FORBIDDEN SUBGRAPHS FOR EXISTENCES OF (CONNECTED) 2-FACTORS OF A GRAPH

Xiaojing Yang
School of Mathematics and Statistics
Henan University
Kaifeng 475004, P.R. China

e-mail: yangxiaojing89@163.com
AND
Liming Xiong
School of Mathematics and Statistics
Beijing Key Laboratory on MCAACI
Beijing Institute of Technology
Beijing 100081, P.R. China
e-mail: lmxiong@bit.edu.cn

Abstract

Clearly, having a 2 -factor in a graph is a necessary condition for a graph to be hamiltonian, while having an even factor in graph is a necessary condition for a graph to have a 2 -factor. In this paper, we completely characterize the forbidden subgraph and pairs of forbidden subgraphs that force a 2 -connected graph admitting a 2 -factor (a necessary condition) to be hamiltonian and a connected graph with an even factor (a necessary condition) to have a 2-factor, respectively. Our results show that these pairs of forbidden subgraphs become wider than those in Faudree, Gould and in Fujisawa, Saito, respectively, if we impose the two necessary conditions, respectively.

Keywords: forbidden subgraph, even factor, 2-factor, hamiltonian.
2010 Mathematics Subject Classification: 05C38, 05C45.

1. InTRODUCTION

All graphs considered in this paper are finite, undirected and simple. For notation and terminology not defined here, see [3]. We denote by $V(G), E(G), \Delta(G)$ the
vertex set, the edge set, the maximum degree of a graph G, respectively. We denote by $N_{G}(v)$ (or simply $N(v)$) and $d_{G}(v)$ (or simply $d(v)$) the neighborhood and the degree of a vertex v in G, respectively. For $S \subseteq V(G)$, we define $N_{G}(S)=$ $\bigcup_{x \in S} N_{G}(x)$. Let $S \subseteq V(G)$ and $S^{\prime} \subseteq E(G)$. The induced subgraph of G by S and S^{\prime} is denoted by $G[S]$ and $G\left[S^{\prime}\right]$, respectively. We use $G \backslash S$ and $G \backslash S^{\prime}$ to denote the subgraph $G[V(G) \backslash S]$ and $G\left[E(G) \backslash S^{\prime}\right]$, respectively. Let $X, Y \subseteq V(G)$ with $X \cap Y=\emptyset$, then we define $E(X, Y)=\{u v \in E(G) \mid u \in X, v \in Y\}$.

A complete graph on n vertices is denoted by K_{n}. A complete bipartite graph with m vertices in one set and n vertices in the other set is denoted by $K_{m, n}$. Let P_{n} and C_{n} denote the path and the cycle of order n, respectively. A clique is a complete subgraph of a graph. An independent set of a graph is a set of vertices no two of which are adjacent. The cardinality of a maximum independent set of G is denoted by $\alpha(G)$.

A spanning subgraph of a graph is called a factor. An even factor of G is a spanning subgraph of G in which every vertex has even positive degree. A 2 -factor of a graph G is a spanning subgraph in which every vertex has degree 2 . A hamiltonian graph has a 2 -factor with exactly one component, i.e., a connected 2 -factor.

Let \mathcal{H} be a set of connected graphs. A graph G is said to be \mathcal{H}-free if G does not contain H as an induced subgraph for any H in \mathcal{H}, and we call each graph H of \mathcal{H} a forbidden subgraph. If $\mathcal{H}=\{H\}$, then we simply say that G is H-free. We call \mathcal{H} a forbidden pair if $|\mathcal{H}|=2$. In order to state results clearly, we further introduce the following notation. For two sets \mathcal{H}_{1} and \mathcal{H}_{2} of connected graphs, we write $\mathcal{H}_{1} \preceq \mathcal{H}_{2}$ if for every graph H^{\prime} in \mathcal{H}_{2}, there exists a graph $H^{\prime \prime}$ in \mathcal{H}_{1} such that $H^{\prime \prime}$ is an induced subgraph of H^{\prime}. By the definition of the relation " \leq ", if $\mathcal{H}_{1} \preceq \mathcal{H}_{2}$, then every \mathcal{H}_{1}-free graph is also \mathcal{H}_{2}-free.

The forbidden pairs that force the existence of a hamiltonian cycle or 2-factor of 2-connected graphs had been studied in [6] and [5], respectively. Further graphs used as forbidden induced subgraphs are shown in Figure 1.

Theorem 1 (Faudree and Gould, [6]). Let R and S be connected graphs other than an induced subgraph of P_{3}. Then every 2 -connected $\{R, S\}$-free graph of order at least 10 is hamiltonian if and only if $\{R, S\} \preceq\left\{K_{1,3}, P_{6}\right\},\left\{K_{1,3}, Z_{3}\right\}$, $\left\{K_{1,3}, B_{1,2}\right\}$ or $\left\{K_{1,3}, N_{1,1,1}\right\}$.

Theorem 2 (Faudree, Faudree and Ryjáček, [5]). Let R and S be connected graphs other than an induced subgraph of P_{3}. Then every 2 -connected $\{R, S\}$-free graph of order at least 10 has a 2 -factor if and only if $\{R, S\} \preceq\left\{K_{1,3}, B_{1,4}\right\}$, $\left\{K_{1,3}, N_{3,1,1}\right\}$ or $\left\{K_{1,4}, P_{4}\right\}$.

The following result reveals the existence of 2 -factor in a connected graph.

Figure 1. Some common induced subgraphs.
Theorem 3 (Fujisawa and Saito, [7]). Let R and S be connected graphs of order at least three. Then there exists a positive integer n_{0} such that every connected $\{R, S\}$-free graph of order at least n_{0} and minimum degree at least two has a 2 -factor if and only if $\{R, S\} \preceq\left\{K_{1,3}, Z_{2}\right\}$.

Obviously, a hamiltonian graph should have a 2 -factor and a 2 -factor should be an even factor. However, the converse is not true in general. In other words, the condition that a graph has an even factor is a necessary for a graph to have a 2 -factor and similarly the existence of a 2 -factor is a necessary for a graph to be hamiltonian.

