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Abstract

Clearly, having a 2-factor in a graph is a necessary condition for a graph
to be hamiltonian, while having an even factor in graph is a necessary con-
dition for a graph to have a 2-factor. In this paper, we completely charac-
terize the forbidden subgraph and pairs of forbidden subgraphs that force a
2-connected graph admitting a 2-factor (a necessary condition) to be hamil-
tonian and a connected graph with an even factor (a necessary condition)
to have a 2-factor, respectively. Our results show that these pairs of forbid-
den subgraphs become wider than those in Faudree, Gould and in Fujisawa,
Saito, respectively, if we impose the two necessary conditions, respectively.
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1. Introduction

All graphs considered in this paper are finite, undirected and simple. For notation
and terminology not defined here, see [3]. We denote by V (G), E(G), ∆(G) the
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vertex set, the edge set, the maximum degree of a graph G, respectively. We
denote by NG(v) (or simply N(v)) and dG(v) (or simply d(v)) the neighborhood
and the degree of a vertex v in G, respectively. For S ⊆ V (G), we define NG(S) =⋃

x∈S NG(x). Let S ⊆ V (G) and S′ ⊆ E(G). The induced subgraph of G by S and
S′ is denoted by G[S] and G[S′], respectively. We use G \S and G \S′ to denote
the subgraph G[V (G) \S] and G[E(G) \S′], respectively. Let X,Y ⊆ V (G) with
X ∩ Y = ∅, then we define E(X,Y ) = {uv ∈ E(G)|u ∈ X, v ∈ Y }.

A complete graph on n vertices is denoted by Kn. A complete bipartite graph
with m vertices in one set and n vertices in the other set is denoted by Km,n. Let
Pn and Cn denote the path and the cycle of order n, respectively. A clique is a
complete subgraph of a graph. An independent set of a graph is a set of vertices
no two of which are adjacent. The cardinality of a maximum independent set of
G is denoted by α(G).

A spanning subgraph of a graph is called a factor. An even factor of G is
a spanning subgraph of G in which every vertex has even positive degree. A
2-factor of a graph G is a spanning subgraph in which every vertex has degree 2.
A hamiltonian graph has a 2-factor with exactly one component, i.e., a connected
2-factor.

Let H be a set of connected graphs. A graph G is said to be H-free if G does
not contain H as an induced subgraph for any H in H, and we call each graph
H of H a forbidden subgraph. If H = {H}, then we simply say that G is H-free.
We call H a forbidden pair if |H| = 2. In order to state results clearly, we further
introduce the following notation. For two sets H1 and H2 of connected graphs,
we write H1 � H2 if for every graph H ′ in H2, there exists a graph H ′′ in H1

such that H ′′ is an induced subgraph of H ′. By the definition of the relation“�”,
if H1 � H2, then every H1-free graph is also H2-free.

The forbidden pairs that force the existence of a hamiltonian cycle or 2-factor
of 2-connected graphs had been studied in [6] and [5], respectively. Further graphs
used as forbidden induced subgraphs are shown in Figure 1.

Theorem 1 (Faudree and Gould, [6]). Let R and S be connected graphs other
than an induced subgraph of P3. Then every 2-connected {R,S}-free graph of
order at least 10 is hamiltonian if and only if {R,S} � {K1,3, P6}, {K1,3, Z3},
{K1,3, B1,2} or {K1,3, N1,1,1}.

Theorem 2 (Faudree, Faudree and Ryjáček, [5]). Let R and S be connected
graphs other than an induced subgraph of P3. Then every 2-connected {R,S}-free
graph of order at least 10 has a 2-factor if and only if {R,S} � {K1,3, B1,4},
{K1,3, N3,1,1} or {K1,4, P4}.

The following result reveals the existence of 2-factor in a connected graph.
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Figure 1. Some common induced subgraphs.

Theorem 3 (Fujisawa and Saito, [7]). Let R and S be connected graphs of order
at least three. Then there exists a positive integer n0 such that every connected
{R,S}-free graph of order at least n0 and minimum degree at least two has a
2-factor if and only if {R,S} � {K1,3, Z2}.

