Discussiones Mathematicae Graph Theory 43 (2023) 331–349 https://doi.org/10.7151/dmgt.2370

ON THE RAMSEY NUMBERS OF NON-STAR TREES VERSUS CONNECTED GRAPHS OF ORDER SIX

ROLAND LORTZ

Technische Universität Braunschweig Institut für Analysis und Algebra, AG Algebra 38092 Braunschweig, Germany

 $\mathbf{e\text{-mail:}}$ r.lortz@tu-braunschweig.de

AND

INGRID MENGERSEN

Moorhüttenweg 2d 38104 Braunschweig, Germany

e-mail: ingrid.mengersen@t-online.de

Abstract

This paper completes our studies on the Ramsey number $r(T_n, G)$ for trees T_n of order n and connected graphs G of order six. If $\chi(G) \geq 4$, then the values of $r(T_n, G)$ are already known for any tree T_n . Moreover, $r(S_n, G)$, where S_n denotes the star of order n, has been investigated in case of $\chi(G) \leq 3$. If $\chi(G) = 3$ and $G \neq K_{2,2,2}$, then $r(S_n, G)$ has been determined except for some G and some small n. Partial results have been obtained for $r(S_n, K_{2,2,2})$ and for $r(S_n, G)$ with $\chi(G) = 2$. In the present paper we investigate $r(T_n, G)$ for non-star trees T_n and $\chi(G) \leq 3$. Especially, $r(T_n, G)$ is completely evaluated for any non-star tree T_n if $\chi(G) = 3$ where $G \neq K_{2,2,2}$, and $r(T_n, K_{2,2,2})$ is determined for a class of trees T_n with small maximum degree. In case of $\chi(G) = 2$, $r(T_n, G)$ is investigated for $T_n = P_n$, the path of order n, and for $T_n = B_{2,n-2}$, the special broom of order n obtained by identifying the centre of a star S_3 with an end-vertex of a path P_{n-2} . Furthermore, the values of $r(B_{2,n-2}, S_m)$ are determined for all n and m with $n \ge m-1$. As a consequence of this paper, r(F,G) is known for all trees F of order at most five and all connected graphs G of order at most six.

Keywords: Ramsey number, Ramsey goodness, tree, star, path, broom, small graph.

2010 Mathematics Subject Classification: 05C55, 05D10.

1. INTRODUCTION

Ramsey number and Ramsey goodness. For graphs F and G the Ramsey number r(F, G) is the smallest integer p such that in every 2-coloring of the edges of K_p there is a copy of F in the first color or a copy of G in the second color. The chromatic surplus s(G) is defined to be the smallest number of vertices in a color class under any $\chi(G)$ -coloring of the vertices of G, where $\chi(G)$ denotes the chromatic number of G. It is well-known (see [6] or [7]) that for any connected graph F with n vertices and any graph G with $s(G) \leq n$ the Ramsey number r(F, G) satisfies

(1) $r(F,G) \ge (n-1)(\chi(G)-1) + s(G).$

If equality occurs, then F is said to be G-good. Chvátal [3] has proved that every tree T_n of order n is K_m -good, i.e., $r(T_n, K_m) = (n-1)(m-1) + 1$. Moreover, several classes of non-complete graphs G are known where every tree T_n is Ggood, but there are also graphs G and trees T_n such that $r(T_n, G)$ differs even considerably from the lower bound given in (1) — a survey on results for $r(T_n, G)$ can be found in [17].

Our contribution. Faudree, Rousseau and Schelp [7] initiated the systematic study of $r(T_n, G)$ for graphs G of small order p(G) and investigated the case $p(G) \leq 5$. In [11] and [12] we started to extend these investigations to graphs G with p(G) = 6. Using the result on $r(T_n, K_m)$ due to Chvátal and results on $r(T_n, G)$ for nearly complete graphs G due to Chartrand, Gould and Polimeni [2] and Gould and Jacobson [8] it was not difficult to derive that any tree T_n with $n \geq 5$ is G-good for all graphs G with p(G) = 6 and $\chi(G) \geq 4$. In [11] our main focus was on $r(S_n, G)$ where S_n denotes the star of order n and G is a connected graph of order six with $G \neq K_{2,2,2}$ and $\chi(G) \leq 3$, in [12] we studied $r(S_n, K_{2,2,2})$. Especially we proved that in case of $\chi(G) = 3$ and $G \neq K_{2,2,2}$ the star S_n is G-good or, in a few cases, $r(S_n, G)$ differs by 1 or 2 from the lower bound (1). In contrast, for n sufficiently large, $r(S_n, K_{2,2,2}) > 2n-2+\lfloor \sqrt{n-1} - 6(n-1)^{11/40} \rfloor$, i.e., $r(S_n, K_{2,2,2})$ differs considerably from the lower bound 2n given in (1).

In this paper we study $r(T_n, G)$ for non-star trees T_n and connected graphs G with p(G) = 6 and $\chi(G) \leq 3$. We prove that every non-star tree T_n is G-good for every connected graph $G \notin \{K_{1,1,4}, K_{2,2,2}\}$ with p(G) = 6 and $\chi(G) = 3$. A more general result on $r(T_n, K_{1,1,m})$ due to Erdős, Faudree, Rousseau and Schelp [6] and our results from [13] show that, except for $n \leq 5$, every non-star tree T_n is also $K_{1,1,4}$ -good. The case $G = K_{2,2,2}$ remains to a great extent unsolved. We present several $K_{2,2,2}$ -good non-star trees T_n with small maximum degree, but the behavior of $r(S_n, K_{2,2,2})$ implies that non-star trees T_n with sufficiently large n and maximum degree close to n - 1 cannot be $K_{2,2,2}$ -good.

To determine $r(T_n, G)$ for every tree T_n and all connected graphs G of order six with $\chi(G) = 2$, i.e., the star S_6 and the connected spanning subgraphs of $K_{2,4}$ and $K_{3,3}$, seems to be a hard problem. Partial results on $r(S_n, G)$ were obtained in [11]. In this paper we investigate $r(T_n, G)$ for two non-star trees T_n , namely $T_n = P_n$, the path on n vertices, and $T_n = B_{2,n-2}$, a special case of a broom $B_{k,n-k}$ defined as a tree of order $n \geq 5$ obtained by identifying the centre of a star S_{k+1} , $k \geq 2$, with an end-vertex of a path P_{n-k} . The choice of these two non-star trees is due to the project to evaluate r(F, G) for graphs F of order at most five and graphs G of order six — the only non-star trees on at most five vertices are the paths P_n with $4 \leq n \leq 5$ and the broom $B_{2,3}$. Instead of $r(T_n, S_6)$ we consider the more general case $r(T_n, S_m)$. Parsons [14] has already determined $r(P_n, S_m)$ for all n and m with $n \geq m - 1$. The results in this paper together with the results in [11] and [12] imply that r(F, G) is known for all trees T_n of order at most five and all connected graphs G of order six.

Notation and terminology. Some specialized notation and terminology will be used. The vertex set of a graph G is denoted by V(G). We write $G' \subseteq G$ if G' is a subgraph of G and, for $U \subseteq V(K_n)$, [U] is the subgraph induced by U. A coloring of a graph here always means a 2-coloring of its edges with colors red and green. An (F_1, F_2) -coloring is a coloring containing neither a red copy of F_1 nor a green copy of F_2 . Given a coloring of K_n , we define the r-degree $d_r(v)$ to be the number of red edges incident to $v \in V(K_n)$. Moreover, $\Delta_r = \max_{v \in V(K_n)} d_r(v)$. The set of vertices joined red to v is denoted by $N_r(v)$. Similarly we define $d_q(v)$, Δ_q and $N_q(v)$. Furthermore, $[U]_r$ and $[U]_q$ are the red and the green subgraphs induced by U. For disjoint subsets $U_1, U_2 \subseteq V(K_n), q_r(U_1, U_2)$ denotes the number of red edges between U_1 and U_2 , and $q_g(U_1, U_2)$ is defined similarly. The vertex of degree n-1 in a star S_n with $n \ge 3$ is called the centre of the star. We write $P_k = u_1 u_2 \cdots u_k$ for the path P_k with vertices u_1, \ldots, u_k and edges $u_i u_{i+1}$ for $i = 1, \ldots, k - 1$. Moreover, $(u_1 u_2 \cdots u_k)$ means the cycle C_k obtained from $P_k = u_1 u_2 \cdots u_k$ by adding the edge $u_1 u_k$, and an edge $u_i u_j$ is called a diagonal of length ℓ of C_k if u_i and u_j are vertices with distance ℓ on C_k . The bristles of a broom $B_{k,n-k}$ are the k edges joining the vertex v^* of degree k+1 to a vertex of degree 1 and the path P_{n-k} with end-vertex v^* is said to be the handle of the broom. The complement K_n of K_n is denoted by E_n , and for the complete k-partite graph $K_{n_1,n_2,\dots,n_k} = E_{n_1} + E_{n_2} + \dots + E_{n_k}$ with $V(E_{n_i}) = U_i$ we write $U_1 + U_2 + \dots + U_k.$

2. Non-Star Trees T_n and the Graphs G with $\chi(G) = 3$

First we consider the graphs G of order six with chromatic number $\chi(G) = 3$ and $G \notin \{K_{1,1,4}, K_{2,2,2}\}$. The following theorem states that for all these graphs G every non-star tree T_n is G-good. **Theorem 2.1.** Let $n \ge 4$, $T_n \ne S_n$, and let G be a graph of order six with $\chi(G) = 3$ where $G \ne K_{1,1,4}$ and $G \ne K_{2,2,2}$. Then

$$r(T_n,G) = \begin{cases} 2n-1 & \text{if } G \subseteq K_{1,2,3}, \\ 2n & \text{otherwise.} \end{cases}$$

To prove Theorem 2.1 by induction on n the following properties of trees T_n are essential.