The problem of deciding whether or not a graph has a Hamilton cycle was one of first decision problems proved to be NP-complete by Karp [8, 9]. The problem remains NP-complete, even if the graphs are restricted to be $K_{1,3}$-free (see [2]). However, Anstee showed [1] that for any graph, there is an algorithm that either finds a k-factor or shows that it does not exist. This implies that 2 -factors can be determined in polynomial time. Therefore, it is interesting to add a 2 -factor condition when we consider whether a graph is hamiltonian.
Question 4. Are there a wider set \mathcal{H} of forbidden subgraphs when we impose a necessary condition on those 2-connected (connected) graphs to be hamiltonian (or to have a 2 -factor, respectively)?

A similar problem is considered in [10]. In this paper, we answer the question for $|\mathcal{H}|=1,2$ by proving the following results. Here, we use $K_{4}-e$ to denote the graph by removing one edge from K_{4}.

Theorem 5. It holds that
(1) Every 2-connected A-free graph admitting a 2-factor is hamiltonian if and only if A is P_{3}.
(2) Let R, S be two connected graphs other than an induced subgraph of P_{3}, and let G be a graph admitting a 2-factor. Then every 2 -connected $\{R, S\}$ free graph G is hamiltonian if and only if $\{R, S\} \preceq\left\{I_{0}, Z_{1}\right\},\left\{P_{4}, K_{4}-e\right\}$, $\left\{P_{4}, Z_{1,1}\right\}$ or $\left\{K_{1,3}, P_{6}\right\},\left\{K_{1,3}, Z_{3}\right\},\left\{K_{1,3}, B_{1,2}\right\},\left\{K_{1,3}, N_{1,1,1}\right\}$.

Theorem 6. It holds that
(1) Every 2-connected A-free graph admitting an even factor has a 2-factor if and only if A is P_{3}.
(2) Let R, S be two connected graphs other than an induced subgraph of P_{3}, and let G be a connected graph of order at least 6 admitting an even factor. Then every $\{R, S\}$-free graph G has a 2 -factor if and only if $\{R, S\} \preceq\left\{K_{1,4}, Z_{1}\right\}$, $\left\{K_{1,3}, H_{0}\right\}$ or $\left\{K_{1,3}, Z_{2}\right\}$.

Comparing both Theorems 1 and 5(2), and both Theorems 3 and 6(2), we know that pairs of forbidden subgraphs for a 2 -connected graph to be hamiltonian (or to have 2-factor, respectively) become wider than those, if we impose a necessary condition that graphs in consideration have a 2 -factor (or even factor, respectively).

2. Forbidden Subgraphs Guaranteeing a Graph with 2-Factor to be Hamiltonian: the Proof of Theorem 5

In this section, we completely characterize connected forbidden subgraphs and pairs of connected forbidden subgraphs that force a 2 -connected graph admitting a 2-factor to be hamiltonian.

The following result was due to Egawa [4] who observed that the first one was proved implicitly by Faudree et al. [5].

Theorem 7 (Egawa, [4]). Let G be a connected non-complete P_{4}-free graph and S be a smallest vertex-cut of G. Then each vertex in S is adjacent to all vertices in $V(G) \backslash S$.

Lemma 8. Every 2-connected $\left\{K_{4}-e, P_{4}\right\}$-free graph is either a complete graph or a complete bipartite graph.

Proof. Let G be a 2 -connected $\left\{K_{4}-e, P_{4}\right\}$-free graph and S be a smallest vertex-cut of G. Then $|S| \geq 2$. We suppose that G is a non-complete graph. Since G is P_{4}-free, by Theorem 7, each vertex in S is adjacent to all vertices in $V(G) \backslash S$. Suppose that there exists a pair of adjacent vertices $\left\{s_{1}, s_{2}\right\} \subseteq S$.

Then $G[V \backslash S]$ is a clique, otherwise, assume that there exists a pair of nonadjacent vertices $\left\{u_{1}, u_{2}\right\} \subseteq V(G) \backslash S$, then $G\left[\left\{s_{1}, s_{2}, u_{1}, u_{2}\right\}\right] \cong K_{4}-e$, a contradiction. Furthermore, $G[S]$ is a clique, otherwise, assume that there exists a pair of non-adjacent vertices $\left\{v_{1}, v_{2}\right\} \subseteq S$, then $G\left[\left\{v_{1}, v_{2}, w_{1}, w_{2}\right\}\right] \cong K_{4}-e$, where $\left\{w_{1}, w_{2}\right\} \subseteq V(G) \backslash S$, a contradiction. Then G is a complete graph, contradicting our assumptions that G is a non-complete graph. This proves that S is an independent set. Then $V(G) \backslash S$ is an independent set, otherwise, assume that there exists a pair of adjacent vertices $\left\{u_{1}, u_{2}\right\} \subseteq V(G) \backslash S$, then $G\left[\left\{s_{1}, s_{2}, u_{1}, u_{2}\right\}\right] \cong K_{4}-e$, where $\left\{s_{1}, s_{2}\right\} \subseteq S$, a contradiction. Therefore, G is a complete bipartite graph.

Theorem 9. If G is a 2 -connected $\left\{K_{4}-e, P_{4}\right\}$-free graph admitting a 2 -factor, then G is hamiltonian.

Proof. By Lemma 8, G is a complete graph or a complete bipartite graph. If G is a complete graph, then G is hamiltonian. If G is a complete bipartite graph, then G is a balanced complete bipartite graph, i.e., $G \cong K_{m, m}$ (since G has a 2-factor). Then G is hamiltonian.

Let H and F be subgraphs of G. We define $H \triangle F$ by $H \triangle F=(V(H) \cup$ $V(F), E(H) \triangle E(F)$), where $A \triangle B$ denotes the symmetric difference of the sets A and B. Note that if H and F are even subgraphs, then $H \triangle F$ is also an even graph, but $H \triangle F$ may have more components than H or F. Let $C\left(x_{1} x_{2} \cdots x_{n} x_{1}\right)$ denote the cycle $x_{1} x_{2} \cdots x_{n} x_{1}$.

Theorem 10. Let G be a 2-connected graph admitting a 2-factor such that it satisfies one of the following.
(1) G is a $\left\{I_{0}, Z_{1}\right\}$-free graph, where I_{0} is depicted in Figure 1 ;
(2) G is a $\left\{P_{4}, Z_{1,1}\right\}$-free graph, where $Z_{1,1}$ is depicted in Figure 1.