Obviously, a hamiltonian graph should have a 2-factor and a 2-factor should
be an even factor. However, the converse is not true in general. In other words,
the condition that a graph has an even factor is a necessary for a graph to have
a 2-factor and similarly the existence of a 2-factor is a necessary for a graph to
be hamiltonian.

The problem of deciding whether or not a graph has a Hamilton cycle was
one of first decision problems proved to be NP-complete by Karp [8, 9]. The
problem remains NP-complete, even if the graphs are restricted to be K1,3-free
(see [2]). However, Anstee showed [1] that for any graph, there is an algorithm
that either finds a k-factor or shows that it does not exist. This implies that
2-factors can be determined in polynomial time. Therefore, it is interesting to
add a 2-factor condition when we consider whether a graph is hamiltonian.

Question 4. Are there a wider set H of forbidden subgraphs when we impose
a necessary condition on those 2-connected (connected) graphs to be hamiltonian
(or to have a 2-factor, respectively)?

A similar problem is considered in [10]. In this paper, we answer the question
for |H| = 1, 2 by proving the following results. Here, we use K4− e to denote the
graph by removing one edge from K4.
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Theorem 5. It holds that

(1) Every 2-connected A-free graph admitting a 2-factor is hamiltonian if and
only if A is P3.

(2) Let R, S be two connected graphs other than an induced subgraph of P3,
and let G be a graph admitting a 2-factor. Then every 2-connected {R,S}-
free graph G is hamiltonian if and only if {R,S} � {I0, Z1}, {P4,K4 − e},
{P4, Z1,1} or {K1,3, P6}, {K1,3, Z3}, {K1,3, B1,2}, {K1,3, N1,1,1}.

Theorem 6. It holds that

(1) Every 2-connected A-free graph admitting an even factor has a 2-factor if
and only if A is P3.

(2) Let R, S be two connected graphs other than an induced subgraph of P3, and
let G be a connected graph of order at least 6 admitting an even factor. Then
every {R,S}-free graph G has a 2-factor if and only if {R,S} � {K1,4, Z1},
{K1,3, H0} or {K1,3, Z2}.

Comparing both Theorems 1 and 5(2), and both Theorems 3 and 6(2), we
know that pairs of forbidden subgraphs for a 2-connected graph to be hamilto-
nian (or to have 2-factor, respectively) become wider than those, if we impose a
necessary condition that graphs in consideration have a 2-factor (or even factor,
respectively).

2. Forbidden Subgraphs Guaranteeing a Graph with 2-Factor to
be Hamiltonian: the Proof of Theorem 5

In this section, we completely characterize connected forbidden subgraphs and
pairs of connected forbidden subgraphs that force a 2-connected graph admitting
a 2-factor to be hamiltonian.

The following result was due to Egawa [4] who observed that the first one
was proved implicitly by Faudree et al. [5].

Theorem 7 (Egawa, [4]). Let G be a connected non-complete P4-free graph and
S be a smallest vertex-cut of G. Then each vertex in S is adjacent to all vertices
in V (G) \ S.

Lemma 8. Every 2-connected {K4− e, P4}-free graph is either a complete graph
or a complete bipartite graph.

Proof. Let G be a 2-connected {K4 − e, P4}-free graph and S be a smallest
vertex-cut of G. Then |S| ≥ 2. We suppose that G is a non-complete graph.
Since G is P4-free, by Theorem 7, each vertex in S is adjacent to all vertices
in V (G) \ S. Suppose that there exists a pair of adjacent vertices {s1, s2} ⊆ S.
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Then G[V \ S] is a clique, otherwise, assume that there exists a pair of non-
adjacent vertices {u1, u2} ⊆ V (G) \ S, then G[{s1, s2, u1, u2}] ∼= K4 − e, a con-
tradiction. Furthermore, G[S] is a clique, otherwise, assume that there exists
a pair of non-adjacent vertices {v1, v2} ⊆ S, then G[{v1, v2, w1, w2}] ∼= K4 − e,
where {w1, w2} ⊆ V (G) \ S, a contradiction. Then G is a complete graph, con-
tradicting our assumptions that G is a non-complete graph. This proves that
S is an independent set. Then V (G) \ S is an independent set, otherwise, as-
sume that there exists a pair of adjacent vertices {u1, u2} ⊆ V (G) \ S, then
G[{s1, s2, u1, u2}] ∼= K4 − e, where {s1, s2} ⊆ S, a contradiction. Therefore, G is
a complete bipartite graph.

