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Abstract

A cyclic coloring of a plane graph is a vertex coloring such that any two
vertices incident with the same face receive distinct colors. This type of
coloring was introduced more than fifty years ago, and a lot of research in
chromatic graph theory was sparked by it. This paper is a survey on the
state of the art concerning the cyclic coloring and relaxations of this graph
invariant.
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1. Introduction and Notations

A plane graph is a particular drawing of a planar graph in the Euclidean plane
such that no edges intersect except at their endvertices (for details concerning
embeddings of graphs into surfaces see [33]). If all vertices of a plane graph are
incident with the outer face, then the graph is called outerplane graph. Let G

be a connected plane graph with vertex set V (G), edge set E(G), and face set
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F (G). The boundary of a face f is the boundary in the usual topological sense. It
can be partitioned into vertices and edges contained in the closure of f and then
organized into a closed walk in G traversing along a simple closed curve lying just
inside the face f . This closed walk is unique up to the choice of the initial vertex
and the direction, and is called the boundary walk of the face f (see [33], p. 101).
Let f be a face having the boundary walk v0v1 · · · vk−1v0 such that vi ∈ V (G)
and vi is adjacent to vi+1, i = 0, 1, . . . , k−1, subscripts taken modulo k. A facial

path of f is a subpath vmvm+1 · · · vn (subscripts taken modulo k) of the boundary
walk of f (i.e., a facial path is any path which is a consecutive part of a boundary
walk of a face).

The size of a face f is the number of edges incident with f . The degree of
a face f is the number of vertices incident with f . We use Σ(G) and ∆∗(G) to
denote the maximum face size and the maximum face degree of G, respectively.
Let V (f) and E(f) denote the set of vertices and the set of edges incident with
f , respectively.

Let ∆(G) denote the maximum vertex degree of a graph G, and let δ(G) be
the minimum vertex degree of G.

For a cycle C (in a plane graph G) we denote the sets of vertices and edges
of G lying inside C and outside C by Int(C) and Ext(C), respectively. We say C

is a separating cycle of G if both Int(C) and Ext(C) are not empty.

The girth g(G) of a graph G (that is not acyclic) is the length of a shortest
cycle of G.

A graph G is k-connected (k-edge-connected) if G has at least k + 1 vertices
and G−S is connected for any S ⊆ V (G) (S ⊆ E(G)) with |S| ≤ k−1. A bridge

(a cut-vertex ) of G is an edge (a vertex) whose removal from G yields a graph
having more components than G does. A graph which contains no bridge is said
to be bridgeless.

An edge (or a vertex) coloring of a graph G is an assignment of colors to
edges (or vertices) of G, one color per edge (per vertex). An edge (or a vertex)
coloring c of G is proper if for any two adjacent edges (or vertices) x1 and x2 of
G, c(x1) 6= c(x2) holds.

A simple graph is a graph without loops and parallel edges. In a multigraph

parallel edges are allowed but loops are forbidden. In a pseudograph both loops
and parallel edges are allowed.

2. Cyclic Coloring

A cyclic coloring of a plane graph is a coloring of its vertices such that any
two vertices incident with the same face receive distinct colors. The minimum
number of colors needed for a cyclic coloring of a plane graph G, the cyclic
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chromatic number, is denoted by χc(G). Evidently, any cyclic coloring must use
at least as many colors as the maximum number of vertices incident to a face of
the involved graph, i.e., χc(G) ≥ ∆∗(G). The concept was introduced by Ore and
Plummer [60] in 1969. The authors studied pseudographs. First they observed
that χc(G) = k ≤ 2 if and only if |V (G)| = k. Then they showed that it suffices to
consider simple 2-connected plane graphs because of the following considerations:
Assume that e1 and e2 are parallel edges. If the cycle C formed by e1 and e2 is
not separating, then one of the edges e1 and e2 can be omitted without changing
χc(G). If C is separating, then χc(G) = max{χc(G− Int(C)), χc(G− Ext(C))}.
Similar arguments apply when G contains a loop. Now assume that G has a cut-
vertex v. Let G1 and G2 be two subgraphs obtained by separating G along v (i.e.,
G = G1 ∪ G2, V (G1) ∩ V (G2) = {v}); note that G1 and G2 are not necessarily
unique. G1 has a face f1 and G2 has a face f2 whose boundaries together form
the boundary of f in G. In this case χc(G) = max{χc(G1), χc(G2), |V (f)|}.

It follows that in order to be able to find an upper bound for the cyclic
chromatic number of a plane pseudograph it is sufficient to be able to find such
a bound for a plane graph. Moreover, since above |V (f)| ≤ ∆∗(G), it is useful
to realize that when proving an upper bound for the cyclic chromatic number
of a (connected) plane graph it suffices to work with 2-connected plane graphs.
Therefore, in discussing cyclic coloring, we restrict our attention to simple graphs.

Ore and Plummer [60] proved that any plane graph has a cyclic coloring with
at most 2∆∗(G) colors.

Theorem 2.1 [60]. If d1 ≥ d2 are the two largest face degrees in a plane graph

G, then

χc(G) ≤ d1 + d2 ≤ 2∆∗(G).

There was no progress in this area during next 18 years, but many results
were produced after 1987, when Plummer and Toft [61] proved that the upper
bound 2∆∗(G) can be improved to ∆∗(G) + 9 when G is 3-connected.

Theorem 2.2 [61]. If G is a 3-connected plane graph, then

χc(G) ≤ ∆∗(G) + 9.

They also showed that if ∆∗(G) is sufficiently large or sufficiently small, then
the bound from Theorem 2.2 can be improved.

Theorem 2.3 [61]. If G is a 3-connected plane graph, then

χc(G) ≤







∆∗(G) + 8 for ∆∗(G) ≤ 10,
∆∗(G) + 7 for ∆∗(G) ≤ 9,
∆∗(G) + 6 for ∆∗(G) ≤ 8.
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Theorem 2.4 [61]. If G is a 3-connected plane graph, then

χc(G) ≤























∆∗(G) + 8 for ∆∗(G) ≥ 14,
∆∗(G) + 7 for ∆∗(G) ≥ 15,
∆∗(G) + 6 for ∆∗(G) ≥ 18,
∆∗(G) + 5 for ∆∗(G) ≥ 24,
∆∗(G) + 4 for ∆∗(G) ≥ 42.

Plummer and Toft [61] stated the following conjecture:

Conjecture 2.5 [61]. If G is a 3-connected plane graph, then

χc(G) ≤ ∆∗(G) + 2.

