) > 9. To establish equality we prove r(Bg 2, K33) < n+3 as
well as r(Bg p—2, K33—e) < n+2forn > 5 and r(Bay,—2, K33) <n+2forn>T7.
Consider any coloring of K, with n+2 < m < n+ 3 and n > 5 not containing a
red By ,—2. Let V =V (Kp,). If a green K3 3 occurs, then we are done. Otherwise
Theorem 3.12 guarantees a red P, = uj---uy,. Let U = {uy,...,upn}. Ban—2 €
[V], forces only green edges between {ug, us, un—2,un—1} and W =V \ U. Hence
K33 C [V]g in case of m = n + 3, ie, |IW| = 3, a contradiction. It remains
m=mn+ 2. Let W = {wy,wy}. By Lemma 3.5, ujug, ujtn—1, ugt, and u,_su,
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have to be green. Thus we find a green K33 — e in {u, wi, wa} + {u2, ug, up—1}
proving that r(Bap-2,K33 —e) < n+2if n > 5. Now let n > 7. To avoid
that {u1,wy,we} + {us, up—2,upn—1} or {wy,ws,un} + {ug, us, upn—2} is a green
K33, ujup—2 and usu, have to be red, and then By ,_o Z [V, implies that ujw;
and ujwe are green. This forces uju, to be red as otherwise {uy,us,up—2} +
{w1, w2, uy} is a green K3 3. Consequently, since By o2 Z [V];, all edges between
U and W have to be green. By Theorem 3.4, r(B2,—2,51) = n for n > 7. But
this implies a green Sy in [U] yielding a green K33 together with wq and wy, a
contradiction, and we are done. [

4. CONCLUDING REMARKS

Summarizing Theorems 2.1, 2.9, the results from [11] concerning non-bipartite
graphs G and the results from [13] for 7(Sy, K1.1.4), we see that (T}, G) has been
determined for any tree T}, and all connected graphs G' # K 9 2 of order six with
X(G) > 3, except for T, = S, in case of some small n and some G where x(G) = 3.
The exact values of r(Sy, G) are still missing in the following cases (the numbering
of G corresponds to the numbering of the 112 connected graphs of order six used
in [11]): G = Gipo = K123 with n € {7,9,11}, G = Ggys = Es + (E1 U P3)
with n =7, G = Ggo :Kg,g—i-ewithﬁ <n<12, G = Gr :E2+(E2UK2)
with 6 < n <8, G = Gep and G = Grg (the two graphs obtained from K13
by joining an additional vertex to one or two of the three vertices of degree 2)
with n = 6. In all these cases we know that the value of (S, G) differs by at
most 2 from the lower bound given in (1). By a detailed case analysis, perhaps
assisted by computer algorithms, it should be possible to determine the missing
exact values.

To achieve significant progress in evaluating r(7},, K2 2.2) seems to be difficult,
especially for trees T,, with maximum degree A(T),) close to n— 1, where we know
that, for n sufficiently large, r(7},, K222) differs considerably from the lower
bound 2n obtained from (1). In contrast, for some trees with small maximum
degree as P, and a special class of trees with A(T},) = 3, r(T,, K222) attains
the bound 2n (see Theorems 2.10 and 2.11). It seems to be promising to study
7(Ty, K2,2,2) for further trees with small maximum degree, in particular it would
be desirable to obtain a characterization of all K> 2 9-good trees T,.

As already explained, it seems to be extremely difficult to evaluate r(T,, G)
for trees T, with maximum degree A(T),) close to n—1 and all connected bipartite
graphs G of order six, i.e., all connected spanning subgraphs of K, m, with
1 <mj; <mgy and my + mg = 6. If A(T},) is small, then the situation is entirely
different. For T), € {P,, B2,—2} we have shown that, except for small n, T, is
G-good for any connected bipartite graph G of order six, and there might be
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other trees T, with small maximum degree where the general lower bound (1) is
attained. Especially, by Theorems 3.3, 3.10 and 3.12, P, is G-good if and only
if n > 2mo — 1. This improves in a very special case a general result due to
Pokrovskiy and Sudakov [16] who recently have shown that P, is G-good for any
graph G on p(G) vertices if n > 4p(G).
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