Theorem 9. If G is a 2-connected {K4 − e, P4}-free graph admitting a 2-factor,
then G is hamiltonian.

Proof. By Lemma 8, G is a complete graph or a complete bipartite graph. If G
is a complete graph, then G is hamiltonian. If G is a complete bipartite graph,
then G is a balanced complete bipartite graph, i.e., G ∼= Km,m (since G has a
2-factor). Then G is hamiltonian.

Let H and F be subgraphs of G. We define H4F by H4F = (V (H) ∪
V (F ), E(H)4E(F )), where A4B denotes the symmetric difference of the sets
A and B. Note that if H and F are even subgraphs, then H4F is also an even
graph, but H4F may have more components than H or F . Let C(x1x2 · · ·xnx1)
denote the cycle x1x2 · · ·xnx1.

Theorem 10. Let G be a 2-connected graph admitting a 2-factor such that it
satisfies one of the following.

(1) G is a {I0, Z1}-free graph, where I0 is depicted in Figure 1;

(2) G is a {P4, Z1,1}-free graph, where Z1,1 is depicted in Figure 1.

Then G is hamiltonian.

Proof. Let G be a 2-connected graph admitting a 2-factor. Choose a 2-factor F
of G with components Q1, . . . , Qt (t ≥ 1) such that t is as small as possible. We
shall show that t = 1. Otherwise, there exists an edge e ∈ E(G)\E(F ) such that
the two end-vertices of e are in different components of F . Take such an edge xy
such that x ∈ V (Qi) and y ∈ V (Qj), {i, j} ⊆ {1, 2, . . . , t}. Let {x1, x2} ⊆ NQi(x),
{y1, y2} ⊆ NQj (y). For any s, t ∈ {1, 2}, we have that xsyt /∈ E(G), otherwise,
F4C(xyytxsx) is a 2-factor with fewer components than F , a contradiction.
We claim that if xys ∈ E(G), then yxt /∈ E(G), otherwise, F4C(xxtyysx) is a
2-factor with fewer components than F , a contradiction.

Proof of (1). Let G be a {I0, Z1}-free graph. Then x1y /∈ E(G), otherwise,
G[{x, x1, y, y2}] ∼= Z1, a contradiction. By symmetry, {yx2, xy1, xy2} ∩ E(G) =



216 X. Yang and L. Xiong

∅. Then x1x2 /∈ E(G), otherwise, G[{x, x1, x2, y}] ∼= Z1, a contradiction. By
symmetry, y1y2 /∈ E(G). Then G[{x, x1, x2, y, y1, y2}] ∼= I0, a contradiction.
Therefore, t = 1 and G is hamiltonian.

Proof of (2). Let G be a {P4, Z1,1}-free graph. Since G[{x1, x, y, y1}] � P4,
{xy1, yx1} ∩ E(G) 6= ∅. Note that |{xy1, yx1} ∩ E(G)| 6= 2. By symmetry, we
suppose that xy1 ∈ E(G). Since G[{x2, x, y, y2}] � P4, xy2 ∈ E(G). Since
G[{x, y, y1, x1, x2}] � Z1,1, x1x2 ∈ E(G). Since G[{x, x1, x2, y1, y2}] � Z1,1,
y1y2 ∈ E(G). Therefore, if |V (Qj)| = 3, then G[V (Qj)] ∼= K3 and x is adja-
cent to each vertex in V (Qj). If |V (Qj)| ≥ 4, let Qj = yy1a1a2 · · · a|V (Qj)|−3y2y.
Since G[{x1, x, y1, a1}] � P4, xa1 ∈ E(G). Since G[{x1, x, a1, a2}] � P4, xa2 ∈
E(G). Then we claim that x is adjacent to each vertex in V (Qj), otherwise,
G[{x1, x, ai−1, ai}] ∼= P4, where xai /∈ E(G), a contradiction. Furthermore,
G[V (Qj)] is a clique, otherwise, the subgraph induced by the two non-adjacent
vertices in V (Qj) and {x, x1, x2} is an induced Z1,1, a contradiction.