Moreover, they constructed an infinite family of 3-connected plane graphs for
which this bound is attained, see Figure 1.

Figure 1. A 3-connected plane graph G with χc(G) = ∆∗(G) + 2, [61].

The second infinite family of plane graphs depicted in Figure 2 shows that
3-connectivity in Conjecture 2.5 cannot be replaced by minimum degree three. In
fact, given k there is even a 2-connected plane graph G with χc(G) > ∆∗(G)+k.

Figure 2. A 2-connected plane graph G with δ(G) = 3 and χc(G) > ∆∗(G) + k, [61].

Another observation in [61] is that χc(G) = 3
2∆

∗(G) for the 2-connected
plane graph G shown in Figure 3. Note that no plane graph G is known with
χc(G) > 3

2∆
∗(G).
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Figure 3. A 2-connected plane graph G with χc(G) = 3
2
∆∗(G), [61].

The general upper bound 2∆∗(G) (obtained by Ore and Plummer [60]) was
first improved to 2∆∗(G)− 3 (for ∆∗(G) ≥ 8) by Borodin [9] in 1992.

Theorem 2.6 [9]. If G is a plane graph, then

χc(G) ≤















2∆∗(G)− 3 for ∆∗(G) ≥ 8,
12 for ∆∗(G) ≤ 7,
11 for ∆∗(G) ≤ 6,
9 for ∆∗(G) ≤ 5.

Four years later, in 1996, Borodin [10] and Horňák and Jendrol’ [40] improved
the upper bounds (obtained by Plummer and Toft [61]) for 3-connected plane
graphs.

Theorem 2.7 [10]. If G is a 3-connected plane graph, then

χc(G) ≤















21 for ∆∗(G) ≤ 16,
∆∗(G) + 5 for ∆∗(G) ≥ 17,
∆∗(G) + 4 for ∆∗(G) ≥ 19,
∆∗(G) + 3 for ∆∗(G) ≥ 24.

Theorem 2.8 [40]. If G is a 3-connected plane graph, then

χc(G) ≤































19 for ∆∗(G) ≤ 11,
20 for ∆∗(G) ≤ 12,
21 for ∆∗(G) ≤ 16,
∆∗(G) + 5 for ∆∗(G) ≥ 17,
∆∗(G) + 4 for ∆∗(G) ≥ 19,
∆∗(G) + 3 for ∆∗(G) ≥ 24.

A significant progress has been made in years 1999–2002. Horňák and Jendrol’
[38, 39] proved that Conjecture 2.5 holds for ∆∗(G) ≥ 24.

Theorem 2.9 [38, 39]. If G is a 3-connected plane graph, then

χc(G) ≤ ∆∗(G) + 2 for ∆∗(G) ≥ 24.
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Borodin and Woodall [14] obtained even stronger result.

Theorem 2.10 [14]. If G is a 3-connected plane graph, then

χc(G) ≤ ∆∗(G) + 1 for ∆∗(G) ≥ 122.

This was improved by Enomoto, Horňák and Jendrol’ [29].

Theorem 2.11 [29]. If G is a 3-connected plane graph, then

χc(G) ≤ ∆∗(G) + 1 for ∆∗(G) ≥ 60.

As the wheels show, we may not expect a bound for χc(G) better than
∆∗(G) + 1 in the case of 3-connected plane graphs.

For general plane graphs, Borodin, Sanders and Zhao [15] showed the follow-
ing.

Theorem 2.12 [15]. If G is a plane graph, then

χc(G) ≤

⌊

9

5
∆∗(G)

⌋

.

This bound was further improved by Sanders and Zhao [63].

Theorem 2.13 [63]. If G is a plane graph, then

χc(G) ≤

⌈

5

3
∆∗(G)

⌉

.

This is currently the best known general upper bound.

Borodin, Sanders and Zhao [15] also proved that χc(G) ≤ 8 for ∆∗(G) = 5.

Four years later, Kriesell [50] showed that Conjecture 2.5 holds for locally
connected 3-connected plane graphs. A graph is called locally connected, if the
neighborhood of every vertex induces a connected subgraph.

Theorem 2.14 [50]. If G is a locally connected 3-connected plane graph, then

χc(G) ≤ ∆∗(G) + 2.

He posed the following conjecture.

Conjecture 2.15 [50]. If G is a locally connected 3-connected plane graph, then

χc(G) ≤ ∆∗(G) + 1.
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In 2007, Borodin et al. [12] proved an upper bound for the cyclic chromatic
number that depends on ∆∗ and the following easily computable parameter of
a graph. In a plane graph G, let k∗G be the maximum number of vertices that
two faces of G can have in common, i.e., k∗G = max{|V (f1) ∩ V (f2)| : f1, f2 ∈
F (G), f1 6= f2}. The following result was obtained.

Theorem 2.16 [12]. If G is a plane graph, then

χc(G) ≤ max
{

∆∗(G) + 3k∗G + 2,∆∗(G) + 14, 3k∗G + 6, 18
}

.

Besides that, a challenging conjecture was proposed.

Conjecture 2.17 [12]. If G is a plane graph and k∗G is sufficiently large, then

χc(G) ≤ ∆∗(G) + k∗G.

In 1996, it was known that every 3-connected plane graph admits a cyclic
coloring with at most ∆∗+8 colors, see Theorem 2.3 and Theorem 2.8. This gen-
eral upper bound (with no restriction on ∆∗) was improved in 2009 by Enomoto
and Horňák [28].

Theorem 2.18 [28]. If G is a 3-connected plane graph, then

χc(G) ≤ ∆∗(G) + 5.

This is the best general upper bound known so far for 3-connected plane
graphs.

In the next year, Horňák and Zlámalová [41] showed that Conjecture 2.5
holds for ∆∗ ≥ 18.

Theorem 2.19 [41]. If G is a 3-connected plane graph, then

χc(G) ≤ ∆∗(G) + 2 for ∆∗(G) ≥ 18.

They posed a stronger version of Conjecture 2.5.

Conjecture 2.20 [41]. If G is a 3-connected plane graph with ∆∗(G) 6= 4, then

χc(G) ≤ ∆∗(G) + 1.

Zlámalová [81] proved the validity of Conjecture 2.5 for some special classes
of plane graphs.