Then G is hamiltonian.
Proof. Let G be a 2 -connected graph admitting a 2 -factor. Choose a 2 -factor F of G with components $Q_{1}, \ldots, Q_{t}(t \geq 1)$ such that t is as small as possible. We shall show that $t=1$. Otherwise, there exists an edge $e \in E(G) \backslash E(F)$ such that the two end-vertices of e are in different components of F. Take such an edge $x y$ such that $x \in V\left(Q_{i}\right)$ and $y \in V\left(Q_{j}\right),\{i, j\} \subseteq\{1,2, \ldots, t\}$. Let $\left\{x_{1}, x_{2}\right\} \subseteq N_{Q_{i}}(x)$, $\left\{y_{1}, y_{2}\right\} \subseteq N_{Q_{j}}(y)$. For any $s, t \in\{1,2\}$, we have that $x_{s} y_{t} \notin E(G)$, otherwise, $F \triangle C\left(x y y_{t} x_{s} x\right)$ is a 2 -factor with fewer components than F, a contradiction. We claim that if $x y_{s} \in E(G)$, then $y x_{t} \notin E(G)$, otherwise, $F \triangle C\left(x x_{t} y y_{s} x\right)$ is a 2 -factor with fewer components than F, a contradiction.
Proof of (1). Let G be a $\left\{I_{0}, Z_{1}\right\}$-free graph. Then $x_{1} y \notin E(G)$, otherwise, $G\left[\left\{x, x_{1}, y, y_{2}\right\}\right] \cong Z_{1}$, a contradiction. By symmetry, $\left\{y x_{2}, x y_{1}, x y_{2}\right\} \cap E(G)=$

Ø. Then $x_{1} x_{2} \notin E(G)$, otherwise, $G\left[\left\{x, x_{1}, x_{2}, y\right\}\right] \cong Z_{1}$, a contradiction. By symmetry, $y_{1} y_{2} \notin E(G)$. Then $G\left[\left\{x, x_{1}, x_{2}, y, y_{1}, y_{2}\right\}\right] \cong I_{0}$, a contradiction. Therefore, $t=1$ and G is hamiltonian.

Proof of (2). Let G be a $\left\{P_{4}, Z_{1,1}\right\}$-free graph. Since $G\left[\left\{x_{1}, x, y, y_{1}\right\}\right] \not \equiv P_{4}$, $\left\{x y_{1}, y x_{1}\right\} \cap E(G) \neq \emptyset$. Note that $\left|\left\{x y_{1}, y x_{1}\right\} \cap E(G)\right| \neq 2$. By symmetry, we suppose that $x y_{1} \in E(G)$. Since $G\left[\left\{x_{2}, x, y, y_{2}\right\}\right] \nsucceq P_{4}, x y_{2} \in E(G)$. Since $G\left[\left\{x, y, y_{1}, x_{1}, x_{2}\right\}\right] \not \nexists Z_{1,1}, x_{1} x_{2} \in E(G)$. Since $G\left[\left\{x, x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \not \equiv Z_{1,1}$, $y_{1} y_{2} \in E(G)$. Therefore, if $\left|V\left(Q_{j}\right)\right|=3$, then $G\left[V\left(Q_{j}\right)\right] \cong K_{3}$ and x is adjacent to each vertex in $V\left(Q_{j}\right)$. If $\left|V\left(Q_{j}\right)\right| \geq 4$, let $Q_{j}=y y_{1} a_{1} a_{2} \cdots a_{\left|V\left(Q_{j}\right)\right|-3} y_{2} y$. Since $G\left[\left\{x_{1}, x, y_{1}, a_{1}\right\}\right] \not \equiv P_{4}, x a_{1} \in E(G)$. Since $G\left[\left\{x_{1}, x, a_{1}, a_{2}\right\}\right] \not \equiv P_{4}, x a_{2} \in$ $E(G)$. Then we claim that x is adjacent to each vertex in $V\left(Q_{j}\right)$, otherwise, $G\left[\left\{x_{1}, x, a_{i-1}, a_{i}\right\}\right] \cong P_{4}$, where $x a_{i} \notin E(G)$, a contradiction. Furthermore, $G\left[V\left(Q_{j}\right)\right]$ is a clique, otherwise, the subgraph induced by the two non-adjacent vertices in $V\left(Q_{j}\right)$ and $\left\{x, x_{1}, x_{2}\right\}$ is an induced $Z_{1,1}$, a contradiction.

Since G is 2 -connected, $x y, x x_{1}$ are in a cycle. Choose an induced cycle $C=x x_{1} w_{1} \cdots w_{|V(C)|-3} y x$ of G such that $\left\{x y, x x_{1}\right\} \subseteq E(C)$. Since G is P_{4}-free, $|V(C)| \leq 4$. Recall that $y x_{1} \notin E(G)$. Then $|V(C)|=4$ and $C=x x_{1} w_{1} y x$. Since $G\left[V\left(Q_{j}\right)\right]$ is a clique and x is adjacent to each vertex in $V\left(Q_{j}\right), w_{1} \notin V\left(Q_{j}\right)$. Since F is a 2 -factor of G, let $N_{F}\left(w_{1}\right)=\left\{v_{1}, v_{2}\right\}$. First we suppose that $w_{1} \in V\left(Q_{i}\right)$. Since $G\left[\left\{w_{1}, x_{1}, x, y_{1}\right\}\right] \not \equiv P_{4}, y_{1} w_{1} \in E(G)$. Recall that $E\left(\left\{v_{1}, v_{2}\right\},\left\{y, y_{1}\right\}\right)=\emptyset$. Since $G\left[\left\{w_{1}, v_{1}, v_{2}, y, y_{1}\right\}\right] \not \equiv Z_{1,1}, v_{1} v_{2} \in E(G)$. Therefore, $F \triangle\left(C\left(x y_{2} y w_{1} x_{1} x\right) \cup\right.$ $\left.C\left(w_{1} v_{1} v_{2} w_{1}\right)\right)$ is a 2 -factor with fewer components than F, a contradiction. Next we suppose that $w_{1} \in V\left(Q_{k}\right)$, where $k \in\{1,2, \ldots, t\} \backslash\{i, j\}$. Since C is an induced cycle, $x w_{1} \notin E(G)$. Since $G\left[\left\{x, x_{1}, w_{1}, v_{1}\right\}\right] \not \equiv P_{4},\left\{v_{1} x, v_{1} x_{1}\right\} \cap E(G) \neq \emptyset$. If $v_{1} x \in E(G)$ or $v_{1} x_{1} \in E(G)$, then $F \triangle C\left(x x_{1} w_{1} v_{1} x\right)$ or $F \triangle C\left(x x_{1} v_{1} w_{1} y y_{1} x\right)$ is a 2 -factor with fewer components than F, a contradiction. This proves (2). The proof of this theorem is complete.