Since G is 2-connected, xy, xx1 are in a cycle. Choose an induced cycle
C = xx1w1 · · ·w|V (C)|−3yx of G such that {xy, xx1} ⊆ E(C). Since G is P4-free,
|V (C)| ≤ 4. Recall that yx1 /∈ E(G). Then |V (C)| = 4 and C = xx1w1yx. Since
G[V (Qj)] is a clique and x is adjacent to each vertex in V (Qj), w1 /∈ V (Qj). Since
F is a 2-factor of G, let NF (w1) = {v1, v2}. First we suppose that w1 ∈ V (Qi).
Since G[{w1, x1, x, y1}] � P4, y1w1 ∈ E(G). Recall that E({v1, v2}, {y, y1}) = ∅.
Since G[{w1, v1, v2, y, y1}] � Z1,1, v1v2 ∈ E(G). Therefore, F4(C(xy2yw1x1x) ∪
C(w1v1v2w1)) is a 2-factor with fewer components than F , a contradiction. Next
we suppose that w1 ∈ V (Qk), where k ∈ {1, 2, . . . , t}\{i, j}. Since C is an induced
cycle, xw1 /∈ E(G). Since G[{x, x1, w1, v1}] � P4, {v1x, v1x1} ∩ E(G) 6= ∅. If
v1x ∈ E(G) or v1x1 ∈ E(G), then F4C(xx1w1v1x) or F4C(xx1v1w1yy1x) is a
2-factor with fewer components than F , a contradiction. This proves (2). The
proof of this theorem is complete.

Now, we present the proof of Theorem 5.

Proof of Theorem 5. (1) If G is P3-free, then G is a complete graph and hence
G is hamiltonian. Conversely, graphs G1, G2, G4 in Figure 2 are 2-connected
admitting a 2-factor but non-hamiltonian.

Then A must be an induced subgraph of them. Without loss of generality,
we assume that A is an induced subgraph of G1. Then A is a tree with maximum
degree at most 3 or contains a K3. Note that G2 is K3-free. This implies that
A contains no cycle. Thus, A is a tree. Since G4 is K1,3-free, A is a path. Note
that the maximal induced path of G1 is P3. Therefore, A is P3.

(2) By Theorems 1, 9 and 10, the sufficiency clearly holds. It remains to
show the necessity. All graphs in Figure 2 are 2-connected with a 2-factor but
non-hamiltonian. Then each graph contains at least one of R, S as an induced
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Figure 2. Graphs with 2-factor but non-hamiltonian.

subgraph. Without loss of generality, we assume that G1 contains R as an induced
subgraph. Then R is a tree with maximum degree at most 3 or contains a triangle.

Case 1. R is a tree. Then ∆(R) ≤ 3. We claim that ∆(R) = 3, otherwise, R
is a path and R is P3, a contradiction. Since the maximal induced tree of G1 is
K1,3, R is K1,3. Since G4, G6, G7, G8, G9 are K1,3-free, S should be an induced
subgraph of G4, G6, G7, G8, G9. Then S is a path or contains a cycle. Note
that the longest induced path of G9 is P6. Therefore, if S is a path, then S is
an induced subgraph of P6. Therefore, {R,S} � {K1,3, P6}. Now we suppose
that S contains a cycle. Note that the maximal common induced cycle of G4,
G6, G7, G8, G9 is K3. Then S contains a K3. Furthermore, S contains exactly
one K3. Since the maximal induced subgraph containing Zi of G9 is Z3, we get
{R,S} � {K1,3, Z3}. Since the maximal induced subgraph containing Bi,j of G7

is B1,2, we have {R,S} � {K1,3, B1,2}. Finally, observe that the maximal induced
subgraph containing Ni,j,k of G8 is N1,1,1. Therefore, {R,S} � {K1,3, N1,1,1}.