Theorem 2.21 [81]. If G is a 3-connected plane graph with δ(G) = 4 and

∆∗(G) ≥ 6 or δ(G) = 5, then

χc(G) ≤ ∆∗(G) + 2.
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Azarija et al. [6] proved the upper bound ∆∗ + 1 for plane graphs having
property that the faces of size at least four are in a sense far from each other.

Theorem 2.22 [6]. If in a plane graph G all faces of size four or more are vertex

disjoint, then

χc(G) ≤ ∆∗(G) + 1.

As we noted, no plane graph G is known with χ(G) > 3
2∆

∗(G). Already
Borodin [11] (in 1984) has conjectured (implicitly) that no such graph exists.

Conjecture 2.23 [11]. If G is a plane graph with ∆∗(G) ≥ 3, then

χc(G) ≤

⌊

3

2
∆∗(G)

⌋

.

This conjecture is known as the Cyclic Coloring Conjecture; notice that the
assumption ∆∗(G) ≥ 3 is only to avoid trivialities. In 2013, Amini, Esperet and
van den Heuvel [1] showed that the Cyclic Coloring Conjecture is asymptotically
true.

Theorem 2.24 [1]. For every ε > 0, there exists ∆ε such that every plane graph

of maximum face degree ∆∗ ≥ ∆ε admits a cyclic coloring with at most
(

3
2+ε

)

∆∗

colors.

The Cyclic Coloring Conjecture (Conjecture 2.23) was proven only for three
values of ∆∗. In the case ∆∗ = 3 the result follows from the fact that every
planar graph has a proper vertex coloring with at most four colors (Four Color
Theorem, see [3–5,62]).

Theorem 2.25 [3–5, 62]. If G is a plane graph with ∆∗(G) = 3, then

χc(G) ≤

⌊

3

2
∆∗(G)

⌋

= ∆∗(G) + 1 = 4.

In the case ∆∗ = 4 the conjecture follows from the fact that every 1-planar
graph admits a proper vertex coloring with at most six colors, see [8, 11]. A
graph is called 1-planar if it admits a drawing in the plane such that each edge
is crossed at most once.

Theorem 2.26 [8, 11]. If G is a plane graph with ∆∗(G) = 4, then

χc(G) ≤

⌊

3

2
∆∗(G)

⌋

= ∆∗(G) + 2 = 6.

The case ∆∗ = 6 was proven by Hebdige and Král’ [37] in 2016.
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Theorem 2.27 [37]. If G is a plane graph with ∆∗(G) = 6, then

χc(G) ≤

⌊

3

2
∆∗(G)

⌋

= 9.

In addition to the aforementioned articles, there are two manuscripts dealing
with cyclic coloring of plane graphs.

In [26], Dvořák et al. proved that Conjecture 2.5 holds for ∆∗ = 16 and
∆∗ = 17.

Theorem 2.28 [26]. If G is a 3-connected plane graph with ∆∗(G) ∈ {16, 17},
then

χc(G) ≤ ∆∗(G) + 2.

So Conjecture 2.5 is open only for ∆∗ ∈ {5, 6, . . . , 15} (see Theorems 2.19,
2.25, 2.26, 2.28).

In a plane graph G, a subdivision of an edge uv is the operation of replacing
uv by a path of length two. Any graph derived from a graph G by a sequence
of edge subdivisions is called a subdivision of G. A regular subdivision of G is
a graph obtained from G by replacing each edge of G by a path of length k for
some constant k ≥ 1.

In [46], Jendrol’ and Soták showed that the Cyclic Coloring Conjecture holds
if and only if Conjecture 2.29 holds.

Conjecture 2.29 [46]. If G is subdivision of a 3-connected simple plane graph,

then

χc(G) ≤

⌊

3

2
∆∗(G)

⌋

.

They proved the following upper bound for subdivisions.

Theorem 2.30 [46]. If G is a subdivision of a 3-connected plane graph R, then

χc(G) ≤

⌊

3

2
max

f∈F (G)

{

degG(f)− degR(f
′)
}

⌋

+ χc(R),

where f ′ is the face of R corresponding to the face f of G. Moreover, the bound

is tight.

For a plane graph G let t(G) denote the number of vertices of a longest path
in G induced by vertices of degree two.

Theorem 2.31 [46]. If G is a subdivision of a 3-connected simple plane graph

R, then

χc(G) ≤ max
f∈F (G)

{

degG(f)− degR(f
′)
}

+ t(G) + χc(R),

where f ′ is the face of R corresponding to the face f of G. Moreover, the bound

is tight.
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Applying Theorems 2.16, 2.30, and 2.31 one can easily show (see [46]) that
Conjecture 2.29 (and so Conjecture 2.23) holds for subdivisions G of 3-connected
simple plane graphs R with ∆∗(G) ≥ max{6t(G) + 16, 28} or ∆∗(G) ≥ 2χc(R) +
2t(G) − 6, for subdivisions of 3-connected simple plane triangulations, for sub-
divisions of 3-connected simple plane quadrangulations, for subdivisions of 3-
connected simple plane pentagulations with even maximum face degree, and for
regular subdivisions of 3-connected simple plane graphs R with ∆∗(R) ≥ 16.

Jendrol’ and Soták [46] posed the following generalized conjecture of Plummer
and Toft [61], which if true is best possible.

Conjecture 2.32 [46]. If G is a subdivision of a 3-connected simple plane graph,

then

χc(G) ≤ ∆∗(G) + t(G) + 2.

The 3-sided prism and its subdivision depicted in Figure 3 show tightness of
Theorem 2.30, Theorem 2.31, and Conjecture 2.32.

The authors of Conjecture 2.32 proved that it holds for subdivisions of 3-
connected simple plane triangulations, for subdivisions of 3-connected simple
plane quadrangulations, and for regular subdivisions of 3-connected simple plane
graphs R with ∆∗(R) ≥ 16.

It looks like cyclic coloring of plane graphs will remain an active area of
research for a long time.

3. Facial Rainbow Coloring

The Cyclic Coloring Conjecture stimulated a lot of research, in particular, several
restrictions and generalizations of the conjecture have been considered. A vertex
coloring of a plane graph G is a facial rainbow coloring if any two distinct vertices
of G connected by a facial path have distinct colors. The minimum number of
colors needed for a facial rainbow coloring of G, the facial rainbow number, is
denoted by rb(G).

This type of coloring was introduced in 2017 by Jendrol’ and Kekeňáková [45].
Observe that if G is a 2-connected plane graph, then rb(G) = χc(G). In general,
these two types of colorings differ. For example, for the star G = K1,r, r ≥ 3, we
have rb(G) = 3 if r is even, and rb(G) = 4 if r is odd, while χc(G) = r + 1.