Now, we present the proof of Theorem 5 .
Proof of Theorem 5. (1) If G is P_{3}-free, then G is a complete graph and hence G is hamiltonian. Conversely, graphs G_{1}, G_{2}, G_{4} in Figure 2 are 2-connected admitting a 2 -factor but non-hamiltonian.

Then A must be an induced subgraph of them. Without loss of generality, we assume that A is an induced subgraph of G_{1}. Then A is a tree with maximum degree at most 3 or contains a K_{3}. Note that G_{2} is K_{3}-free. This implies that A contains no cycle. Thus, A is a tree. Since G_{4} is $K_{1,3}-$ free, A is a path. Note that the maximal induced path of G_{1} is P_{3}. Therefore, A is P_{3}.
(2) By Theorems 1, 9 and 10, the sufficiency clearly holds. It remains to show the necessity. All graphs in Figure 2 are 2 -connected with a 2 -factor but non-hamiltonian. Then each graph contains at least one of R, S as an induced

Figure 2. Graphs with 2-factor but non-hamiltonian.
subgraph. Without loss of generality, we assume that G_{1} contains R as an induced subgraph. Then R is a tree with maximum degree at most 3 or contains a triangle.

Case $1 . R$ is a tree. Then $\Delta(R) \leq 3$. We claim that $\Delta(R)=3$, otherwise, R is a path and R is P_{3}, a contradiction. Since the maximal induced tree of G_{1} is $K_{1,3}, R$ is $K_{1,3}$. Since $G_{4}, G_{6}, G_{7}, G_{8}, G_{9}$ are $K_{1,3}$-free, S should be an induced subgraph of $G_{4}, G_{6}, G_{7}, G_{8}, G_{9}$. Then S is a path or contains a cycle. Note that the longest induced path of G_{9} is P_{6}. Therefore, if S is a path, then S is an induced subgraph of P_{6}. Therefore, $\{R, S\} \preceq\left\{K_{1,3}, P_{6}\right\}$. Now we suppose that S contains a cycle. Note that the maximal common induced cycle of G_{4}, $G_{6}, G_{7}, G_{8}, G_{9}$ is K_{3}. Then S contains a K_{3}. Furthermore, S contains exactly one K_{3}. Since the maximal induced subgraph containing Z_{i} of G_{9} is Z_{3}, we get $\{R, S\} \preceq\left\{K_{1,3}, Z_{3}\right\}$. Since the maximal induced subgraph containing $B_{i, j}$ of G_{7} is $B_{1,2}$, we have $\{R, S\} \preceq\left\{K_{1,3}, B_{1,2}\right\}$. Finally, observe that the maximal induced subgraph containing $N_{i, j, k}$ of G_{8} is $N_{1,1,1}$. Therefore, $\{R, S\} \preceq\left\{K_{1,3}, N_{1,1,1}\right\}$.

Case 2. R contains a triangle. First we suppose that R contains a K_{4}. Since G_{2}, G_{3}, G_{4} are K_{4}-free, S is an induced subgraph of G_{2}, G_{3}, G_{4}. Since G_{2} and G_{4} have no common induced cycle, S is a tree. Since G_{4} is $K_{1,3}-$ free, S should be a path. Since the maximal induced path of G_{3} is P_{3}, S is an induced subgraph of P_{3}, a contradiction.

Now we suppose that R contains a K_{3} but no K_{4}. Since G_{2}, G_{5} are K_{3}-free, S should be an induced subgraph of G_{2}, G_{5}. Since G_{2}, G_{5} have no common induced cycle, S is a tree. Since $\Delta\left(G_{2}\right)=3, \Delta(S) \leq 3$. If $\Delta(S)=2$, then S is a path. Since the maximal induced path of G_{5} is P_{4}, S is an induced subgraph of P_{4}.

Since G_{1} and G_{3} are P_{4}-free, R is an induced subgraph of G_{1} and G_{3}. Recall that R contains a K_{3}. Next, observe that the maximal common induced subgraphs of G_{1}, G_{3} containing a K_{3} are $K_{4}-e$ and $Z_{1,1}$. Therefore, $\{R, S\} \preceq\left\{P_{4}, K_{4}-e\right\}$ or $\left\{P_{4}, Z_{1,1}\right\}$. If $\Delta(S)=3$, then S contains a $K_{1,3}$. Since the maximal common induced subgraph containing a $K_{1,3}$ of G_{2}, G_{5} is I_{0}, S is an induced subgraph of I_{0}. Since G_{1}, G_{4} are I_{0}-free, R is an induced subgraph of G_{1}, G_{4}. Recall that R contains a K_{3}. Since the maximal common induced subgraph containing a K_{3} of G_{1}, G_{4} is Z_{1}, R is an induced subgraph of Z_{1}. Then $\{R, S\} \preceq\left\{I_{0}, Z_{1}\right\}$. This completes the proof of necessity.

3. Forbidden Subgraphs Guaranteeing a Graph with Even Factor to Have a 2-Factor: the Proof of Theorem 6

In this section, we completely characterize connected forbidden subgraph and pairs of connected forbidden subgraphs that force a graph admitting an even factor to have a 2 -factor.

The union of two graphs G_{1} and G_{2}, denoted by $G_{1} \cup G_{2}$, is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. The union of m disjoint copies of the same graph G is denoted by $m G$. The join of two disjoint graphs G_{1} and G_{2}, denoted by $G_{1} \vee G_{2}$, is obtained from their union by joining each vertex of G_{1} to each vertex of G_{2}.

Theorem 11. Let G be a connected graph with an even factor of order at least 6 such that it satisfies one of the following.
(1) G is $\left\{K_{1,4}, Z_{1}\right\}$-free;
(2) G is $\left\{K_{1,3}, H_{0}\right\}$-free;
(3) G is $\left\{K_{1,3}, Z_{2}\right\}$-free.