Case 2. R contains a triangle. First we suppose that R contains a K4. Since
G2, G3, G4 are K4-free, S is an induced subgraph of G2, G3, G4. Since G2 and
G4 have no common induced cycle, S is a tree. Since G4 is K1,3-free, S should be
a path. Since the maximal induced path of G3 is P3, S is an induced subgraph
of P3, a contradiction.

Now we suppose that R contains a K3 but no K4. Since G2, G5 are K3-free, S
should be an induced subgraph of G2, G5. Since G2, G5 have no common induced
cycle, S is a tree. Since ∆(G2) = 3, ∆(S) ≤ 3. If ∆(S) = 2, then S is a path.
Since the maximal induced path of G5 is P4, S is an induced subgraph of P4.
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Since G1 and G3 are P4-free, R is an induced subgraph of G1 and G3. Recall that
R contains a K3. Next, observe that the maximal common induced subgraphs of
G1, G3 containing a K3 are K4 − e and Z1,1. Therefore, {R,S} � {P4,K4 − e}
or {P4, Z1,1}. If ∆(S) = 3, then S contains a K1,3. Since the maximal common
induced subgraph containing a K1,3 of G2, G5 is I0, S is an induced subgraph of
I0. Since G1, G4 are I0-free, R is an induced subgraph of G1, G4. Recall that
R contains a K3. Since the maximal common induced subgraph containing a K3

of G1, G4 is Z1, R is an induced subgraph of Z1. Then {R,S} � {I0, Z1}. This
completes the proof of necessity.

3. Forbidden Subgraphs Guaranteeing a Graph with Even Factor
to Have a 2-Factor: the Proof of Theorem 6

In this section, we completely characterize connected forbidden subgraph and
pairs of connected forbidden subgraphs that force a graph admitting an even
factor to have a 2-factor.

The union of two graphs G1 and G2, denoted by G1 ∪G2, is the graph with
vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪E(G2). The union of m disjoint
copies of the same graph G is denoted by mG. The join of two disjoint graphs
G1 and G2, denoted by G1 ∨ G2, is obtained from their union by joining each
vertex of G1 to each vertex of G2.

Theorem 11. Let G be a connected graph with an even factor of order at least
6 such that it satisfies one of the following.

(1) G is {K1,4, Z1}-free;

(2) G is {K1,3, H0}-free;

(3) G is {K1,3, Z2}-free.

Then G has a 2-factor.

Proof. Let G be a connected graph with an even factor of order at least 6.
Choose an even factor F = Q1 ∪Q2 ∪ · · · ∪Qt (t ≥ 1), of G such that

(i) ∆(F ) is minimized;

(ii) |{x ∈ V (F ) : dF (x) = ∆(F )}| is minimized, subjected to (i).

(iii) t is minimized, subjected to (i) and (ii).

We shall prove that ∆(F ) = 2. Assume to the contrary that ∆(F ) ≥ 4. Take
a vertex v ∈ V (F ) such that dF (v) = ∆(F ) ≥ 4. Without loss of generality, let
v ∈ V (Qi). Let {v1, v2, v3, v4} ⊆ NQi(v). Then we have the following claim.

Claim 12. (1) If vivj ∈ E(G), then vivj ∈ E(F ), for {i, j} ⊂ {1, 2, 3, 4}.
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(2) If vivj ∈ E(G), then at least one of {vi, vj} has degree 2 in F , for {i, j} ⊂
{1, 2, 3, 4}.