The following four theorems were proved by Jendrol’ and Kekeňáková [44,45].
Let L(G) denote the order (i.e., the number of vertices) of the longest facial path
in a plane graph G. Trivially, rb(G) ≥ L(G).

Theorem 3.1 [44]. If G is a simple plane graph, then

rb(G) ≤

⌈

5

3
L(G)

⌉

.
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Theorem 3.2 [44]. If T is a plane tree, then

rb(T ) ≤

⌊

3

2
L(T )

⌋

.

Moreover, the bound is tight.

}
} }

L−1

2

L−1

2

L−1

2

Figure 4. An example of a tree with rb(T ) =
⌊

3
2
L(T )

⌋

(for odd L).

For plane trees without vertices of degree two stronger results are available.

Theorem 3.3 [45]. If T is a plane tree having no vertices of degree two, then

rb(T ) ≤







L(T ) + 1 for L(T ) ≥ 60,
L(T ) + 2 for L(T ) ≥ 16,
L(T ) + 5 for L(T ) ≥ 12.

Theorem 3.4 [44]. For every ε > 0, there exists a constant Lε such that every

simple plane graph G with L(G) ≥ Lε admits a facial rainbow coloring with
(

3
2 + ε

)

L(G) colors.

The following conjecture is open.

Conjecture 3.5 [44]. If G is a simple plane graph, then

rb(G) ≤

⌊

3

2
L(G)

⌋

.

4. ℓ-Facial Coloring

An ℓ-facial coloring of a plane graph G is a coloring of its vertices such that any
two distinct vertices that lie on the same face and are at distance at most ℓ on
that face (i.e., there exists a facial walk between them having at most ℓ edges)
receive distinct colors. This type of coloring was introduced in 2005 by Král’,
Madaras and Škrekovski [48, 49]. If ∆∗(G) ≤ 2ℓ + 1, then any cyclic coloring
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of G is an ℓ-facial coloring and, moreover, if G is 2-connected, then any ℓ-facial
coloring of G is a cyclic coloring.

We denote the minimum number of colors needed for an ℓ-facial coloring of
G by χℓ(G). It is easy to see that any upper bound for χℓ in the class of simple
connected plane graphs holds also for all plane graphs. Since χc(G) ≥ ∆∗(G), an
arbitrary upper bound for χc(G) must somehow depend on ∆∗(G). On the other
hand, this is not true concerning upper bounds for χℓ(G). Hence the concept of
ℓ-facial colorings may be viewed as an extension of the concept of cyclic colorings
conveniently tractable without restrictions imposed on ∆∗(G).

Král’, Madaras and Škrekovski [48, 49] obtained the following upper bounds.

Theorem 4.1 [48, 49]. If G is a plane graph, then

χℓ(G) ≤















⌊

18ℓ
5

⌋

+ 2 for ℓ ≥ 5,
15 for ℓ = 4,
12 for ℓ = 3,
8 for ℓ = 2.

The following conjecture was proposed.

Conjecture 4.2 [48]. If G is a plane graph and ℓ ≥ 1, then

χℓ(G) ≤ 3ℓ+ 1.

This conjecture is known as the (3ℓ+1)-Conjecture (or Facial Coloring Con-
jecture). Note that the bound offered by the (3ℓ + 1)-Conjecture is tight: as
shown by Figure 5, for every ℓ ≥ 1, there exists a plane graph that has no ℓ-facial
coloring with 3ℓ colors.

}

} }

ℓ − 1

ℓ − 1

ℓ − 1

Figure 5. An example of a plane graph with 3ℓ+ 1 vertices and χℓ(G) = 3ℓ+ 1.

Observe that the (3ℓ+1)-Conjecture implies the Cyclic Coloring Conjecture
for all odd values of ∆∗. The (3ℓ + 1)-Conjecture is for ℓ = 1 equivalent to the
Four Color Theorem.

In 2006, Montassier and Raspaud [56] studied 2-facial coloring of certain
families of plane graphs. They obtained the following results.
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Theorem 4.3 [56]. Every outerplane graph admits a 2-facial coloring using 5
colors.

This result is best possible because the cycle on five vertices needs five colors.

Theorem 4.4 [56]. Every K4-minor free plane graph admits a 2-facial coloring
using 6 colors.

This result is also best possible: the graph formed by the cycle v1v2v3v4v5v1
and the path v1v6v3 needs six colors.

Theorem 4.5 [56]. Every plane graph G with girth g ≥ 14 (10, 8, respectively)
admits a 2-facial coloring using 5 colors (6, 7, respectively).

In 2008, Havet, Sereni and Škrekovski [35] showed that the bound in Theo-
rem 4.1 can be decreased by 1 for ℓ = 3.

Theorem 4.6 [35]. Every plane graph G admits a 3-facial coloring using 11
colors.

Theorem 4.6 has a nice corollary.

Corollary 4.7 [35]. If G is a plane graph with ∆∗(G) = 7, then

χc(G) ≤ 11.

This bound is just one higher than that proposed by the Cyclic Coloring
Conjecture.

Dvořák, Škrekovski and Tancer [27] posed the following so called 3ℓ-Conjec-
ture.

Conjecture 4.8 [27]. If G is a triangle-free plane graph and ℓ ≥ 1, then

χℓ(G) ≤ 3ℓ.

For ℓ = 1 this statement is equivalent to Grötzsch’s theorem [34], which
states that every triangle-free planar graph admits a proper vertex coloring with
at most three colors. The bound in this conjecture is tight, as shown by graphs
depicted in Figure 6.

In 2010, Havet et al. [36] improved Theorem 4.1 for ℓ ≥ 49 and ℓ ∈ {45, 47}.

Theorem 4.9 [36]. If G is a plane graph and ℓ ≥ 1, then

χℓ(G) ≤

⌊

7ℓ

2

⌋

+ 6.

Two years later, Borodin and Ivanova [13] improved one case of Theorem 4.5.
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}

} }

ℓ

ℓ − 2

ℓ − 2

Figure 6. An example of a triangle-free plane graph with 3ℓ vertices and χℓ(G) = 3ℓ,
ℓ ≥ 2.

Theorem 4.10 [13]. Every plane graph G with girth g ≥ 12 admits a 2-facial
coloring using 5 colors.