- **Lemma 2.2.** (i) If $n \ge 6$ and $T_n \notin \{S_n, B_{n-3,3}\}$, then T_n contains vertices v_1 and v_2 of degree 1 with distance $d(v_1, v_2) \ge 3$ such that $T_n - \{v_1, v_2\}$ is a non-star tree of order n - 2.
- (ii) If $n \ge 5$ and $T_n \ne S_n$, then T_n contains a vertex v of degree 1 such that $T_n \{v\}$ is a non-star tree of order n 1.

Proof. Let $P = u_0 u_1 \cdots u_\ell$ be a path of maximum length ℓ in T_n . Clearly, $d(u_0) = d(u_\ell) = 1$. Moreover, $T_n \neq S_n$ implies $\ell \geq 3$.

(i) Since in a tree any two vertices are connected by a unique path, $d(u_0, u_\ell) = \ell \geq 3$. Consider the tree $T^* = T_n - \{u_0, u_\ell\}$ of order n-2. Obviously, $T^* \neq S_{n-2}$ for $\ell \geq 5$. In case of $\ell = 3$, $T^* \neq S_{n-2}$ also holds, since otherwise one of the vertices u_1 and u_2 has to be the centre of S_{n-2} , and this yields $T_n = B_{n-3,3}$, a contradiction. It remains $\ell = 4$. Then we are done if $T^* \neq S_{n-2}$. In case of $T^* = S_{n-2}$, u_2 has to be the centre of S_{n-2} and among the $n-3 \geq 3$ vertices of degree 1 in T^* adjacent to u_2 we find a vertex w of degree 1 in T_n . But then u_0 and w are vertices of degree 1 with $d(u_0, w) \geq 3$ such that $T_n - \{u_0, w\}$ is a non-star tree of order n-2.

(ii) Consider the tree $T' = T_n - \{u_0\}$ of order n-1. Clearly, $T' \neq S_{n-1}$ for $\ell \geq 4$. It remains $\ell = 3$. Then we are done if $T' \neq S_{n-1}$. In case of $T' = S_{n-1}$, u_2 has to be the centre of S_{n-1} forcing $T_n = B_{n-3,3}$ where $n-3 \geq 2$. But then $T_n - \{u_3\}$ is a non-star tree of order n-1.

Besides Lemma 2.2 the values of $r(T_n, P_3)$ and $r(T_n, P_4)$ for $T_n \neq S_n$ will be used to prove Theorem 2.1. Chvátal and Harary [4] obtained a formula to derive $r(G, P_3)$ for any graph G depending on the edge independence number $\beta_1(\overline{G})$ of the complement \overline{G} of G.

Theorem 2.3 (Chvátal and Harary [4]). Let G be a graph of order n. Then

$$r(G, P_3) = \begin{cases} n & \text{if } \overline{G} \text{ contains a 1-factor,} \\ 2n - 2\beta_1(\overline{G}) - 1 & \text{otherwise.} \end{cases}$$

For every tree $T_n \neq S_n$, $\beta_1(\overline{T_n}) = \lfloor n/2 \rfloor$. Applying Theorem 2.3 we obtain the following result.

Corollary 2.4. Let $n \ge 4$ and $T_n \ne S_n$. Then $r(T_n, P_3) = n$.

The next result on $r(T_n, P_4)$ was already mentioned without proof by Faudree, Rousseau and Schelp in [7].

Theorem 2.5. Let $n \ge 4$ and $T_n \ne S_n$. Then $r(T_n, P_4) = n + 1$.

Proof. Since $\chi(P_4) = 2$ and $s(P_4) = 2$ we obtain $r(T_n, P_4) \ge n + 1$ from (1). To prove that $r(T_n, P_4) \le n + 1$ we use induction on n. It is easy to check that $r(T_n, P_4) \le n + 1$ holds for $4 \le n \le 5$ if $T_n \ne S_n$, i.e., $T_n \in \{P_4, P_5, B_{2,3}\}$ (cf. also [4] and [5]). Now let $n \ge 6$. By the induction hypothesis, $r(T_k, P_4) \le k + 1$ for every tree $T_k \ne S_k$ with $4 \le k < n$. Suppose that a (T_n, P_4) -coloring of K_{n+1} with vertex set V exists for some tree $T_n \ne S_n$ of order n.

Case 1. $K_3 \subseteq [V]_g$. Let $U = \{u_1, u_2, u_3\}$ be the vertex set of a green K_3 and $W = V \setminus U$. Since $P_4 \not\subseteq [V]_g$, all edges between U and W have to be red. Thus $K_{n-2,3} \subseteq [V]_r$. Since $B_{n-3,3} \subseteq K_{n-2,3}$ and $T_n \not\subseteq [V]_r$ it follows that $T_n \neq B_{n-3,3}$. By Lemma 2.2(i), T_n contains two vertices v_1 and v_2 of degree 1 with $d(v_1, v_2) \ge 3$ such that the tree $T^* = T_n - \{v_1, v_2\}$ of order n-2 is not a star. The induction hypothesis yields $r(T^*, P_4) \le n-1$. Consider $V' = V \setminus \{u_1, u_2\}$. Since |V'| = n-1 and $P_4 \not\subseteq [V']_g$, we obtain that $T^* \subseteq [V']_r$. Let a_1 and a_2 be the two vertices in T^* such that a_i is adjacent to v_i in T_n . Since $d(v_1, v_2) \ge 3$, $a_1 \ne a_2$. If $\{a_1, a_2\} \subseteq W$, then the edges a_1u_1 and a_2u_2 together with T^* would yield a red T_n , a contradiciton. If $a_1 = u_3$ or $a_2 = u_3$, say $a_1 = u_3$, then a vertex $w \in W$ exists where $w \notin V(T^*)$. But then the edges a_1w and a_2u_2 together with T^* again yield a red T_n .

Case 2. $K_3 \not\subseteq [V]_g$. Let v be a vertex in V with $d_g(v) = \Delta_g$. Corollary 2.4 and $T_n \not\subseteq [V]_r$ force $P_3 \subseteq [V]_g$, and this implies $\Delta_g \ge 2$. Let $W = V \setminus \{v\}$. As $K_3 \not\subseteq [V]_g$ and $P_4 \not\subseteq [V]_g$, in [W] every $w \in N_g(v)$ is incident to red edges only. By Lemma 2.2(ii), T_n must contain a vertex u of degree 1 such that $T' = T_n - \{u\}$ is a tree of order n-1 different from S_{n-1} . Let $w \in V(T')$ be the neighbor of u in T_n . By the induction hypothesis, $r(T', P_4) \le n$. Since |W| = n and $P_4 \not\subseteq [W]_g$, a red T' occurs in [W]. If $w \in N_r(v)$, then T' together with vw yields a red T_n , a contradiction. It remains that $w \in N_g(v)$. We already know that in [W] every $w \in N_g(v)$ is incident to red edges only. Since |W| = n, there is a vertex $w' \in W$ with $w' \notin V(T')$. But then T' together with ww' yields a red T_n and the proof is complete.

With these preparations we can now prove Theorem 2.1.

Proof of Theorem 2.1. By (1), $r(T_n, G) \ge 2n-1$ for any graph G with $\chi(G) = 3$. If $G \ne K_{1,1,4}$ and $G \not\subseteq K_{1,2,3}$, then s(G) = 2, and (1) yields $r(T_n, G) \ge 2n$. Moreover, s(G) = 2 and $G \ne K_{2,2,2}$ imply $G \subseteq K_{2,2,2} - e$. Thus, it suffices to prove $r(T_n, K_{1,2,3}) \leq 2n-1$ and $r(T_n, K_{2,2,2}-e) \leq 2n$ for every tree $T_n \neq S_n$ where $n \geq 4$. We use that the join $E_2 + P_4$ is isomorphic to $K_{2,2,2} - e$ and we write $\{v_1, v_2\} + P_4$ if $V(E_2) = \{v_1, v_2\}$. The proof consists of two parts: in (i) we derive the desired results for $T_n = B_{n-3,3}$, and in (ii) we consider the trees $T_n \notin \{S_n, B_{n-3,3}\}$.