Proof. (1) Assume to the contrary that there exist two vertices {vi, vj} ⊂
{v1, v2, v3, v4} such that vivj ∈ E(G) \ E(F ), then F ′ = F4C(vvivjv) is an
even factor of G with dF ′(v) = ∆(F )− 2, contradicting (ii).

(2) Assume to the contrary that there exist two vertices {vi, vj} ⊂ {v1, v2,
v3, v4} such that dF (vi) ≥ 4 and dF (vj) ≥ 4, then F ′ = F4C(vvivjv) is an even
factor of G with dF ′(v) = ∆(F )− 2, contradicting (ii).

Proof of (1). Let G be a {K1,4, Z1}-free graph.

Claim 13. G[{v, v1, v2, v3, v4}] ∼= K2 ∨ 3K1.

Proof. Since G[{v, v1, v2, v3, v4}] � K1,4, E(G[{v1, v2, v3, v4}]) 6= ∅. Without
loss of generality, we suppose that v1v2 ∈ E(G). By Claim 12(1), v1v2 ∈ E(F ).
Since G[{v, v1, v2, v3}] � Z1, {v3v1, v3v2} ∩ E(G) 6= ∅. By symmetry, suppose
that v3v2 ∈ E(G). By Claim 12(1), v3v2 ∈ E(F ). Thus, dF (v2) ≥ 4. Then
v3v4 /∈ E(G), otherwise, by Claim 12(1), v3v4 ∈ E(F ) and hence dF (v3) ≥ 4,
contradicting Claim 12(2). By symmetry, v4v1 /∈ E(G). Since G[{v, v2, v3, v4}] �
Z1, v2v4 ∈ E(G). By Claim 12(1), v2v4 ∈ E(F ). Since dF (v2) ≥ 4 and
{v2v1, v2v4, v2v3} ⊂ E(G), by Claim 12(2), dF (v1) = dF (v3) = dF (v4) = 2.
Then by Claim 12(1), v1v3 /∈ E(G). This implies that G[{v, v1, v2, v3, v4}] ∼=
K2 ∨ 3K1.

Suppose that dF (v) ≥ 6 and there exists a vertex v′ ∈ V (Qi) such that
v′v ∈ E(F ). Since G[{v, v′, v1, v3, v4}] � K1,4, {v′v1, v′v3, v′v4} ∩ E(G) 6= ∅. By
symmetry, assume that v′v3 ∈ E(G). Since dF (v3) = 2, v′v3 /∈ E(F ). Hence
F ′ = F4C(vv3v

′v) is an even factor of G with dF ′(v) = ∆(F )− 2, contradicting
(ii). This implies that dF (v) = 4. By symmetry, dF (v2) = 4. By Claim 12(2),
dF (v1) = dF (v3) = dF (v4) = 2. Then G[{v, v1, v2, v3, v4}] is a component of F .
By the arbitrariness of v, we have that ∆(F ) = 4 and the vertex with maximum
degree is in K2∨3K1. Since n ≥ 6, E({v, v1, v2, v3, v4}, V (G)\{v, v1, v2, v3, v4}) 6=
∅. Then there exists a vertex w ∈ V (Qj) such that E({w}, {v, v1, v2, v3, v4}) 6= ∅.