In 2018, Thomassen [68] proved that the square of any subcubic plane graph
admits a proper vertex coloring with at most seven colors. This result implies
that (3ℓ+ 1)-Conjecture with ℓ = 2 holds for subcubic plane graphs.

Theorem 4.11 [68]. Every subcubic plane graph G admits a 2-facial coloring
using 7 colors.

5. Odd Colorings

Let ϕ be a vertex coloring of a connected plane graph G. We say that a face f

of G uses a color c (under the coloring ϕ) k times if this color appears k times in
the sequence of colors of vertices of the boundary walk of f . Observe that if f is
incident with a cut-vertex v, then v may occur more than once on the boundary
walk of f , see Figure 7.

2

1

13

2

Figure 7. A vertex coloring of a plane graph.

The outer face of the graph depicted in Figure 7 uses the color 1 twice, the
color 2 three times (note that the cut-vertex appears twice in the boundary walk
of the outer face), and the color 3 only once.

If each face of G uses at least one color an odd number of times, then ϕ is a
weak odd coloring. If for each face f and each color c, the face f uses the color c
an odd number of times or does not use it at all, then ϕ is a strong odd coloring.
Finally, a proper strong odd coloring is a proper odd coloring.
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The problem is to determine the minimum number of colors χwo(G) (χso(G),
χpo(G), respectively) used in a weak (strong, proper, respectively) odd coloring
of a connected plane graph G.

The numbers χso(G) and χpo(G) are correctly defined for 2-connected plane
graphs, since any coloring of G using |V (G)| colors is proper odd one. However,
there are connected plane graphs that are not 2-connected and admit no strong
(proper) odd coloring. One of such graphs is depicted in Figure 7.

Observe that any proper odd coloring of a 2-connected plane graph G with
∆∗(G) ≤ 5 is also a cyclic coloring. On the other hand any cyclic coloring of a
2-connected plane graph is a proper odd coloring.

Odd colorings were introduced in 2009 by Czap and Jendrol’ [20]. The first
result in this area was the following theorem.

Theorem 5.1 [20]. If G is a connected loopless plane graph with minimum face

size at least 3, then

χwo(G) ≤ 4.

Czap and Jendrol’ [20] posed the following conjecture.

Conjecture 5.2 [20]. If G is a connected loopless plane graph with minimum

face size at least 3, then

χwo(G) ≤ 3.

The restriction to plane graphs with minimum face size at least 3 in this
conjecture is essential. Consider a plane graph G with chromatic number four.
Now add one parallel edge for each edge of G in order to obtain a plane graph
H with minimum face size 2. Observe that every weak odd coloring of H is a
proper coloring. Consequently, χwo(H) = 4.

The following result supports Conjecture 5.2.

Theorem 5.3 [20]. If G is a 2-connected cubic plane graph, then

χwo(G) ≤ 3.

Moreover, the bound is tight.

In [20], 2-connected plane graphs with χso(G) ≥ 6 were constructed and the
following conjecture was proposed.

Conjecture 5.4 [20]. There is a constant K such that for every 2-connected
plane graph G

χso(G) ≤ K.

In 2011, Czap, Jendrol’ and Voigt [24] showed that such a constant does exist.
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Theorem 5.5 [24]. If G is a 2-connected plane graph, then

χso(G) ≤ χpo(G) ≤ 118.

This upper bound was improved for 3-connected plane graphs having prop-
erty that the faces of a certain size are in a sense far from each other by Czap,
Jendrol’ and Kardoš [22]. We write v ∈ f if a vertex v is incident with a face
f . Two distinct faces f and g touch each other, if there is a vertex v such that
v ∈ f and v ∈ g. Two distinct faces f and g influence each other, if they touch,
or there is a face h such that h touches both f and g. We say that a face f of
size i is isolated if there is no face g of size at least i touching f .

Theorem 5.6 [22]. If G is a 3-connected plane graph in which the faces of size

at least i pairwise do not influence each other, then

χpo(G) ≤







6 for i = 4,
8 for i = 5,
10 for i = 6.

Theorem 5.7 [22]. If G is a 3-connected plane graph such that any face of size

at least i is isolated, then

χpo(G) ≤







12 for i = 4,
18 for i = 5,
28 for i = 6.

In [19], Czap investigated proper odd colorings of 2-connected outerplane
graphs.

Theorem 5.8 [19]. If G is a 2-connected outerplane graph, then

χpo(G) ≤ 12.

Theorem 5.9 [19]. If G is a 2-connected bipartite outerplane graph, then

χpo(G) ≤ 8.

Moreover, this bound is tight.

Figure 8. An example of an outerplane graph with χpo(G) = 8.

In 2012, Wang, Finbow and Wang [72] improved the bound for outerplane
graphs.
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Theorem 5.10 [72]. If G is a 2-connected outerplane graph, then χpo(G) ≤ 10.
Moreover, χpo(G) ≤ 9 if and only if G is different from H0 and H1 depicted in

Figure 9.

H0 H1

Figure 9. The graphs H0 and H1.

Theorem 5.11 [72]. If G is a 2-connected outerplane graph, different from H0

and H1, and |V (G)| is even, then

χpo(G) ≤ 8.

Another improvement was obtained for Theorem 5.9. Let G denote the set of
2-connected outerplane graphs each of which has exactly three inner faces, and
the degree of each end-face of G is divisible by four and the degree of the face
which is not an end-face is four.

Theorem 5.12 [72]. If G is a 2-connected bipartite outerplane graph, then

χpo(G) = 8 if and only if G ∈ G.

The best known general upper bound is due to Kaiser et al. [47].

Theorem 5.13 [47]. If G is a 2-connected plane graph, then

χso(G) ≤ χpo(G) ≤ 97.

In 2016, Fabrici and Göring [30] proved a modified version of Conjecture 5.2.

Theorem 5.14 [30]. Every simple plane graph has a vertex coloring with colors

black, blue and red such that

(1) each face is incident with at most one red vertex, and

(2) each face that is not incident with a red vertex is incident with exactly one

blue vertex.

Motivated by Theorem 5.14, we can define strong and proper odd colorings
for connected plane graphs (that are not necessarily 2-connected) in the following
way. A strong (proper) odd coloring of a connected plane graph is a (proper)
vertex coloring such that every face is incident with zero or an odd number of
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vertices of each color. Observe that this definition is equivalent to the original
one for 2-connected plane graphs. Now χso(G) and χpo(G) are correctly defined
for arbitrary plane graph G.