(i) Let $T_n = B_{n-3,3}$ where the degenerated broom $B_{1,3} = P_4$ is included. Suppose we have a $(B_{n-3,3}, K_{1,2,3})$ -coloring of K_{2n-1} or a $(B_{n-3,3}, K_{2,2,2} - e)$ -coloring of K_{2n} . Let V denote the vertex sets of the complete graphs.

Claim 2.6. $S_{n-1} \subseteq [V]_r$.

Proof. From [11] we know that $r(S_{n-1}, G) \leq 2n-1$ if $G = K_{1,2,3}$ or $G = K_{2,2,2}-e$ and $n \geq 5$. Because of $S_3 = P_3$, $r(P_3, G) = r(G, P_3)$ and Theorem 2.3 this upper bound also holds for n = 4. Thus, if $K_{1,2,3} \not\subseteq [V]_g$ or $K_{2,2,2} - e \not\subseteq [V]_g$, then $S_{n-1} \subseteq [V]_r$.

Claim 2.7. $S_n \not\subseteq [V]_r$.

Proof. Assume that $S_n \subseteq [V]_r$ and let U be the vertex set of a red S_n with centre u_0 . Since a red $B_{n-3,3}$ is forbidden, $[U \setminus \{u_0\}]$ has to be a green K_{n-1} . Moreover, all edges between $W = V \setminus U$ and $U \setminus \{u_0\}$ have to be green. This gives a green $K_6 - K_3$ in case of |V| = 2n - 1, i.e., |W| = n - 1, contradicting $K_{1,2,3} \not\subseteq [V]_g$. In case of |V| = 2n, i.e., |W| = n, Corollary 2.4 and $B_{n-3,3} \not\subseteq [V]_r$ imply that a green P_3 must occur in [W]. This yields a green $K_6 - e$, a contradiction to $K_{2,2,2} - e \not\subseteq [V]_g$.

Now we use Claim 2.6 and consider a red S_{n-1} with vertex set U and centre u_0 . By Claim 2.7 and $B_{n-3,3} \not\subseteq [V]_r$, all edges between U and $W = V \setminus U$ have to be green. In case of |V| = 2n - 1 it follows that |W| = n, and Corollary 2.4 together with $B_{n-3,3} \not\subseteq [V]_r$ imply that a green $P_3 = w_1 w_2 w_3$ occurs in [W]. But then $\{w_2\} + \{w_1, w_3\} + \{u_0, u_1, u_2\}$ where $\{u_1, u_2\} \subseteq U \setminus \{u_0\}$ is a green $K_{1,2,3}$, a contradiction. In case of |V| = 2n we obtain |W| = n + 1, and Theorem 2.5 together with $B_{n-3,3} \not\subseteq [V]_r$ guarantee a green P_4 in [W]. But this forces $\{u_1, u_2\} + P_4$ to be a green $K_{2,2,2} - e$, a contradiction, and we are done for $T_n = B_{n-3,3}$.

(ii) It remains that $T_n \notin \{S_n, B_{n-3,3}\}$. We use induction on n to prove $r(T_n, K_{1,2,3}) \leq 2n-1$ and $r(T_n, K_{2,2,2}-e) \leq 2n$ for every tree $T_n \notin \{S_n, B_{n-3,3}\}$ with $n \geq 4$.

First we derive the desired results for $4 \le n \le 5$. There is only one tree $T_n \notin \{S_n, B_{n-3,3}\}$ with $4 \le n \le 5$, namely P_5 . To prove $r(P_5, K_{1,2,3}) \le 9$ and $r(P_5, K_{2,2,2} - e) \le 10$ assume we have a $(P_5, K_{1,2,3})$ -coloring of K_9 or a $(P_5, K_{2,2,2} - e)$ -coloring of K_{10} . Let V denote the vertex sets of the complete graphs. Since $P_4 = B_{1,3}$, by the above result on brooms we already know that $r(P_4, K_{1,2,3}) \le 7$ and $r(P_4, K_{2,2,2} - e) \le 8$. Thus, a red $P_4 = u_1 u_2 u_3 u_4$ must occur

in [V], and $P_5 \not\subseteq [V]_r$ forces all edges between $\{u_1, u_4\}$ and the vertices in $W = V \setminus \{u_1, u_2, u_3, u_4\}$ to be green. In K_9 we obtain |W| = 5, and $r(P_5, S_4) = 5$ (cf. [5]) guarantees a green S_4 in [W] with centre w_0 and vertices w_1, w_2, w_3 of degree 1 yielding the green $K_{1,2,3} = \{w_0\} + \{u_1, u_4\} + \{w_1, w_2, w_3\}$, a contradiction. In K_{10} we have |W| = 6, and $r(P_5, P_4) = 6$ (see Theorem 2.5) forces a green P_4 in [W]. But then $\{u_1, u_4\} + P_4$ is a green $K_{2,2,2} - e$, a contradiction.

Now let $n \geq 6$. By the induction hypothesis, $r(T_k, K_{1,2,3}) \leq 2k - 1$ and $r(T_k, K_{2,2,2} - e) \leq 2k$ for every tree $T_k \notin \{S_k, B_{k-3,3}\}$ with $4 \leq k < n$. Suppose we have a $(T_n, K_{1,2,3})$ -coloring of K_{2n-1} or a $(T_n, K_{2,2,2} - e)$ -coloring of K_{2n} for some tree T_n where $T_n \notin \{S_n, B_{n-3,3}\}$. Again we use V to denote the vertex sets of the complete graphs. By Lemma 2.2(i), T_n contains two vertices v_1 and v_2 of degree 1 with distance $d(v_1, v_2) \geq 3$ such that the tree $T^* = T_n - \{v_1, v_2\}$ of order n-2 is not a star. By the induction hypothesis and the above result on brooms, $r(T^*, K_{1,2,3}) \leq 2n - 5$ and $r(T^*, K_{2,2,2} - e) \leq 2n - 4$. Let a_1 and a_2 be the two vertices in T^* such that a_i is adjacent to v_i in T_n , where $1 \leq i \leq 2$. Since $r(T_n, K_4 - e) = 2n - 1$ (see [2]), one of the following two cases must occur.

Case 1. $K_4 \subseteq [V]_g$. Let $U = \{u_1, u_2, u_3, u_4\}$ be the vertex set of a green K_4 with minimal sum $d_r(u_1) + d_r(u_2) + d_r(u_3) + d_r(u_4)$ of r-degrees, and let $W = V \setminus U$. Since |W| = 2n - 5 in case of K_{2n-1} and |W| = 2n - 4 in case of K_{2n} , $T^* \subseteq [W]_r$. We distinguish two subcases depending on $q_r(a_i, U)$.

Case 1.1. $q_r(a_1, U) \ge 1$ and $q_r(a_2, U) \ge 1$. Then $T_n \subseteq [V]_r$, except for $q_r(a_1, U) = q_r(a_2, U) = 1$ where a_1 and a_2 have the same red neighbor in U, say u_1 . But this gives the green $K_{1,2,3} = \{u_2\} + \{u_3, u_4\} + \{u_1, a_1, a_2\}$, a contradiction for |V| = 2n - 1. In the remaining case |V| = 2n let $W' = W \setminus V(T^*)$. Note that |W'| = n - 2. If a_1 or a_2 has a red neighbor in W', then again a red T_n occurs. Otherwise all n + 1 vertices in $W' \cup \{u_2, u_3, u_4\}$ are common green neighbors of a_1 and a_2 , and Theorem 2.5 guarantees a green P_4 in $[W' \cup \{u_2, u_3, u_4\}]$. But this forces $\{a_1, a_2\} + P_4$ to be a green $K_{2,2,2} - e$, a contradiction.

Case 1.2. $q_r(a_1, U) = 0$ or $q_r(a_2, U) = 0$, say $q_r(a_1, U) = 0$. Now let $U' = U \cup \{a_1\}$ and $W' = V \setminus U'$. Note that [U'] is a green K_5 and that $|W' \cap V(T^*)| = n-3$. If $q_r(w, U') \leq 2$ for some $w \in W'$, then we find a green $K_{1,2,3}$ and a green $K_{2,2,2} - e$ in $[U' \cup \{w\}]$, a contradiction. Thus $q_r(w, U') \geq 3$ for every $w \in W'$ yielding $q_r(W', U') \geq 3|W'| \geq 3(2n-6)$. This implies $q_r(u, W') = d_r(u) \geq n-2$ for some $u \in U'$. In case of $d_r(a_1) \leq n-3$ we may assume that $d_r(u_4) \geq n-2$. But then the green $K_4 = [\{a_1, u_1, u_2, u_3\}]$ would have a smaller sum of r-degrees than the green $K_4 = [\{u_1, u_2, u_3, u_4\}]$. It remains $d_r(a_1) \geq n-2$. This forces $q_r(a_1, W') \geq n-2$ and we find a red neighbor w^* of a_1 in $W' \setminus V(T^*)$ since $|W' \cap V(T^*)| = n-3$. Moreover, $q_r(w, U') \geq 3$ for every $w \in W'$ yields a red neighbor u^* of a_2 in U. But then T* together with w^* and u^* produce a red T_n , a contradiction.