First suppose that v3w ∈ E(G). Since G[{v, v2, v3, w}] � Z1, {wv,wv2} ∩
E(G) 6= ∅. By symmetry, assume that wv2 ∈ E(G). Then dF (w) = ∆(F ) = 4,
otherwise, F ′ = F4C(vv3wv2v) is an even factor of G satisfying that dF ′(v) =
∆(F ) − 2, dF ′(w) = ∆(F ) but v3 and w are in the same component of F ′,
contradicting (iii). Let {w1, w2, w3, w4} ⊆ NQj (w). By the arbitrariness of v and
by Claim 13, G[{w,w1, w2, w3, w4}] ∼= K2 ∨ 3K1. Without loss of generality, let
dF (w2) = 4. Since G[{w,w1, w3, w4, v2}] � K1,4, {v2w1, v2w3, v2w4} ∩ E(G) 6= ∅.
By symmetry, assume that v2w1 ∈ E(G). Then F ′ = F4C(ww1v2vv3w) is an
even factor of G with dF ′(v) = ∆(F ) − 2, contradicting (ii). This implies that
v3w /∈ E(G). By symmetry, {wv1, wv4} ∩ E(G) = ∅.
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Then {wv2, wv} ∩E(G) 6= ∅. By symmetry, assume that wv2 ∈ E(G). Since
G[{v, v2, v3, w}] � Z1 and wv3 /∈ E(G), wv ∈ E(G). Since G[{v, v1, v3, v4, w}] �
K1,4, {wv1, wv3, wv4} ∩ E(G) 6= ∅. Without loss of generality, let wv1 ∈ E(G).
Then dF (w) = ∆(F ) = 4, otherwise, F ′ = F4C(wv2vv1w) is an even factor
of G with fewer components than F , contradicting (iii). Let {w1, w2, w3, w4} ⊆
NQj (w). By the arbitrariness of v and by Claim 13, G[{w,w1, w2, w3, w4}] ∼= K2∨
3K1. Let dF (w2) = 4. Since G[{w,w1, w3, w4, v2}] � K1,4, {v2w1, v2w3, v2w4} ∩
E(G) 6= ∅. By symmetry, assume that v2w1 ∈ E(G). Then F ′ = F4C(ww1v2vw)
is an even factor of G with fewer components than F , contradicting (iii). This
proves (1).

In the following, let G be a K1,3-free graph. Before present the proofs of (2),
(3), we show the following claim.

Claim 14. G[{v, v1, v2, v3, v4}] ∼= H0.

Proof. Since G[{v, v1, v2, v3}] � K1,3, {v1v2, v1v3, v2v3} ∩ E(G) 6= ∅. Without
loss of generality, we suppose that v1v2 ∈ E(G). By Claim 12(1), v1v2 ∈ E(F )
and at least one of {v1, v2} has degree 2 in F . Without loss of generality, let
dF (v1) = 2. By Claim 12(1), {v1v4, v1v3} ∩ E(G) = ∅. Since G[{v, v1, v3, v4}] �
K1,3, v3v4 ∈ E(G). By Claim 12, v3v4 ∈ E(F ) and at least one of {v3, v4} has
degree 2 in F . Then v2v3 /∈ E(G), otherwise, F ′ = F4E(vv2v3v) is an even factor
of G with dF ′(v) = dF (v) − 2, contradicting (ii). By symmetry, v2v4 /∈ E(G).
Then G[{v, v1, v2, v3, v4}] ∼= H0 and E(G[{v, v1, v2, v3, v4}]) ⊆ E(F ).

Proof of (2). Let G be a {K1,3, H0}-free graph. By Claim 14, G[{v, v1, v2,
v3, v4}] ∼= H0, contradicting that G is H0-free. Then (2) clearly holds.

Proof of (3). Let G be a {K1,3, Z2}-free graph. By Claim 14 and Claim 12
(2), we suppose that dF (v2) = dF (v3) = 2. Suppose that dF (v) = ∆(F ) ≥ 6 and
{v1, v2, v3, v4, v′} ⊆ NF (v). SinceG[{v, v2, v3, v′}] � K1,3, {v′v2, v′v3}∩E(G) 6= ∅.
By symmetry, assume that v′v2 ∈ E(G). Recall that dF (v2) = 2, then v′v2 /∈
E(F ). Hence F ′ = F4C(vv2v

′v) is an even factor of G with dF ′(v) = dF (v)− 2,
contradicting (ii). This implies that dF (v) = ∆(F ) = 4.