The last result concerning odd colorings is from 2020. Štorgel [66] proved that
there exists an infinite family of 2-connected plane graphs G with χpo(G) = 12.

Figure 10. An example of a graph with χpo(G) = 12, [66].

6. Unique-Maximum Colorings

In a coloring of a graph we can use integers instead of colors. A unique-maximum

k-coloring with respect to faces of a plane graph G is a coloring with “colors”
1, 2, . . . , k such that, for each face f of G, the maximum color occurs exactly once
on the vertices of f . The minimum k for which G has a unique-maximum (proper
unique-maximum) k-coloring is denoted χum(G) (χpum(G), respectively).

Theorem 5.14 can be reformulated in the following way (red = 3, blue = 2,
and black = 1).

Theorem 6.1 [30]. If G is a simple plane graph, then

χum(G) ≤ 3.

Using the proof of Theorem 6.1 and the Four Color Theorem, Fabrici and
Göring obtained the following upper bound for χpum(G).

Theorem 6.2 [30]. If G is a simple plane graph, then

χpum(G) ≤ 6.

They posed the following conjecture which is a strengthening of the Four
Color Theorem.

Conjecture 6.3 [30]. If G is a simple plane graph, then

χpum(G) ≤ 4.

Promptly, this coloring was considered by others. Wendland [74] decreased
the upper bound to 5.



A Survey on the Cyclic Coloring and Its Relaxations 23

Theorem 6.4 [74]. If G is a loopless plane graph without 2-faces, then

χpum(G) ≤ 5.

Andova et al. [2] showed that Conjecture 6.3 holds for three classes of plane
graphs.

Theorem 6.5 [2]. If G is a simple plane subcubic graph, an outerplane graph,

or a plane quadrangulation, then

χpum(G) ≤ 4.

Moreover, the bound is tight.

Figure 11. Plane graphs that show tightness of the upper bound, [2].

Conjecture 6.3 was disproved in 2018 by Lidický, Messerschmidt and Škre-
kovski [51].

Theorem 6.6 [51]. There exists a plane graph G with

χpum(G) = 5.

Figure 12. A counterexample to Conjecture 6.3, [51].

They introduced a variation of Conjecture 6.3 with maximum degree and
connectivity conditions added.
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Conjecture 6.7 [51]. If G is a simple connected plane graph with maximum

degree 4, then
χpum(G) ≤ 4.

Note that the counterexample to Conjecture 6.3 depicted in Figure 12 has
maximum degree five, and Conjecture 6.3 is true for plane graphs with maximum
degree three (see Theorem 6.5).

Recall that a star is a connected graph with at most one vertex with degree
greater than 1 and a star forest is a graph consisting of vertex disjoint stars.

In 2019, Lidický, Messerschmidt and Škrekovski [52] extended Theorem 6.5
in the following way.

Theorem 6.8 [52]. If G is a simple plane graph such that the vertices of degree

at least four induce a star forest, then

χpum(G) ≤ 4.

Two new conjectures were proposed.

Conjecture 6.9 [52]. If G is a simple plane graph such that the vertices of degree

at least four induce an acyclic graph, then

χpum(G) ≤ 4.

Conjecture 6.10 [52]. If G is a simple plane graph such that the vertices of

degree at least four induce a graph of maximum degree 2, then

χpum(G) ≤ 4.

In the next part of the paper we deal with the edge versions of the mentioned
colorings.

7. Cyclic Edge Coloring

Already in 1880 Tait [68] observed that the Four Color Problem (a colorability
of vertices of a plane graph using four colors) is equivalent to the problem of a
colorability of edges of a plane triangulation using three colors in such a way that
edges of any face are colored with all three colors. The edge version of the cyclic
coloring of a plane graph, the cyclic edge coloring, is an edge coloring such that
any two edges incident with the same face receive distinct colors. The minimum
number of colors needed in such a coloring is called the cyclic chromatic index

and is denoted by χ′

c(G).
The cyclic edge coloring of a plane graph G can be seen as a proper edge

coloring of the dual graph G∗. The dual G∗ of G is an embedding to the plane
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of G obtained as follows: A face f of G corresponds to a vertex f∗ of G∗, and
an edge e of G corresponds to an edge e∗ of G∗, in such a way that f 7→ f∗ and
e 7→ e∗ are bijections; two vertices f∗ and g∗ are joined by an edge e∗ in G∗ if
and only if their preimage faces f and g are separated by the preimage e of e∗ in
G (an edge of a plane graph separates the faces it is incident with). It is easy to
see that the dual of a plane graph is itself a plane graph. We place each vertex
f∗ of G∗ in the preimage face f of G, and then draw each edge e∗ of G∗ in such a
way that the only edge of G crossed by e∗ is the preimage e of e∗, see Figure 13 .

G G and G∗

Figure 13. A plane graph and its dual.

Proper edge colorings were for the first time studied by Shannon [65] already
in 1949. Denote by χ′(G) the chromatic index of a multigraph G, which is the
minimum number of colors needed in a proper edge coloring of G. Shannon
found out that χ′(G) ≤

⌊

3
2∆(G)

⌋

holds for any multigraph G. Note that the
Shannon’s bound is tight, and that its tightness is witnessed even by plane multi-
graphs. In 1964, Vizing [70] proved that for any multigraph G with maximum
edge multiplicity p(G) it holds χ′(G) ≤ ∆(G) + p(G). So for a simple graph
G we have χ′(G) ∈ {∆(G),∆(G) + 1}. One year later, Vizing [69] proved that
χ′(G) = ∆(G) for any simple planar graph with ∆(G) ≥ 8 and observed that
for any ∆ ∈ {2, 3, 4, 5} there is a simple planar graph G with ∆(G) = ∆ and
χ′(G) = ∆ + 1. It took 36 years while, in 2001, Sanders and Zhao [64] proved
that χ′(G) = ∆(G) is true for any simple planar graph G with ∆(G) = 7, too.

Using the fact that the edge connectivity of a plane graph G equals the girth
of its dual G∗ (see [32], p. 312), from the above results one can easily derive the
following theorems.

Theorem 7.1. If G is a 2-edge-connected plane graph with maximum face size

Σ(G), then

χ′

c(G) ≤

⌊

3

2
Σ(G)

⌋

.

Moreover, the bound is tight.
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Figure 14. An example of a graph with χ′

c(G) = 3
2
Σ(G).