Case 2. $K_4 - e \subseteq [V]_g$ and $K_4 \not\subseteq [V]_g$. Let $U = \{u_1, u_2, u_3, u_4\}$ be the vertex set of a green $K_4 - e$ where u_1u_4 is red, and let $W = V \setminus U$. Since $K_4 \not\subseteq [V]_g$, $q_r(w,U) \ge 1$ for every $w \in W$. As in Case 1, $T^* \subseteq [W]_r$, and $T_n \not\subseteq [V]_r$ forces $q_r(a_1, U) = q_r(a_2, U) = 1$. Moreover, a_1 and a_2 must have the same red neighbor in U, and $K_4 \not\subseteq [V]_g$ implies that u_2 or u_3 , say u_2 , is the common red neighbor. But then we obtain the green $K_{1,2,3} = \{u_3\} + \{u_1, u_4\} + \{u_2, a_1, a_2\}$, a contradiction for |V| = 2n - 1. In the remaining case |V| = 2n let W' = $W \setminus V(T^*)$. Note that |W'| = n - 2. If a_1 or a_2 has a red neighbor in W', then a red T_n occurs. Otherwise, the n + 1 vertices in $W' \cup \{u_1, u_3, u_4\}$ are common green neighbors of a_1 and a_2 , and Theorem 2.5 guarantees a green P_4 in $[W' \cup \{u_1, u_3, u_4\}]$. But this gives a green $K_{2,2,2} - e$ and we are done.

The two graphs G of order six with $\chi(G) = 3$ not considered in Theorem 2.1 are $G = K_{1,1,4}$ and $G = K_{2,2,2}$. The values of $r(T_n, K_{1,1,4})$ for $n \ge 9$ follow from a more general result due to Erdős, Faudree, Rousseau and Schelp [6] who investigated $r(T_n, B_m)$ for any tree T_n and the book-graph $B_m = K_{1,1,m}$.

Theorem 2.8 (Erdős, Faudree, Rousseau and Schelp [6]). If $n \ge 3m - 3$, then

$$r(T_n, B_m) = 2n - 1.$$

Applying Theorem 2.8 for $B_4 = K_{1,1,4}$ we obtain $r(T_n, K_{1,1,4}) = 2n - 1$ for any tree T_n with $n \ge 9$. A result due to Rousseau and Sheehan [18] implies $r(P_n, K_{1,1,4}) = 10$ for $4 \le n \le 5$ and $r(P_n, K_{1,1,4}) = 2n - 1$ for $n \ge 6$. Moreover, in [13] we determined the missing values of $r(T_n, K_{1,1,4})$ for $n \le 8$. This proves that any non-star tree T_n with $n \ge 6$ is $K_{1,1,4}$ -good.

Theorem 2.9. Let $n \ge 4$ and $T_n \ne S_n$. Then

$$r(T_n, K_{1,1,4}) = \begin{cases} 10 & \text{if } 4 \le n \le 5, \\ 2n-1 & \text{if } n \ge 6. \end{cases}$$

For the remaining graph $G = K_{2,2,2}$ the situation is much more complicated. From (1) we obtain $r(T_n, K_{2,2,2}) \ge 2n$. On the other hand, for n sufficiently large we know that $r(S_n, K_{2,2,2}) > 2n - 2 + \lfloor \sqrt{n-1} - 6(n-1)^{11/40} \rfloor$ (see [12], note that $K_{2,2,2} = K_6 - 3K_2$) forcing $r(T_n, K_{2,2,2}) > 2n$ also for non-star trees T_n with maximum degree close to n-1 if n is sufficiently large. Nevertheless, there are non-star trees with small maximum degree where the lower bound 2n is attained. For $T_n = P_n$ this follows from a more general result due to Gould and Jacobson [8] who proved that any path P_n with $n \ge 3$ is $(K_{2m} - mK_2)$ -good.

Theorem 2.10 (Gould and Jacobson [8]). If $n \ge 3$ and $m \ge 2$, then

$$r(P_n, K_{2m} - mK_2) = (n-1)(m-1) + 2.$$

The following theorem shows that $r(T_n, K_{2,2,2}) = 2n$ also holds for a special class of trees T_n with $\Delta(T_n) = 3$.

Theorem 2.11. Let T_n be a tree of order $n \ge 5$ with $\Delta(T_n) = 3$ containing a path P_{n-1} . Then

$$r(T_n, K_{2,2,2}) = 2n.$$

To prove Theorem 2.11 we use a result due to Burr, Erdős, Faudree, Rousseau and Schelp [1] who obtained a formula to determine $r(T_n, C_4)$ depending on $r(S_{m+1}, C_4)$ where $m = \Delta(T_n)$.

Theorem 2.12 (Burr, Erdős, Faudree, Rousseau and Schelp [1]). If T_n is a tree with $\Delta(T_n) = m$, then $r(T_n, C_4) = \max\{4, n+1, r(S_{m+1}, C_4)\}$.

Thus, $r(T_n, C_4)$ is easily evaluated if $r(S_{m+1}, C_4)$ is known, but $r(S_{m+1}, C_4)$ has not yet been completely determined (see Parsons [15] and Wu, Sun, Zhang and Radziszowski [19]).

Proof of Theorem 2.11. It suffices to prove that $r(T_n, K_{2,2,2}) \leq 2n$. Let T_n be a tree with $\Delta(T_n) = 3$ containing a path P_{n-1} and suppose we have a $(T_n, K_{2,2,2})$ -coloring of K_{2n} with vertex set V.

Claim 2.13. $|N_q(v_1) \cap N_q(v_2)| \leq n$ for any two vertices v_1 and v_2 .

Proof. Assume that there are vertices v_1 and v_2 with $|N_g(v_1) \cap N_g(v_2)| \ge n+1$. Since $r(S_4, C_4) = 6$ (cf. [4]), Theorem 2.12 states $r(T_n, C_4) = n+1$. Thus, $T_n \not\subseteq [V]_r$ forces a green $C_4 = (w_1w_2w_3w_4)$ in $[N_g(v_1) \cap N_g(v_2)]$. But this gives the green $K_{2,2,2} = \{v_1, v_2\} + \{w_1, w_3\} + \{w_2, w_4\}$, a contradiction.

By Theorem 2.10 and $K_{2,2,2} = K_6 - 3K_2$, a red $P_{n-1} = u_1 u_2 \cdots u_{n-1}$ must occur. First let n be odd or, in case of n even, let T_n not be isomorphic to the tree obtained from $u_1u_2\cdots u_{n-1}$ by joining a vertex $w \in W = V \setminus \{u_1,\ldots,u_{n-1}\}$ to $u_{n/2}$. Then $T_n \not\subseteq [V]_r$ implies that there is some i with $1 \leq i \leq \lfloor (n-1)/2 \rfloor - 1$ such that u_{1+i} and u_{n-1-i} are joined green to all n+1 vertices in W, a contradiction to Claim 2.13. Consider now the remaining case for n even. Since $T_n \not\subseteq [V]_r$, all edges from $u_{n/2}$ to W have to be green, and then Claim 2.13 forces at least one red edge from every u_i with $i \neq n/2$ to W. Moreover, two independent red edges between $\{u_1, u_{n/2-1}\}$ and W would yield a red T_n . Thus we may assume that u_1 and $u_{n/2-1}$ have a common red neighbor $w^* \in W$ and that all edges between $\{u_1, u_{n/2-1}\}$ and $W \setminus \{w^*\}$ are green. Then $T_n \not\subseteq [V]_r$ forces $u_1 u_{n-1}$ to be green. Furthermore, by Claim 2.13, the edges $u_{n/2-1}u_{n-1}$ and $u_{n/2}u_{n-1}$ have to be red. Remind that a red edge $u_{n-1}w$ with $w \in W$ must occur. But then the red path $P_{n-1} = u_1 \cdots u_{n/2-1} u_{n-1} u_{n/2} \cdots u_{n-2}$ together with the red edge $u_{n-1} w$ yields the forbidden red T_n , a contradiction, and we are done.