Then G has a 2 -factor.
Proof. Let G be a connected graph with an even factor of order at least 6 . Choose an even factor $F=Q_{1} \cup Q_{2} \cup \cdots \cup Q_{t}(t \geq 1)$, of G such that
(i) $\Delta(F)$ is minimized;
(ii) $\left|\left\{x \in V(F): d_{F}(x)=\Delta(F)\right\}\right|$ is minimized, subjected to (i).
(iii) t is minimized, subjected to (i) and (ii).

We shall prove that $\Delta(F)=2$. Assume to the contrary that $\Delta(F) \geq 4$. Take a vertex $v \in V(F)$ such that $d_{F}(v)=\Delta(F) \geq 4$. Without loss of generality, let $v \in V\left(Q_{i}\right)$. Let $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \subseteq N_{Q_{i}}(v)$. Then we have the following claim.

Claim 12. (1) If $v_{i} v_{j} \in E(G)$, then $v_{i} v_{j} \in E(F)$, for $\{i, j\} \subset\{1,2,3,4\}$.
(2) If $v_{i} v_{j} \in E(G)$, then at least one of $\left\{v_{i}, v_{j}\right\}$ has degree 2 in F, for $\{i, j\} \subset$ $\{1,2,3,4\}$.

Proof. (1) Assume to the contrary that there exist two vertices $\left\{v_{i}, v_{j}\right\} \subset$ $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ such that $v_{i} v_{j} \in E(G) \backslash E(F)$, then $F^{\prime}=F \triangle C\left(v v_{i} v_{j} v\right)$ is an even factor of G with $d_{F^{\prime}}(v)=\Delta(F)-2$, contradicting (ii).
(2) Assume to the contrary that there exist two vertices $\left\{v_{i}, v_{j}\right\} \subset\left\{v_{1}, v_{2}\right.$, $\left.v_{3}, v_{4}\right\}$ such that $d_{F}\left(v_{i}\right) \geq 4$ and $d_{F}\left(v_{j}\right) \geq 4$, then $F^{\prime}=F \triangle C\left(v v_{i} v_{j} v\right)$ is an even factor of G with $d_{F^{\prime}}(v)=\Delta(F)-2$, contradicting (ii).

Proof of (1). Let G be a $\left\{K_{1,4}, Z_{1}\right\}$-free graph.
Claim 13. $G\left[\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}\right] \cong K_{2} \vee 3 K_{1}$.
Proof. Since $G\left[\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}\right] \not \equiv K_{1,4}, E\left(G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right]\right) \neq \emptyset$. Without loss of generality, we suppose that $v_{1} v_{2} \in E(G)$. By Claim 12(1), $v_{1} v_{2} \in E(F)$. Since $G\left[\left\{v, v_{1}, v_{2}, v_{3}\right\}\right] \not \equiv Z_{1},\left\{v_{3} v_{1}, v_{3} v_{2}\right\} \cap E(G) \neq \emptyset$. By symmetry, suppose that $v_{3} v_{2} \in E(G)$. By Claim $12(1), v_{3} v_{2} \in E(F)$. Thus, $d_{F}\left(v_{2}\right) \geq 4$. Then $v_{3} v_{4} \notin E(G)$, otherwise, by Claim $12(1), v_{3} v_{4} \in E(F)$ and hence $d_{F}\left(v_{3}\right) \geq 4$, contradicting Claim $12(2)$. By symmetry, $v_{4} v_{1} \notin E(G)$. Since $G\left[\left\{v, v_{2}, v_{3}, v_{4}\right\}\right] \not \nexists$ $Z_{1}, v_{2} v_{4} \in E(G)$. By Claim $12(1), v_{2} v_{4} \in E(F)$. Since $d_{F}\left(v_{2}\right) \geq 4$ and $\left\{v_{2} v_{1}, v_{2} v_{4}, v_{2} v_{3}\right\} \subset E(G)$, by Claim 12(2), $d_{F}\left(v_{1}\right)=d_{F}\left(v_{3}\right)=d_{F}\left(v_{4}\right)=2$. Then by Claim $12(1), v_{1} v_{3} \notin E(G)$. This implies that $G\left[\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}\right] \cong$ $K_{2} \vee 3 K_{1}$.

Suppose that $d_{F}(v) \geq 6$ and there exists a vertex $v^{\prime} \in V\left(Q_{i}\right)$ such that $v^{\prime} v \in E(F)$. Since $G\left[\left\{v, v^{\prime}, v_{1}, v_{3}, v_{4}\right\}\right] \not \equiv K_{1,4},\left\{v^{\prime} v_{1}, v^{\prime} v_{3}, v^{\prime} v_{4}\right\} \cap E(G) \neq \emptyset$. By symmetry, assume that $v^{\prime} v_{3} \in E(G)$. Since $d_{F}\left(v_{3}\right)=2, v^{\prime} v_{3} \notin E(F)$. Hence $F^{\prime}=F \triangle C\left(v v_{3} v^{\prime} v\right)$ is an even factor of G with $d_{F^{\prime}}(v)=\Delta(F)-2$, contradicting (ii). This implies that $d_{F}(v)=4$. By symmetry, $d_{F}\left(v_{2}\right)=4$. By Claim 12(2), $d_{F}\left(v_{1}\right)=d_{F}\left(v_{3}\right)=d_{F}\left(v_{4}\right)=2$. Then $G\left[\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}\right]$ is a component of F. By the arbitrariness of v, we have that $\Delta(F)=4$ and the vertex with maximum degree is in $K_{2} \vee 3 K_{1}$. Since $n \geq 6, E\left(\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}, V(G) \backslash\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}\right) \neq$ \emptyset. Then there exists a vertex $w \in V\left(Q_{j}\right)$ such that $E\left(\{w\},\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}\right) \neq \emptyset$.