Theorem 7.2. If G is a 3-edge-connected plane graph with maximum face size

Σ(G), then

(1) χ′

c(G) = Σ(G) for Σ(G) ≥ 7,

(2) χ′

c(G) ≤ Σ(G) + 1 for Σ(G) satisfying 2 ≤ Σ(G) ≤ 6.

The bounds in Theorem 7.2 are tight if 2 ≤ Σ(G) ≤ 5. The problem whether
the upper bound is tight in the case Σ(G) = 6 is open.

8. Facial Rainbow Edge Coloring

In 2018, Jendrol’ [43] introduced a facial rainbow edge coloring of a loopless plane
graph G. It is an edge coloring of G in which two edges receive different colors if
they lie on a common facial path of G. The minimum number of colors used in
such a coloring is denoted by erb(G). Evidently, erb(G) ≥ L′(G), where L′(G)
denotes the length of the longest facial path in G.

Jendrol’ [43] proved the following four theorems.

Theorem 8.1 [43]. If G is a loopless plane graph, then

erb(G) ≤

⌊

3

2
(L′(G) + 1)

⌋

.

Moreover, the bound is tight.

Theorem 8.2 [43]. If G is a plane tree, then

erb(G) ≤

⌊

3

2
L′(G)

⌋

.

Moreover, the bound is tight.

Theorem 8.3 [43]. If G is a plane tree without vertices of degree two, then

(1) erb(G) = L′(G) for L′(G) ≥ 7, and

(2) erb(G) ≤ L′(G) + 1 for L′(G) ∈ {2, 3, 4, 5, 6}.

Theorem 8.4 [43]. If G is a simple 3-connected plane graph, then
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(1) erb(G) = L′(G) + 1 for L′(G) 6∈ {3, 4, 5}, and

(2) L′(G) + 1 ≤ erb(G) ≤ L′(G) + 2 for L′(G) ∈ {3, 4, 5}.

Moreover, the lower bound is tight for all L′(G), the upper bound in (2) is tight

for L′(G) = 3.

Two conjectures were posed in the pioneering paper on facial rainbow edge
colorings.

Conjecture 8.5 [43].

(1) There is a simple 3-connected plane graph G with L′(G) = 4 and erb(G) =
L′(G) + 2.

(2) There is no simple 3-connected plane graph G with L′(G) = 5 and erb(G) =
L′(G) + 2.

If G is a simple 3-connected plane graph, then its dual G∗ is also simple
and 3-connected, see [55], p. 46. The restriction of a facial rainbow edge coloring
of a 3-connected plane graph G to the edges bounding a face is injective, hence
any such coloring of G induces a proper edge coloring of G∗ and vice versa, i.e.,
erb(G) = χ′(G∗). Therefore, Conjecture 8.5(2) is the 3-connected restriction of
Vizing’s Planar Graph Conjecture: Every simple planar graph G with maximum
degree 6 is of class one (i.e., χ′(G) = ∆(G)). There are many papers, published
in recent years, answering Vizing’s conjecture in the affirmative, provided some
additional conditions regarding the absence of cycles of given length are fulfilled.
It is shown that every simple planar graph G with ∆(G) = 6 is of class one
if it is without 3-cycles, 4-cycles, or 5-cycles [80], 6-cycles [16], 7-cycles [42],
chordal 4-cycles [16], chordal 5-cycles [71], chordal 6-cycles [57], 5-cycles with
two chords [75], 6-cycles with two chords [76], 6-cycles with three chords [79],
7-cycles with three chords [77]. Vizing’s Planar Graph Conjecture also holds for
simple planar graphs in which no vertex is incident with four faces of size 3 [73],
no 4-cycle is adjacent to a 5-cycle [58], 7-cycles are pairwise non-adjacent [78],
there is k ∈ {3, 4, 5} such that any k-cycle shares an edge with at most one other
k-cycle [59]. Vizing’s conjecture is still open in general.

Conjecture 8.5(1) was proven by Czap [18] in 2020.

9. ℓ-Facial Edge Coloring

An ℓ-facial edge coloring c of a plane graph G is an edge coloring such that for any
pair of distinct edges e1, e2 of G that are at distance at most ℓ on the boundary
of a face, c(e1) 6= c(e2) holds (i.e., all the edges of any facial trail of length at
most ℓ + 1 receive pairwise distinct colors). The minimum number of colors for
which G admits an ℓ-facial edge coloring is denoted by χ′

ℓ(G).
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Notice that all upper bounds established for χℓ(G) are valid for χ′

ℓ(G) as
well. Define the simplified medial M(G) of a plane graph G as follows. Let
m : E(G) → V (M(G)) be a bijection, and let distinct vertices m(e1),m(e2) of
M(G) be joined by an edge in M(G) if and only if edges e1 and e2 are consecutive
on the boundary of a face in G. It is easy to see that the simplified medial M(G)
of a plane graph G is a planar graph; moreover, there is a natural embedding of
M(G) in the plane of G, see Figure 15; for simplicity, we use the notation M(G)
for that natural plane embedding, too.

G G and M(G)

Figure 15. A plane graph and its simplified medial.

Observe that every ℓ-facial vertex coloring ofM(G) is an ℓ-facial edge coloring
of G. Consequently, every plane graph admits a 1-facial edge coloring with at
most four colors.

In 2015, Lužar et al. [53] proposed the following Facial Edge Coloring Con-
jecture.

Conjecture 9.1 [53]. If G is a plane graph and ℓ ≥ 1, then

χ′

ℓ(G) ≤ 3ℓ+ 1.

Note that the bound offered by Conjecture 9.1 is tight (if the conjecture is
true): as shown by Figure 16, for every ℓ ≥ 2, there exists a plane graph that has
no ℓ-facial edge coloring with 3ℓ colors.

} } }ℓ ℓ − 1 ℓ − 1

Figure 16. An example of a graph with 3ℓ+ 1 edges and χ′

ℓ
(G) = 3ℓ+ 1, [53].
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The case with ℓ = 2 was confirmed by Lužar et al. [53].

Theorem 9.2 [53]. If G is a plane graph and ℓ = 2, then

χ′

ℓ(G) ≤ 7.

The other cases are still open.

10. Odd Edge Coloring

Odd edge coloring of connected bridgeless plane graphs was introduced in 2011
by Czap, Jendrol’ and Kardoš [21]. It is a 1-facial edge coloring such that for
each face f and each color c, either no edge or an odd number of edges incident
with f is colored with c. The minimum number of colors needed for an odd edge
coloring of a connected bridgeless plane graph G is denoted by χ′

o(G). In [21] it
was shown that χ′

o(G) is bounded from above by a constant.