3. Trees
$$T_n \in \{P_n, B_{2,n-2}\}$$
 and the Graphs G with $\chi(G) = 2$

It seems to be out of reach to determine the exact value of $r(T_n, G)$ for every tree T_n and all connected bipartite graphs G of order six, i.e., the star $S_6 = K_{1,5}$ and the connected spanning subgraphs of $K_{2,4}$ and $K_{3,3}$. Burr, Erdős, Faudree, Rousseau and Schelp [1] derived upper bounds for $r(T_n, K_{2,4})$ and $r(T_n, K_{3,3})$. They proved that for all sufficiently large n,

$$r(T_n, K_{2,4}) < n + 3n^{1/2}.$$

Moreover they showed that there exists a constant c such that for every tree T_n with maximum degree $\Delta(T_n) = m$,

$$r(T_n, K_{3,3}) \le \max\left\{n + \left\lceil cn^{1/3} \right\rceil, r(S_{m+1}, K_{3,3})\right\}$$

and

$$r(S_{m+1}, K_{3,3}) < m + 3m^{2/3}$$

for *m* sufficiently large. Lower bounds can be obtained from $r(T_n, C_4)$ since $C_4 \subseteq K_{2,4}$ and $C_4 \subseteq K_{3,3}$. In [1] it was proved that for all sufficiently large *n*,

$$r(S_{m+1}, C_4) > m + \lfloor m^{1/2} - 6m^{11/40} \rfloor$$

This together with Theorem 2.12 implies that $r(T_n, K_{2,4})$ and $r(T_n, K_{3,3})$ differ considerably from the lower bound (1) if n is sufficiently large and $\Delta(T_n) = m$ is close to n - 1. Clearly, the same holds for $r(T_n, G)$ if G is any bipartite graph with $C_4 \subseteq G$. Here we restrict ourselves to study $r(T_n, G)$ for two trees with small maximum degree, namely $T_n \in \{P_n, B_{2,n-2}\}$. The choice of these two trees is essentielly due to our project to determine $r(T_n, G)$ for every connected graph of order six and all trees of order at most five — the only non-star trees on at most five vertices are the paths P_4 and P_5 and the broom $B_{2,3}$. Our results show that, except for some small n, the trees $T_n \in \{P_n, B_{2,n-2}\}$ are G-good for any connected bipartite graph G of order p(G) = 6, i.e., $r(T_n, G)$ attains the general lower bound from (1). Instead of $r(T_n, S_6)$ here we consider the more general case $r(T_n, S_m)$. We start by improving the lower bound (1) for $T_n \in \{P_n, B_{2,n-2}\}$ and any connected bipartite graph G in case of small n.

Lemma 3.1. Let $G \subseteq K_{m_1,m_2}$ be a connected graph of order $m = m_1 + m_2$ where $1 \leq m_1 \leq m_2$. Then $r(P_n, G) \geq m - 1 + \lfloor n/2 \rfloor$ for $n \geq 2$ and $r(B_{2,n-2}, G) \geq m - 1 + \lfloor (n-1)/2 \rfloor$ for $n \geq 5$.

Proof. From (1) it follows that $r(G, T_n) \ge m - 1 + s(T_n)$. Due to r(F, G) = r(G, F), $s(P_n) = \lfloor n/2 \rfloor$ for $n \ge 2$ and $s(B_{2,n-2}) = \lfloor (n-1)/2 \rfloor$ for $n \ge 5$ we obtain the desired results.

If G is a connected spanning subgraph of K_{m_1,m_2} with $1 \le m_1 \le m_2$, then $s(G) = m_1$, and the general lower bound (1) implies $r(T_n, G) \ge n + m_1 - 1$ for any tree T_n . Hence the general lower bound is improved by the lower bounds from Lemma 3.1 for $T_n = P_n$ if $n \le 2m_2 - 2$ and for $T_n = B_{2,n-2}$ if $n \le 2m_2 - 3$. The following lemma shows that in case of $T_n = B_{2,n-2}$ the general lower bound can also be improved for $n = 2m_2 - 2$ or $n = 2m_2$ and certain graphs $G \subseteq K_{m_1,m_2}$.

Lemma 3.2. Let $n \ge 6$ be even and let $m_1 \le m_2$. Then $r(B_{2,n-2}, G) \ge n + m_1$ if $m_1 \ge 1$, $n = 2m_2$ and $G = K_{m_1,m_2}$ or if $m_1 \ge 2$, $n = 2m_2 - 2$ and $G \in \{K_{m_1,m_2} - e, K_{m_1,m_2} - 2K_2\}$. Moreover, $r(B_{2,3}, K_{m_1,m_2}) \ge m_1 + m_2 + 2$.

Proof. For $n = 2m_2$, the coloring of K_{n+m_1-1} with $[V]_g = 2K_{m_2} + \overline{K_{m_1-1}}$ contains no red $B_{2,n-2}$ and no green K_{m_1,m_2} . For $n = 2m_2 - 2$, the coloring of K_{n+m_1-1} with $[V]_g = 2K_{m_2-1} + \overline{K_{m_1-1}}$ contains no red $B_{2,n-2}$ and no green $K_{m_1,m_2} - 2K_2$. Moreover, the coloring of $K_{m_1+m_2+1}$ with $[V]_r = C_{m_1+m_2+1}$ contains no red $B_{2,3}$ and no green K_{m_1,m_2} .

Now we consider $r(T_n, S_m)$. Parsons [14] has already determined the exact value of $r(P_n, S_m)$ by explicit formulas and a recurrence.

Theorem 3.3 (Parsons [14]). Let $n \ge 4$ and $m \ge 4$. Then

$$r(P_n, S_m) = \begin{cases} 2m - 3 & \text{if } m - 1 \le n < 2m - 3, \\ n & \text{if } n \ge 2m - 3, \end{cases}$$

and $r(P_n, S_m) = \max\{r(P_{n-1}, S_m), r(P_n, S_{m-(n-1)}) + n - 1\}$ if n < m - 1.

Remark. For $n \ge 4$ and m = 5 only $r(P_4, S_6)$ is not explicitly given by Theorem 3.3. Applying the recurrence and Theorem 2.3 we derive $r(P_4, S_6) = 7$.

We use the result of Parsons to completely determine the exact values of $r(B_{2,n-2}, S_m)$ if $n \ge m-1$.

Theorem 3.4. Let $n \ge 5$ and $m \ge 4$. Then $r(B_{2,3}, S_4) = 6$ and

$$r(B_{2,n-2}, S_m) = \begin{cases} 2m-3 & \text{if } m-1 \le n \le 2m-3 \text{ and } m \ge 5, \\ n+1 & \text{if } n=2m-2, \\ n & \text{if } n \ge 2m-1. \end{cases}$$

To prove Theorem 3.4 the straightforward statements of the following lemma will be used.

Lemma 3.5. Let $n \geq 5$ and let χ be a coloring of a complete graph with vertex set V and $P_n = u_1 \cdots u_n \subseteq [V]_r$, but $B_{2,n-2} \not\subseteq [V]_r$. Then u_1u_3 , u_1u_{n-1} , u_2u_n and $u_{n-2}u_n$ have to be green. Furthermore, if $n \geq 7$ and u_1u_i is red for some iwith $5 \leq i \leq n-2$, then $u_{i-2}u_n$ has to be green. **Proof of Theorem 3.4.** In [5] it was already shown that $r(B_{2,3}, S_4) = 6$. From (1) we obtain $r(B_{2,n-2}, S_m) \ge n$. Lemma 3.2 yields $r(B_{2,n-2}, S_m) \ge n+1$ if n = 2m - 2. Moreover, the coloring of K_{2m-2} with $[V]_r = 2K_{m-2}$ shows $r(B_{2,n-2}, S_m) \ge 2m - 3$ for $n \ge m - 1$. Thus, to establish the results from Theorem 3.4 it suffices to prove that $r(B_{2,n-2}, S_m) \le n$ for $n \ge 2m - 1$ with $m \ge 4$ and for n = 2m - 3 with $m \ge 5$ by using the monotonicity property $r(B_{2,n-2}, S_m) \le r(B_{2,n'-2}, S_m)$ for n < n'. To obtain the desired upper bounds suppose that we have a $(B_{2,n-2}, S_m)$ -coloring of K_n with vertex set V where $n \ge 2m - 1$ with $m \ge 4$ or n = 2m - 3 with $m \ge 5$. Then, by Theorem 3.3, a red $P_n = u_1 u_2 \cdots u_n$ occurs. Note that $S_m \not\subseteq [V]_g$ forces $\Delta_g \le m - 2$. By Lemma $3.5, u_1 u_3, u_1 u_{n-1}, u_2 u_n$ and $u_{n-2} u_n$ have to be green.

Case 1. $n \ge 2m - 1$ where $m \ge 4$. Since $d_g(u_1) \le m - 2$, $q_g(u_1, \{u_5, \ldots, u_{n-2}\}) \le m - 4$. Thus, $q_r(u_1, \{u_5, \ldots, u_{n-2}\}) \ge n - 6 - (m - 4) \ge 2m - 1 - m - 2 = m - 3$, and Lemma 3.5 implies $q_g(u_n, \{u_3, \ldots, u_{n-4}\}) \ge m - 3$. But this yields $d_g(u_n) \ge m - 1$, a contradiction.

Case 2. n = 2m - 3 where $m \ge 5$. We distinguish two subcases depending on the color of u_1u_n .

Case 2.1. u_1u_n is green. Then $q_g(u_1, \{u_5, \ldots, u_{n-2}\}) \leq m-5$ because $d_g(u_1) \leq m-2$. This forces $q_r(u_1, \{u_5, \ldots, u_{n-2}\}) \geq n-6 - (m-5) = 2m-3-m-1 = m-4$, and Lemma 3.5 yields $q_g(u_n, \{u_3, \ldots, u_{n-4}\}) \geq m-4$. Again we obtain $d_q(u_n) \geq m-1$, a contradiction.