First suppose that $v_{3} w \in E(G)$. Since $G\left[\left\{v, v_{2}, v_{3}, w\right\}\right] \not \equiv Z_{1},\left\{w v, w v_{2}\right\} \cap$ $E(G) \neq \emptyset$. By symmetry, assume that $w v_{2} \in E(G)$. Then $d_{F}(w)=\Delta(F)=4$, otherwise, $F^{\prime}=F \triangle C\left(v v_{3} w v_{2} v\right)$ is an even factor of G satisfying that $d_{F^{\prime}}(v)=$ $\Delta(F)-2, d_{F^{\prime}}(w)=\Delta(F)$ but v_{3} and w are in the same component of F^{\prime}, contradicting (iii). Let $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\} \subseteq N_{Q_{j}}(w)$. By the arbitrariness of v and by Claim $13, G\left[\left\{w, w_{1}, w_{2}, w_{3}, w_{4}\right\}\right] \cong K_{2} \vee 3 K_{1}$. Without loss of generality, let $d_{F}\left(w_{2}\right)=4$. Since $G\left[\left\{w, w_{1}, w_{3}, w_{4}, v_{2}\right\}\right] \nexists K_{1,4},\left\{v_{2} w_{1}, v_{2} w_{3}, v_{2} w_{4}\right\} \cap E(G) \neq \emptyset$. By symmetry, assume that $v_{2} w_{1} \in E(G)$. Then $F^{\prime}=F \triangle C\left(w w_{1} v_{2} v v_{3} w\right)$ is an even factor of G with $d_{F^{\prime}}(v)=\Delta(F)-2$, contradicting (ii). This implies that $v_{3} w \notin E(G)$. By symmetry, $\left\{w v_{1}, w v_{4}\right\} \cap E(G)=\emptyset$.

Then $\left\{w v_{2}, w v\right\} \cap E(G) \neq \emptyset$. By symmetry, assume that $w v_{2} \in E(G)$. Since $G\left[\left\{v, v_{2}, v_{3}, w\right\}\right] \not \equiv Z_{1}$ and $w v_{3} \notin E(G), w v \in E(G)$. Since $G\left[\left\{v, v_{1}, v_{3}, v_{4}, w\right\}\right] \not \equiv$ $K_{1,4},\left\{w v_{1}, w v_{3}, w v_{4}\right\} \cap E(G) \neq \emptyset$. Without loss of generality, let $w v_{1} \in E(G)$. Then $d_{F}(w)=\Delta(F)=4$, otherwise, $F^{\prime}=F \triangle C\left(w v_{2} v v_{1} w\right)$ is an even factor of G with fewer components than F, contradicting (iii). Let $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\} \subseteq$ $N_{Q_{j}}(w)$. By the arbitrariness of v and by Claim $13, G\left[\left\{w, w_{1}, w_{2}, w_{3}, w_{4}\right\}\right] \cong K_{2} \vee$ $3 K_{1}$. Let $d_{F}\left(w_{2}\right)=4$. Since $G\left[\left\{w, w_{1}, w_{3}, w_{4}, v_{2}\right\}\right] \not \equiv K_{1,4},\left\{v_{2} w_{1}, v_{2} w_{3}, v_{2} w_{4}\right\} \cap$ $E(G) \neq \emptyset$. By symmetry, assume that $v_{2} w_{1} \in E(G)$. Then $F^{\prime}=F \triangle C\left(w w_{1} v_{2} v w\right)$ is an even factor of G with fewer components than F, contradicting (iii). This proves (1).

In the following, let G be a $K_{1,3}$-free graph. Before present the proofs of (2), (3), we show the following claim.

Claim 14. $G\left[\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}\right] \cong H_{0}$.
Proof. Since $G\left[\left\{v, v_{1}, v_{2}, v_{3}\right\}\right] \not \equiv K_{1,3},\left\{v_{1} v_{2}, v_{1} v_{3}, v_{2} v_{3}\right\} \cap E(G) \neq \emptyset$. Without loss of generality, we suppose that $v_{1} v_{2} \in E(G)$. By Claim 12(1), $v_{1} v_{2} \in E(F)$ and at least one of $\left\{v_{1}, v_{2}\right\}$ has degree 2 in F. Without loss of generality, let $d_{F}\left(v_{1}\right)=2$. By Claim 12(1), $\left\{v_{1} v_{4}, v_{1} v_{3}\right\} \cap E(G)=\emptyset$. Since $G\left[\left\{v, v_{1}, v_{3}, v_{4}\right\}\right] \not \equiv$ $K_{1,3}, v_{3} v_{4} \in E(G)$. By Claim 12, $v_{3} v_{4} \in E(F)$ and at least one of $\left\{v_{3}, v_{4}\right\}$ has degree 2 in F. Then $v_{2} v_{3} \notin E(G)$, otherwise, $F^{\prime}=F \triangle E\left(v v_{2} v_{3} v\right)$ is an even factor of G with $d_{F^{\prime}}(v)=d_{F}(v)-2$, contradicting (ii). By symmetry, $v_{2} v_{4} \notin E(G)$. Then $G\left[\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}\right] \cong H_{0}$ and $E\left(G\left[\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}\right]\right) \subseteq E(F)$.
Proof of (2). Let G be a $\left\{K_{1,3}, H_{0}\right\}$-free graph. By Claim 14, $G\left[\left\{v, v_{1}, v_{2}\right.\right.$, $\left.\left.v_{3}, v_{4}\right\}\right] \cong H_{0}$, contradicting that G is H_{0}-free. Then (2) clearly holds.
Proof of (3). Let G be a $\left\{K_{1,3}, Z_{2}\right\}$-free graph. By Claim 14 and Claim 12 (2), we suppose that $d_{F}\left(v_{2}\right)=d_{F}\left(v_{3}\right)=2$. Suppose that $d_{F}(v)=\Delta(F) \geq 6$ and $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v^{\prime}\right\} \subseteq N_{F}(v)$. Since $G\left[\left\{v, v_{2}, v_{3}, v^{\prime}\right\}\right] \not \equiv K_{1,3},\left\{v^{\prime} v_{2}, v^{\prime} v_{3}\right\} \cap E(G) \neq \emptyset$. By symmetry, assume that $v^{\prime} v_{2} \in E(G)$. Recall that $d_{F}\left(v_{2}\right)=2$, then $v^{\prime} v_{2} \notin$ $E(F)$. Hence $F^{\prime}=F \triangle C\left(v v_{2} v^{\prime} v\right)$ is an even factor of G with $d_{F^{\prime}}(v)=d_{F}(v)-2$, contradicting (ii). This implies that $d_{F}(v)=\Delta(F)=4$.