Theorem 10.1 [21]. If G is a connected bridgeless plane graph, then

χ′

o(G) ≤ 92.

The upper bound of Theorem 10.1 was significantly improved by the same
authors with Soták [23].

Theorem 10.2 [23]. If G is a connected bridgeless plane graph, then

χ′

o(G) ≤ 20.

For 3-edge-connected and 4-edge-connected plane graphs even stronger re-
sults were obtained.

Theorem 10.3 [23]. If G is a 3-edge-connected plane graph, then

χ′

o(G) ≤ 12.

Theorem 10.4 [23]. If G is a 4-edge-connected plane graph, then

χ′

o(G) ≤ 9.

Further, there is a graphG1 such that χ′

o(G1) = 10, and there is a 2-connected
graph G2 such that χ′

o(G2) = 9, see Figure 17.
The bound of Theorem 10.2 can be improved for bridgeless outerplane graphs.

Theorem 10.5 [17]. If G is a connected bridgeless outerplane graph, then

χ′

o(G) ≤ 15.
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G1 G2

Figure 17. Two odd edge coloring extremal graphs, [23].

Theorem 10.6 [17]. If G is a connected bridgeless plane cactus, then

χ′

o(G) ≤ 10.

Moreover, the bound is tight.

The best general upper bound of χ′

o(G) known so far for a connected bridge-
less plane graph G is 16, and was obtained by Lužar and Škrekovski [54] in 2013.

Theorem 10.7 [54]. If G is a connected bridgeless plane graph, then

χ′

o(G) ≤ 16.

In 2015, Bálint and Czap [7] improved Theorem 10.5.

Theorem 10.8 [7]. If G is a connected bridgeless outerplane graph different from

G1 depicted in Figure 17, then

χ′

o(G) ≤ 9.

Theorem 10.9 [7]. There are infinitely many connected bridgeless outerplane

graphs G with χ′

o(G) = 9.

Such graphs can be obtained as follows: Let G be an outerplane graph created
by identifying one vertex of a 5-cycle with one vertex of a 4k-cycle, k ≥ 1, such
that the outer face has size 4k + 5. Clearly, G is bridgeless. Observe that on the
edges of the 4k-cycle at least four different colors must appear in any odd edge
coloring of G, and five different colors must appear on the 5-cycle. This graph
has χ′

o(G) = 9 because no color used on the 5-cycle can be used on the 4k-cycle
if edges of the 4k-cycle are colored with four colors.

In 2020, Štorgel [66] showed that there are connected bridgeless plane graphs
G with χ′

o(G) = 12, so the general upper bound for χ′

o(G) is between 12 and 16.

Figure 18. An example of a graph with χ′

o(G) = 12, [66].
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In [25], Czap and Tuza dealt with the following question: For which integers
k does there exist an odd edge coloring of a bridgeless plane graph G with exactly
k colors?

The feasible set F = F(G) of a plane graph G consists of those integers k

for which G admits an odd edge coloring with exactly k colors. Clearly, χ′

o(G)
and |E(G)| are the smallest and the largest elements of F , respectively. We say
that the feasible set of G is

• continuous if it is an interval of integers, i.e., F = {k : χ′

o(G) ≤ k ≤ |E(G)|},

• i-continuous if {k : i ≤ k ≤ |E(G)|} ⊆ F ,

• semi-continuous if, for every k ∈ F with k ≤ |E(G)|−2, also k+2 ∈ F holds.

Czap and Tuza [25] obtained the following results.

Theorem 10.10 [25]. There exist connected bridgeless plane graphs for which

the feasible set is not continuous.

For example, cycles are such graphs.

Theorem 10.11 [25]. The feasible set is semi-continuous for any connected

bridgeless plane graph.

Theorem 10.12 [25]. If G is a 3-edge-connected plane graph, then its feasible

set is 12-continuous.

They posed the following conjecture.

Conjecture 10.13 [25]. If G is a 3-edge-connected plane graph, then its feasible

set is continuous.

Note that no similar results are known for odd vertex colorings.

11. Unique-Maximum Edge Colorings

In 2015, Fabrici, Jendrol’ and Vrbjarová [31] introduced a unique-maximum edge

coloring of a connected plane graph with respect to faces as an edge coloring with
positive integers such that, for each face f , the maximum color occurs exactly
once on the edges of the boundary walk of f . This definition is meaningful only
for bridgeless plane graphs. Every edge of a bridgeless plane graph is incident
with two different faces, i.e., it occurs at most once on the boundary walk of
any face. Every edge of a tree T occurs twice on the boundary walk of the only
face of T , thus no color of this face can be unique. The minimum k for which
a connected bridgeless plane graph G has a unique-maximum edge coloring with
colors 1, 2, . . . , k is denoted by χ′

um(G) and the minimum k for which G has a
1-facial unique-maximum edge coloring is denoted by χ′

pum(G).
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Theorem 11.1 [31]. If G is a connected bridgeless plane graph, then

χ′

um(G) ≤ 3.

Moreover, the bound is tight.

No connected bridgeless plane graph with an odd number of faces has a
unique-maximum edge coloring with colors 1 and 2, since in any such coloring
every face has only one edge of color 2, and every edge is incident with two faces.

Theorem 11.2 [31]. If G is a connected bridgeless plane graph, then

χ′

pum(G) ≤ 6.

Theorem 11.3 [31]. Let G be a bridgeless plane graph and let G∗ be the dual of

G. If there exists a matching in G∗ covering all vertices of G∗ of degree at least

4, then
χ′

pum(G) ≤ 5.

Fabrici, Jendrol’ and Vrbjarová [31] posed the following conjecture.

Conjecture 11.4 [31]. If G is a connected bridgeless plane graph, then

χ′

pum(G) ≤ 4.

By a result of Wendland [74], obtained in 2016, the simplified medial of G
admits a unique-maximum proper vertex coloring with colors 1, 2, . . . , k, k ≤
5. This immediately implies χ′

pum(G) ≤ 5 for any connected bridgeless plane
graph G.

Andova et al. [2] proved that Conjecture 11.4 is true for simple 2-connected
plane graphs.

Theorem 11.5 [2]. If G is a simple 2-connected plane graph, then

χ′

pum(G) ≤ 4.

This is the only result known so far supporting Conjecture 11.4.
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