Case 2.2. u_1u_n is red, i.e., $C_n = (u_1u_2\cdots u_n)$ is a red cycle. The remaining edges are the diagonals $u_iu_{i+\ell}$ of length ℓ with $\ell = 2, \ldots, m-2$ and $i = 1, \ldots, n$, where the indices should be read modulo n. To finish Case 2.2 we use the following properties of the diagonals of C_n .

Claim 3.6. If a diagonal $u_i u_{i+\ell}$ of length ℓ with $2 \leq \ell \leq m-2$ and $1 \leq i \leq n$ is red, then also $u_{i+1}u_{i+\ell+1}$ has to be red.

Proof. If $u_i u_{i+\ell}$ is red and $u_{i+1} u_{i+\ell+1}$ is green, then the end-vertices of the red $P_n = u_{i+\ell+1} u_{i+\ell+2} \cdots u_n u_1 \cdots u_i u_{i+\ell} u_{i+\ell-1} \cdots u_{i+1}$ are joined green, a situation already considered in Case 2.1.

Claim 3.7. For $2 \leq \ell \leq m-2$, all diagonals of length ℓ must have the same color.

Proof. This is an immediate consequence of Claim 3.6.

Claim 3.8. If the diagonals of length ℓ with $2 \leq \ell \leq m-3$ are red, then the diagonals of length $\ell + 1$ have to be green.

Proof. Assume that the diagonals of length $\ell + 1$ are also red. Using the diagonal $u_1u_{\ell+1}$ of length ℓ , the diagonal $u_2u_{\ell+3}$ of length $\ell + 1$ and edges from the red C_n we obtain the red $B_{2,n-2}$ with bristles $u_1u_{\ell+1}$, $u_{\ell+1}u_{\ell+2}$ and handle $u_{\ell+1}u_{\ell}\cdots u_2u_{\ell+3}\cdots u_n$, a contradiction.

Claim 3.9. The diagonals of length ℓ with $2 \leq \ell \leq 3$ and, for $m \geq 6$, also the diagonals of length $\ell = 4$ have to be green.

Proof. Assume that for some ℓ with $2 \leq \ell \leq 4$ the diagonals of length ℓ are red. If $\ell = 2$, then u_1u_3 together with edges of the red C_n give the red $B_{2,n-2}$ with bristles u_1u_3 , u_2u_3 and handle $u_3u_4\cdots u_n$, a contradiction. If $\ell = 3$, then the red $B_{2,n-2}$ with bristles u_1u_2 , u_1u_n and handle $u_1u_4u_3u_6\cdots u_{n-4}u_{n-1}u_{n-2}$ would occur. If $\ell = 4$ and $m \geq 6$, then the diagonals u_1u_5 and u_3u_7 together with edges from the red C_n would yield the red $B_{2,n-2}$ with bristles u_2u_3 , u_3u_4 and handle $u_3u_7u_6u_5u_1u_nu_{n-1}\cdots u_8$.

Now we finish Case 2.2 by deriving a contradiction to $\Delta_g \leq m-2$. Note that for $2 \leq \ell \leq m-2$ every u_i is incident to two diagonals of lenght ℓ . Thus, Claim 3.9 yields the desired contradiction for $5 \leq m \leq 7$. In the remaining case $m \geq 8$ we additionally have to consider the diagonals of length $\ell \geq 5$. There are m-6 different diagonal lengths ℓ with $5 \leq \ell \leq m-2$ and Claim 3.8 implies that at least $\lfloor (m-6)/2 \rfloor$ of them belong to green diagonals. Hence $d_g(u_i) \geq 6 + 2\lfloor (m-6)/2 \rfloor \geq m-1$, a contradiction, and we are done.

In the following two theorems $r(P_n, G)$ and $r(B_{2,n-2}, G)$ are determined for any connected spanning subgraph G of $K_{2,4}$.

Theorem 3.10. Let $n \ge 4$ and let G be a connected graph of order six where $G \subseteq K_{2,4}$. Then

$$r(P_n, G) = \begin{cases} 7 & \text{if } 4 \le n \le 5, \\ 8 & \text{if } n = 6, \\ n+1 & \text{otherwise.} \end{cases}$$

Proof. From (1) we obtain $r(P_n, G) \ge n + 1$. Moreover, Lemma 3.1 implies $r(P_n, G) \ge 7$ for $4 \le n \le 5$ and $r(P_6, G) \ge 8$. To establish equality it suffices to show $r(P_5, K_{2,4}) \le 7$ and $r(P_n, K_{2,4}) \le n + 1$ for $n \ge 7$. Consider any coloring of K_7 not containing a red P_5 and any coloring of K_{n+1} , $n \ge 7$, not containing a red P_5 and any coloring of K_{n+1} , $n \ge 7$, not containing a red P_5 and any coloring of K_{n+1} , $n \ge 7$, not containing a red P_n . We have to prove that a green $K_{2,4}$ occurs. Let $P_k = u_1 \cdots u_k$ be a red path of maximum length, $U = \{u_1, \ldots, u_k\}$ and $W = V \setminus U$ where V denotes the vertex sets of the complete graphs. If k = 1, then only green edges occur and we find a green $K_{2,4}$. Now let $k \ge 2$. The maximality of k forces that u_1 and u_k are joined green to all vertices in W. This yields a green $K_{2,4}$ if $|W| \ge 4$. It remains |W| = 3 in case of K_7 and $2 \le |W| \le 3$ in case of K_{n+1} , $n \ge 7$.

Case 1. |W| = 3. Then k = n - 1 = 4 in case of K_7 and $k = n - 2 \ge 5$ in case of K_{n+1} , $n \ge 7$. Let $W = \{w_1, w_2, w_3\}$. Only green edges between W and $\{u_2, u_{k-1}\}$ imply a green $K_{2,4}$. Otherwise we may assume that u_2w_1 is red. Since $P_{k+1} \not\subseteq [V]_r$, w_1 has to be joined green to w_2 , w_3 and u_3 . Furthermore, u_1u_3 and u_1u_k have to be green, and we obtain the green $K_{2,4} = \{u_1, w_1\} + \{w_2, w_3, u_3, u_k\}$.

Case 2. |W| = 2 in case of K_{n+1} , $n \ge 7$. This implies k = n - 1. Let $W = \{w_1, w_2\}$. If $K_{2,4} \not\subseteq [V]_g$, then at most one vertex from $\{u_2, \ldots, u_{n-2}\}$ is joined green to w_1 and to w_2 . Therefore we may assume that every vertex in $\{u_2, \ldots, u_{\lfloor (n-1)/2 \rfloor}\}$ is joined red to w_1 or to w_2 . Note that $\lfloor (n-1)/2 \rfloor \ge 3$. Since $P_{k+1} \not\subseteq [V]_r$, a common red neighbor of u_2 and u_3 in W is forbidden. Thus, we may assume that u_2w_1 and u_3w_2 are red. Then $P_{k+1} \not\subseteq [V]_r$ forces $w_1w_2, w_1u_3, w_1u_4, u_1u_3, u_1u_4$ and u_1u_{n-1} to be green, and this yields the green $K_{2,4} = \{u_1, w_1\} + \{w_2, u_3, u_4, u_{n-1}\}$.

Theorem 3.11. Let $n \ge 5$ and let G be a connected graph of order six where $G \subseteq K_{2,4}$. Then, if $G \ne K_{2,4}$,

$$r(B_{2,n-2},G) = \begin{cases} 7 & \text{if } n = 5, \\ 8 & \text{if } n = 6 \text{ and } K_{2,4} - 2K_2 \subseteq G, \\ n+1 & \text{otherwise}, \end{cases}$$

and

$$r(B_{2,n-2}, K_{2,4}) = \begin{cases} 8 & \text{if } n \le 7, \\ 10 & \text{if } n = 8, \\ n+1 & \text{otherwise.} \end{cases}$$

Proof. From (1) we obtain $r(B_{2,n-2}, G) \ge n+1$, and Lemma 3.1 yields $r(B_{2,3}, G) \ge 7$. Lemma 3.2 gives $r(B_{2,3}, K_{2,4}) \ge 8$, $r(B_{2,4}, K_{2,4} - 2K_2) \ge 8$ and $r(B_{2,6}, K_{2,4}) \ge 10$. To establish equality it suffices to show that $r(B_{2,3}, K_{2,4} - e) \le 7$, $r(B_{2,4}, G^*) \le 7$ for G^* obtained from $K_{2,4}$ by deleting two edges incident to the same vertex of degree 4 and $r(B_{2,n-2}, G) \le n+1$ for $G = K_{2,4}$ if n = 7 or $n \ge 9$ and for $G = K_{2,4} - e$ if n = 8.