We claim that $d_{F}\left(v_{1}\right)=2$. Suppose, otherwise, that $d_{F}\left(v_{1}\right)=4$ and $N_{F}\left(v_{1}\right)$ $=\left\{v_{5}, v_{6}, v_{2}, v\right\}$. If $v_{2} v_{6} \in E(G)$, then $v_{2} v_{6} \notin E(F)$ (since $d_{F}\left(v_{2}\right)=2$). Thus, $F^{\prime}=F \triangle C\left(v_{1} v_{2} v_{6} v\right)$ is an even factor of G with $d_{F^{\prime}}\left(v_{1}\right)=2$, contradicting (ii). This implies that $v_{2} v_{6} \notin E(G)$. By symmetry, $v_{2} v_{5} \notin E(G)$. Since $G\left[\left\{v_{1}, v_{2}\right.\right.$, $\left.\left.v_{5}, v_{6}\right\}\right] \nexists K_{1,3}, v_{5} v_{6} \in E(G)$. Furthermore, $v_{5} v_{6} \in E(F)$, otherwise, $F^{\prime}=$ $F \triangle C\left(v_{1} v_{5} v_{6} v\right)$ is an even factor of G with $d_{F^{\prime}}\left(v_{1}\right)=2$, contradicting (ii). Recall that $d_{F}(v)=4$ and $d_{F}\left(v_{3}\right)=2$. If $v v_{5} \in E(G)\left(\right.$ or $\left.v_{3} v_{5} \in E(G)\right)$, then $v v_{5} \notin E(F)$ (or $v_{3} v_{5} \notin E(F)$). Thus, $F^{\prime}=F \triangle C\left(v v_{1} v_{5} v\right)$ (or $F \triangle C\left(v v_{1} v_{5} v_{3} v\right)$) is an even factor of G with $d_{F^{\prime}}\left(v_{1}\right)=2$, contradicting (ii). Thus, $v v_{5}, v_{3} v_{5} \notin E(G)$. If $v_{4} v_{5} \in E(G)$, then $F^{\prime}=F \triangle C\left(v v_{1} v_{5} v_{4} v\right)$ is an even factor of G with $d_{F^{\prime}}\left(v_{1}\right)=$

2 , contradicting (ii). Thus, $v_{4} v_{5} \notin E(G)$. Then $G\left[\left\{v, v_{3}, v_{4}, v_{1}, v_{5}\right\}\right] \cong Z_{2}$, a contradiction. This proves that $d_{F}\left(v_{1}\right)=2$. By symmetry, $d_{F}\left(v_{4}\right)=2$. Then $G\left[\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}\right] \cong H_{0}$ is a component of F.

Since $n \geq 6, V(G) \backslash V\left(H_{0}\right) \neq \emptyset$. First, we suppose that there exists a component Q_{i} of F such that $E\left(v, V\left(Q_{i}\right)\right) \neq \emptyset$ and $v u \in E(G)$, where $u \in V\left(Q_{i}\right)$. Let $\left\{u_{1}, u_{2}\right\} \subseteq N_{Q_{i}}(u)$. Then $E\left(\left\{u_{1}, u_{2}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right)=\emptyset$. Otherwise, by symmetry, suppose that $v_{1} u_{1} \in E(G)$, then $F^{\prime}=F \triangle C\left(u_{1} v_{1} v u u_{1}\right)$ is an even factor of G such that H_{0} and Q_{i} are in the same component of F^{\prime}, but the other components are the same with F, contradicting (iii). We have that $v u_{1} \notin E(G)$, otherwise, $G\left[\left\{v, v_{1}, v_{4}, u_{1}\right\}\right] \cong K_{1,3}$, a contradiction. By symmetry, $v u_{2} \notin E(G)$. Since $G\left[\left\{u, u_{1}, u_{2}, v\right\}\right] \not \equiv K_{1,3}, u_{1} u_{2} \in E(G)$. Since $G\left[\left\{u, u_{1}, u_{2}, v, v_{1}\right\}\right] \not \equiv Z_{2}, u v_{1} \in$ $E(G)$. Since $G\left[\left\{u, u_{1}, u_{2}, v, v_{4}\right\}\right] \not \equiv Z_{2}, u v_{4} \in E(G)$. Then $G\left[\left\{u, v_{1}, v_{4}, u_{1}\right\}\right] \cong$ $K_{1,3}$, a contradiction. This implies that $E\left(v, V(G) \backslash V\left(H_{0}\right)\right)=\emptyset$.

Then $E\left(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, V\left(Q_{i}\right)\right) \neq \emptyset$. Without loss of generality, we suppose that $v_{1} w \in E(G)$, where $w \in V\left(Q_{i}\right)$. Let $\left\{w_{1}, w_{2}\right\} \subseteq N_{Q_{i}}(w)$. Since $G\left[\left\{v, v_{3}, v_{4}, v_{1}, w\right\}\right] \not \equiv Z_{2}$ and $v w \notin E(G),\left\{w v_{3}, w v_{4}\right\} \cap E(G) \neq \emptyset$. Without loss of generality, we suppose that $w v_{4} \in E(G)$. Then $w_{1} v_{4} \notin E(G)$ and $v_{1} w_{1} \notin E(G)$, otherwise, $F^{\prime}=F \triangle C\left(w v_{1} v v_{4} w_{1} w\right)$ and $F \triangle C\left(w_{1} v_{1} v v_{4} w w_{1}\right)$ is an even factor of G with $d_{F^{\prime}}(v)=2$, contradicting (ii). Thus, $G\left[\left\{w, v_{1}, v_{4}, w_{1}\right\}\right] \cong K_{1,3}$, a contradiction. This prove that $\Delta(F)=2$.

Now we prove Theorem 6.
Proof of Theorem 6. (1) If G is P_{3}-free, then G is a complete graph and hence G has a 2 -factor. Conversely, G_{1}, G_{2}, G_{5} in Figure 3 are connected and contain an even factor but no 2 -factor. Then A must be an induced subgraph of them. Without loss of generality, we assume that A is an induced subgraph of G_{1}. Then A is $K_{1, s}$ or $K_{2, s}(s \geq 2)$. Since G_{2} is $K_{2, s}$-free and G_{5} is $K_{1,3}$-free, A is a path. Since the maximal induced path of G_{1} is P_{3}, A is P_{3}.
(2) By Theorem 11, the sufficiency clearly holds. It remains to show the necessity. All graphs in Figure 3 are connected and have an even factor but no 2 -factor. Then each graph contains at least one of R, S as an induced subgraph. Without loss of generality, we assume that G_{1} contains R as an induced subgraph. Then R is $K_{1, t}(t \geq 3)$ or $K_{2, s}(s \geq 2)$.