To verify that $r(B_{2,3}, K_{2,4} - e) \leq 7$ and $r(B_{2,4}, G^*) \leq 7$ consider any coloring of K_7 with vertex set V. If a green $K_{2,4}$ occurs, then we are done. Otherwise, by Theorem 3.10, a red $P_5 = u_1 \cdots u_5$ must occur. Let $U = \{u_1, \ldots, u_5\}$ and let $W = V \setminus U = \{w_1, w_2\}$. Assume first that $B_{2,3} \not\subseteq [V]_r$. Then all edges between W and $\{u_2, u_3, u_4\}$ have to be green. Moreover, at least one edge from u_1 to Wmust be green yielding a green $K_{2,4} - e$. Suppose now that $B_{2,4} \not\subseteq [V]_r$. Then all edges between W and $\{u_2, u_4\}$ have to be green. If w_1 or w_2 is joined green to both u_1 and u_5 , then a green G^* occurs. Neither u_1 nor u_5 can be joined red to w_1 and to w_2 since $B_{2,4} \not\subseteq [V]_r$. Thus we may assume that u_1w_1 and u_5w_2 are

green and that u_1w_2 and u_5w_1 are red. But then $B_{2,4} \not\subseteq [V]_r$ forces u_3w_1 to be green, and we obtain a green G^* .

To prove that $r(B_{2,n-2}, G) \leq n+1$ for $G = K_{2,4}$ if n = 7 or $n \geq 9$ and for $G = K_{2,4} - e$ if n = 8 consider any coloring of K_{n+1} , $n \geq 7$, not containing a red $B_{2,n-2}$. Let $V = V(K_{n+1})$. We have to show that a green $K_{2,4} - e$ occurs in case of n = 8 and a green $K_{2,4}$ otherwise.

Case 1. There is a red cycle $C_k = (u_1 \cdots u_k)$ of length k = n or k = n + 1. Let $U = \{u_1, \ldots, u_k\}$. We consider two subcases depending on k.

Case 1.1. k = n. Then $B_{2,n-2} \not\subseteq [V]_r$ implies that all edges between U and the vertex $w \in V \setminus U$ are green. By Theorem 3.4, $r(B_{2,n-2}, S_5) = n$ if n = 7 or $n \geq 9$, and $r(B_{2,n-2}, S_4) = n$ if n = 8. This yields a green S_5 in [U] for n = 7and for $n \geq 9$ and a green S_4 in [U] for n = 8. Together with the green edges incident to w we obtain a green $K_{2,4}$ and a green $K_{2,4} - e$, respectively.

Case 1.2. k = n + 1. Then $B_{2,n-2} \not\subseteq [V]_r$ forces all diagonals of length $\ell \leq 3$ to be green. If, in addition, all diagonals of length $\ell = 4$ are green, then $\{u_1, u_2\} + \{u_4, u_5, u_{n-1}, u_n\}$ is a green $K_{2,4}$. The remaining case is that at least one diagonal of length 4, say u_1u_5 , is red. Any red diagonal of length $\ell \geq 4$ incident to u_3 yields a red $B_{2,n-2}$ with bristles u_2u_3 and u_3u_4 , a contradiction. Otherwise all diagonals of length $\ell \geq 2$ incident to u_3 are green. Thus, u_1, u_6 and u_7 are common green neighbors of u_3 and u_4 . If u_4u_{n+1} is also green, then $\{u_3, u_4\} + \{u_1, u_6, u_7, u_{n+1}\}$ is a green $K_{2,4}$. On the other hand, if u_4u_{n+1} is red, then all diagonals incident to u_2 have to be green since $B_{2,n-2} \not\subseteq [V]_r$. But then u_2 and u_3 have at least four common green neighbors and again a green $K_{2,4}$ occurs.

Case 2. Every red cycle has length at most n-1. If $K_{2,4} \subseteq [V]_g$, then we are done. Otherwise, by Theorem 3.10, a red $P_n = u_1 \cdots u_n$ occurs. Let $U = \{u_1, \ldots, u_n\}$ and let w be the vertex in $V \setminus U$. Since $B_{2,n-2} \not\subseteq [V]_r$, the edges wu_2, wu_3, wu_{n-2} and wu_{n-1} have to be green. By Lemma 3.5, the edges $u_1u_3, u_1u_{n-1}, u_2u_n$ and $u_{n-2}u_n$ are green. Moreover, $C_n \not\subseteq [V]_r$ forces u_1u_n to be green, and $C_{n+1} \not\subseteq [V]_r$ implies that at least one of the edges wu_1 and wu_n , say wu_n , is green. To avoid a green $K_{2,4} = \{u_1, w\} + \{u_2, u_{n-2}, u_{n-1}, u_n\}, u_1u_{n-2}$ has to be red. Then, by Lemma 3.5, $u_{n-4}u_n$ must be green. Furthermore, $C_n \not\subseteq [V]_r$ implies that $u_{n-3}u_{n-1}$ is green, and $B_{2,n-2} \not\subseteq [V]_r$ forces $u_{n-3}u_n$ to be green. If n = 7, then wu_1, wu_4 and u_3u_6 have to be red as otherwise $\{w, u_7\} + \{u_1, u_2, u_3, u_4, u_5\}$ contains a green $K_{2,4}$ or $\{u_6, u_7\} + \{u_1, u_3, u_4, w\}$ is a green $K_{2,4}$. But this yields a red C_n , a contradiction. If $n \ge 8$, then wu_{n-4} has to be green if no red $B_{2,n-2}$ with bristles $u_{n-4}u_{n-3}$ and $u_{n-4}w$ shall occur. Hence $\{w, u_n\} + \{u_1, u_2, u_3, u_{n-4}, u_{n-2}\}$ contains a green $K_{2,4}$ or u_3u_n and wu_1 are red. But then we obtain a red $B_{2,n-2}$ with bristles u_1u_2 and u_1w , a contradiction. Finally we determine $r(P_n, G)$ and $r(B_{2,n-2}, G)$ for all connected spanning subgraphs G of $K_{3,3}$.

Theorem 3.12. Let $n \ge 4$ and let G be a connected graph of order six where $G \subseteq K_{3,3}$. Then

$$r(P_n, G) = \begin{cases} 7 & \text{if } n = 4, \\ n+2 & \text{otherwise.} \end{cases}$$

Proof. By (1), $r(P_n, G) \ge n + 2$. Moreover, Lemma 3.1 yields $r(P_4, G) \ge 7$. To establish equality it suffices to prove that $r(P_n, K_{3,3}) \leq n+2$ for $n \geq 5$. Consider any coloring of K_{n+2} , $n \ge 5$, not containing a red P_n . We have to show that a green $K_{3,3}$ occurs. Let $P_k = u_1 \cdots u_k$ be a red path of maximum length, $U = \{u_1, ..., u_k\}$ and $W = V \setminus U = \{w_1, w_2, ..., w_{n+2-k}\}$. In case of $k \leq 2$ either at most one red edge occurs or any two red edges are independent. This yields a green $K_6 - 2K_2$ containing a green $K_{3,3}$. Now let $k \ge 3$. All edges between $\{u_1, u_k\}$ and W have to be green. Since $k \le n-1$, $|W| = n+2-k \ge 3$. If $q_q(u_i, W) \geq 3$ for some i with $2 \leq i \leq k-1$, then a green $K_{3,3}$ occurs. Otherwise $q_r(u_i, W) \geq 1$ for every *i* with $2 \leq i \leq k-1$, and we may assume that u_2w_1 is red. Since $P_{k+1} \not\subseteq [V]_r$, all edges incident to w_1 in [W] have to be green. This produces a green $K_{3,3}$ if $|W| \ge 4$. The remaining case is |W| = 3which implies $k = n - 1 \ge 4$. Again we apply $P_{k+1} \not\subseteq [V]_r$. Thus, $u_1 u_k$, $u_1 u_3$ and u_3w_1 must be green. Moreover we may assume that u_3w_2 is red, and this forces u_2w_2 and u_2u_k to be green. If u_2w_3 is green, then we obtain the green $K_{3,3} = \{u_1, u_2, w_1\} + \{u_k, w_2, w_3\}$. If u_2w_3 is red, then w_2w_3 and u_3w_3 have to be green yielding the green $K_{3,3} = \{u_1, w_1, w_3\} + \{u_3, u_k, w_2\}$, and the proof is complete.

Theorem 3.13. Let $n \ge 5$ and let G be a connected graph of order six where $G \subseteq K_{3,3}$. Then

$$r(B_{2,n-2},G) = \begin{cases} n+3 & \text{if } G = K_{3,3} \text{ and } 5 \le n \le 6, \\ n+2 & \text{otherwise.} \end{cases}$$

Proof. By (1), $r(B_{2,n-2}, G) \ge n+2$. Moreover, Lemma 3.2 yields $r(B_{2,3}, K_{3,3}) \ge 8$ and $r(B_{2,4}, K_{3,3}) \ge 9$. To establish equality we prove $r(B_{2,n-2}, K_{3,3}) \le n+3$ as well as $r(B_{2,n-2}, K_{3,3}-e) \le n+2$ for $n \ge 5$ and $r(B_{2,n-2}, K_{3,3}) \le n+2$ for $n \ge 7$. Consider any coloring of K_m with $n+2 \le m \le n+3$ and $n \ge 5$ not containing a red $B_{2,n-2}$. Let $V = V(K_m)$. If a green $K_{3,3}$ occurs, then we are done. Otherwise Theorem 3.12 guarantees a red $P_n = u_1 \cdots u_n$. Let $U = \{u_1, \ldots, u_n\}$. $B_{2,n-2} \not\subseteq [V]_r$ forces only green edges between $\{u_2, u_3, u_{n-2}, u_{n-1}\}$ and $W = V \setminus U$. Hence $K_{3,3} \subseteq [V]_g$ in case of m = n+3, i.e., |W| = 3, a contradiction. It remains m = n+2. Let $W = \{w_1, w_2\}$. By Lemma 3.5, $u_1u_3, u_1u_{n-1}, u_2u_n$ and $u_{n-2}u_n$

have to be green. Thus we find a green $K_{3,3} - e$ in $\{u_1, w_1, w_2\} + \{u_2, u_3, u_{n-1}\}$ proving that $r(B_{2,n-2}, K_{3,3} - e) \leq n+2$ if $n \geq 5$. Now let $n \geq 7$. To avoid that $\{u_1, w_1, w_2\} + \{u_3, u_{n-2}, u_{n-1}\}$ or $\{w_1, w_2, u_n\} + \{u_2, u_3, u_{n-2}\}$ is a green $K_{3,3}, u_1u_{n-2}$ and u_3u_n have to be red, and then $B_{2,n-2} \not\subseteq [V]_r$ implies that u_1w_1 and u_1w_2 are green. This forces u_1u_n to be red as otherwise $\{u_1, u_2, u_{n-2}\} + \{w_1, w_2, u_n\}$ is a green $K_{3,3}$. Consequently, since $B_{2,n-2} \not\subseteq [V]_r$, all edges between U and W have to be green. By Theorem 3.4, $r(B_{2,n-2}, S_4) = n$ for $n \geq 7$. But this implies a green S_4 in [U] yielding a green $K_{3,3}$ together with w_1 and w_2 , a contradiction, and we are done.

4. Concluding Remarks

Summarizing Theorems 2.1, 2.9, the results from [11] concerning non-bipartite graphs G and the results from [13] for $r(S_n, K_{1,1,4})$, we see that $r(T_n, G)$ has been determined for any tree T_n and all connected graphs $G \neq K_{2,2,2}$ of order six with $\chi(G) \geq 3$, except for $T_n = S_n$ in case of some small n and some G where $\chi(G) = 3$. The exact values of $r(S_n, G)$ are still missing in the following cases (the numbering of G corresponds to the numbering of the 112 connected graphs of order six used in [11]): $G = G_{100} = K_{1,2,3}$ with $n \in \{7,9,11\}$, $G = G_{94} = E_2 + (E_1 \cup P_3)$ with n = 7, $G = G_{92} = K_{3,3} + e$ with $6 \leq n \leq 12$, $G = G_{78} = E_2 + (E_2 \cup K_2)$ with $6 \leq n \leq 8$, $G = G_{60}$ and $G = G_{79}$ (the two graphs obtained from $K_{1,1,3}$ by joining an additional vertex to one or two of the three vertices of degree 2) with n = 6. In all these cases we know that the value of $r(S_n, G)$ differs by at most 2 from the lower bound given in (1). By a detailed case analysis, perhaps assisted by computer algorithms, it should be possible to determine the missing exact values.

To achieve significant progress in evaluating $r(T_n, K_{2,2,2})$ seems to be difficult, especially for trees T_n with maximum degree $\Delta(T_n)$ close to n-1, where we know that, for n sufficiently large, $r(T_n, K_{2,2,2})$ differs considerably from the lower bound 2n obtained from (1). In contrast, for some trees with small maximum degree as P_n and a special class of trees with $\Delta(T_n) = 3$, $r(T_n, K_{2,2,2})$ attains the bound 2n (see Theorems 2.10 and 2.11). It seems to be promising to study $r(T_n, K_{2,2,2})$ for further trees with small maximum degree, in particular it would be desirable to obtain a characterization of all $K_{2,2,2}$ -good trees T_n .

As already explained, it seems to be extremely difficult to evaluate $r(T_n, G)$ for trees T_n with maximum degree $\Delta(T_n)$ close to n-1 and all connected bipartite graphs G of order six, i.e., all connected spanning subgraphs of K_{m_1,m_2} with $1 \leq m_1 \leq m_2$ and $m_1 + m_2 = 6$. If $\Delta(T_n)$ is small, then the situation is entirely different. For $T_n \in \{P_n, B_{2,n-2}\}$ we have shown that, except for small n, T_n is G-good for any connected bipartite graph G of order six, and there might be other trees T_n with small maximum degree where the general lower bound (1) is attained. Especially, by Theorems 3.3, 3.10 and 3.12, P_n is *G*-good if and only if $n \ge 2m_2 - 1$. This improves in a very special case a general result due to Pokrovskiy and Sudakov [16] who recently have shown that P_n is *G*-good for any graph *G* on p(G) vertices if $n \ge 4p(G)$.

References

- S.A. Burr, P. Erdős, R.J. Faudree, C.C. Rousseau and R.H. Schelp, Some complete bipartite graph-tree Ramsey numbers, Ann. Discrete Math. 41 (1989) 79–89. https://doi.org/10.1016/S0167-5060(08)70452-7
- G. Chartrand, R.J. Gould and A.D. Polimeni, On Ramsey numbers of forests versus nearly complete graphs, J. Graph Theory 4 (1980) 233-239. https://doi.org/10.1002/jgt.3190040211
- [3] V. Chvátal, Tree-complete graph Ramsey numbers, J. Graph Theory 1 (1977) 93. https://doi.org/10.1002/jgt.3190010118
- [4] V. Chvátal and F. Harary, Generalized Ramsey theory for graphs III: Small offdiagonal numbers, Pacific J. Math. 41 (1972) 335-345. https://doi.org/10.2140/pjm.1972.41.335
- [5] M. Clancy, Some small Ramsey numbers, J. Graph Theory 1 (1977) 89–91. https://doi.org/10.1002/jgt.3190010117
- [6] P. Erdős, R.J. Faudree, C.C. Rousseau and R.H. Schelp, *The book-tree Ramsey numbers*, Scientia, Ser. A: Math. Sci. 1 (1988) 111–117.
- [7] R.J. Faudree, C.C. Rousseau and R.H. Schelp, Small order graph-tree Ramsey numbers, Discrete Math. 72 (1988) 119–127. https://doi.org/10.1016/0012-365X(88)90200-2
- [8] R.J. Gould and M.S. Jacobson, On the Ramsey number of trees versus graphs with large clique number, J. Graph Theory 7 (1983) 71–78. https://doi.org/10.1002/jgt.3190070109
- [9] Y.B. Guo and L. Volkmann, Tree-Ramsey numbers, Australas. J. Combin. 11 (1995) 169–175.
- [10] F. Harary, Recent results on generalized Ramsey theory for graphs, in: Graph Theory and Applications, Lecture Notes in Mathematics Vol. 303, Y. Alavi et al. (Ed(s)), (Springer, Berlin, 1972) 125–138.
- [11] R. Lortz and I. Mengersen, On the Ransey numbers for stars versus connected graphs of order six, Australas. J. Combin. 73 (2019) 1–24.
- [12] R. Lortz and I. Mengersen, On the Ramsey numbers $r(S_n, K_6 3K_2)$, J. Combin. Math. Combin. Comput., to appear.
- [13] R. Lortz and I. Mengersen, All missing Ramsey numbers for trees versus the fourpage book, Electron. J. Graph Theory Appl. 9 (2021) 377–386. https://doi.org/10.5614/ejgta.2021.9.2.11

- T.D. Parsons, Path-star Ramsey numbers, J. Combin. Theory Ser. B 17 (1974) 51–58.
 https://doi.org/10.1016/0095-8956(74)90048-3
- T.D. Parsons, Ramsey graphs and block designs I, Trans. Amer. Math. Soc. 209 (1975) 33-44. https://doi.org/10.1090/S0002-9947-1975-0396317-X
- [16] A. Pokrovskiy and B. Sudakov, *Ramsey goodness of paths*, J. Combin. Theory Ser. B **122** (2017) 384–390. https://doi.org/10.1016/j.jctb.2016.06.009
- [17] S.P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. (2017) #DS1.15. https://doi.org/10.37236/21
- C.C. Rousseau and J. Sheehan, A class of Ramsey problems involving trees, J. Lond. Math. Soc. (2) 18 (1978) 392–396. https://doi.org/10.1112/jlms/s2-18.3.392
- [19] Y. Wu, Y. Sun, R. Zhang and S.P. Radziszowski, Ramsey numbers of C₄ versus wheels and stars, Graphs Combin. **31** (2015) 2437–2446. https://doi.org/10.1007/s00373-014-1504-3

Received 22 June 2019 Revised 27 September 2020 Accepted 28 September 2020