Case 1. R is $K_{1, t}(t \geq 5)$ or $K_{2, s}(s \geq 2)$. Since G_{2}, G_{4}, G_{5} are $\left\{K_{1,5}, K_{2, s}\right\}-$ free, they must contain S as an induced subgraph. Since G_{2}, G_{4} have no common induced cycle and G_{5} is $K_{1,3}$-free, S should be a path. Since the maximal induced path of G_{2} is P_{3}, S is an induced subgraph of P_{3}, a contradiction.

Case 2. R is $K_{1,4}$. Since G_{3}, G_{5}, G_{9} are $K_{1,4}-$ free, they must contain S as an induced subgraph. Since G_{5} is $K_{1,3}$-free, S should be a path or contain a cycle. Note that the maximal induced path of G_{9} is P_{3}. If S is a path, then S is an
induced subgraph of P_{3}, a contradiction. Then S contains a cycle. Note that the maximal common induced cycle of G_{3} and G_{9} is K_{3}. Furthermore, S contains exactly one K_{3}. Since the maximal common induced subgraph containing a K_{3} of G_{3}, G_{5}, G_{9} is Z_{1}, S is an induced subgraph of Z_{1}. Therefore, $\{R, S\} \preceq\left\{K_{1,4}, Z_{1}\right\}$.

Figure 3. Graphs with even factor but no 2-factor.
Case 3. R is $K_{1,3}$. Since $G_{5}, G_{6}, G_{7}, G_{8}, G_{10}$ are $K_{1,3}$-free, they must contain S as an induced subgraph. Then S should be a path or contain a cycle. Note that the maximal induced path of G_{8} is P_{4}. Thus, if S is a path, then S is an induced subgraph of P_{4}. Then $\{R, S\} \preceq\left\{K_{1,3}, P_{4}\right\}$. Now we suppose that S contains a cycle. Since G_{5} is K_{4}-free, S contains no K_{4}. Note that the maximal common induced cycle of $G_{5}, G_{6}, G_{7}, G_{8}, G_{10}$ is K_{3}. Furthermore, S contains at most two triangles. Note that G_{10} is $B_{i, j}$-free. Thus, if S contains exactly one triangle, then S is Z_{i}. Since the maximal induced subgraph containing Z_{i} of them is Z_{2}, S should be an induced subgraph of Z_{2}. Therefore, $\{R, S\} \preceq\left\{K_{1,3}, Z_{2}\right\}$. Since the maximal common induced subgraph containing exactly two triangles of them is H_{0}, S should be an induced subgraph of H_{0}. Then $\{R, S\} \preceq\left\{K_{1,3}, H_{0}\right\}$. Note that $P_{4} \preceq Z_{2}$. Therefore, $\{R, S\} \preceq\left\{K_{1,4}, Z_{1}\right\},\left\{K_{1,3}, Z_{2}\right\},\left\{K_{1,3}, H_{0}\right\}$. This completes the necessity.

4. Concluding Remarks

In this paper, we consider what happen for pairs of forbidden subgraphs for a graph to be hamiltonian or to have 2 -factor if we impose a necessary conditions (Theorems 5 and 6). In fact, they hold also for graphs with any sufficiently large
order, from their proof.
It remains to consider the problem how to determine all pairs of forbidden subgraphs for guaranteeing a 2 -connected graph with an even factor to have a 2 factor. We have tried this problem, however, it would be very complicated (there are many pairs of forbidden subgraphs). More generally, it would be interesting to consider the following question:

Question 15. Whether does forbidden pairs become wider for graphs with a high connectivity if we impose a necessary condition? i.e.,

- How to determine all forbidden pairs for a k-connected graph with 2 -factor to be hamiltonian?
- How to determine all forbidden pairs for a k-connected graph with even factor to have a 2 -factor?

Acknowledgements

The authors would like to thank anonymous referees for careful reading and helpful comments on this paper. This work is supported by Natural Science Funds of China (Nos. 11871099, 11671037).

References

[1] R.P. Anstee, An algorithmic proof of Tutte's f-factor theorem, J. Algorithms 6 (1985) 112-131.
https://doi.org/10.1016/0196-6774(85)90022-7
[2] A.A. Bertossi, The edge Hamiltonian path problem is NP-complete, Inform. Process. Lett. 13 (1981) 157-159. https://doi.org/10.1016/0020-0190(81)90048-X
[3] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).
[4] Y. Egawa, Proof techniques for factor theorems, in: Horizons of Combinatorics, in: Bolyai Soc. Math. Stud. 17, (Springer, Berlin, 2008) 67-78. https://doi.org/10.1007/978-3-540-77200-2_3
[5] J.R. Faudree, R.J. Faudree and Z. Ryjáček, Forbidden subgraphs that imply 2-factors, Discrete Math. 308 (2008) 1571-1582. https://doi.org/10.1016/j.disc.2007.04.014
[6] R. Faudree and R.J. Gould, Characterizing forbidden pairs for Hamiltonian properties, Discrete Math. 173 (1997) 45-60. https://doi.org/10.1016/S0012-365X(96)00147-1
[7] F. Fujisawa and A. Saito, A pair of forbidden subgraphs and 2-factors, Combin. Probab. Comput. 21 (2012) 149-158. https://doi.org/10.1017/S0963548311000514
[8] R. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations, (Plenum Press, New York, 1972) 85-103.
https://doi.org/10.1007/978-1-4684-2001-2_9
[9] R. Karp, On the computational complexity of combinatorial problems, Networks 5 (1975) 45-68. https://doi.org/10.1002/net.1975.5.1.45
[10] X. Yang, J. Du and L. Xiong, Forbidden subgraphs for supereulerian and Hamiltonian graphs, Discrete Appl. Math 288 (2021) 192-200. https://doi.org/10.1016/j.dam.2020.08.034

Received 14 February 2020
Revised 1 September 2020
Accepted 1 September 2020