We claim that dF (v1) = 2. Suppose, otherwise, that dF (v1) = 4 and NF (v1)
= {v5, v6, v2, v}. If v2v6 ∈ E(G), then v2v6 /∈ E(F ) (since dF (v2) = 2). Thus,
F ′ = F4C(v1v2v6v) is an even factor of G with dF ′(v1) = 2, contradicting (ii).
This implies that v2v6 /∈ E(G). By symmetry, v2v5 /∈ E(G). Since G[{v1, v2,
v5, v6}] � K1,3, v5v6 ∈ E(G). Furthermore, v5v6 ∈ E(F ), otherwise, F ′ =
F4C(v1v5v6v) is an even factor of G with dF ′(v1) = 2, contradicting (ii). Recall
that dF (v) = 4 and dF (v3) = 2. If vv5 ∈ E(G) (or v3v5 ∈ E(G)), then vv5 /∈ E(F )
(or v3v5 /∈ E(F )). Thus, F ′ = F4C(vv1v5v) (or F4C(vv1v5v3v)) is an even
factor of G with dF ′(v1) = 2, contradicting (ii). Thus, vv5, v3v5 /∈ E(G). If
v4v5 ∈ E(G), then F ′ = F4C(vv1v5v4v) is an even factor of G with dF ′(v1) =
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2, contradicting (ii). Thus, v4v5 /∈ E(G). Then G[{v, v3, v4, v1, v5}] ∼= Z2, a
contradiction. This proves that dF (v1) = 2. By symmetry, dF (v4) = 2. Then
G[{v, v1, v2, v3, v4}] ∼= H0 is a component of F .

Since n ≥ 6, V (G)\V (H0) 6= ∅. First, we suppose that there exists a compo-
nent Qi of F such that E(v, V (Qi)) 6= ∅ and vu ∈ E(G), where u ∈ V (Qi). Let
{u1, u2} ⊆ NQi(u). Then E({u1, u2}, {v1, v2, v3, v4}) = ∅. Otherwise, by symme-
try, suppose that v1u1 ∈ E(G), then F ′ = F4C(u1v1vuu1) is an even factor of G
such that H0 and Qi are in the same component of F ′, but the other components
are the same with F , contradicting (iii). We have that vu1 /∈ E(G), otherwise,
G[{v, v1, v4, u1}] ∼= K1,3, a contradiction. By symmetry, vu2 /∈ E(G). Since
G[{u, u1, u2, v}] � K1,3, u1u2 ∈ E(G). Since G[{u, u1, u2, v, v1}] � Z2, uv1 ∈
E(G). Since G[{u, u1, u2, v, v4}] � Z2, uv4 ∈ E(G). Then G[{u, v1, v4, u1}] ∼=
K1,3, a contradiction. This implies that E(v, V (G) \ V (H0)) = ∅.

Then E({v1, v2, v3, v4}, V (Qi)) 6= ∅. Without loss of generality, we sup-
pose that v1w ∈ E(G), where w ∈ V (Qi). Let {w1, w2} ⊆ NQi(w). Since
G[{v, v3, v4, v1, w}] � Z2 and vw /∈ E(G), {wv3, wv4} ∩ E(G) 6= ∅. Without loss
of generality, we suppose that wv4 ∈ E(G). Then w1v4 /∈ E(G) and v1w1 /∈ E(G),
otherwise, F ′ = F4C(wv1vv4w1w) and F4C(w1v1vv4ww1) is an even factor of
G with dF ′(v) = 2, contradicting (ii). Thus, G[{w, v1, v4, w1}] ∼= K1,3, a contra-
diction. This prove that ∆(F ) = 2.

Now we prove Theorem 6.

Proof of Theorem 6. (1) If G is P3-free, then G is a complete graph and hence
G has a 2-factor. Conversely, G1, G2, G5 in Figure 3 are connected and contain
an even factor but no 2-factor. Then A must be an induced subgraph of them.
Without loss of generality, we assume that A is an induced subgraph of G1. Then
A is K1,s or K2,s (s ≥ 2). Since G2 is K2,s-free and G5 is K1,3-free, A is a path.
Since the maximal induced path of G1 is P3, A is P3.

(2) By Theorem 11, the sufficiency clearly holds. It remains to show the
necessity. All graphs in Figure 3 are connected and have an even factor but no
2-factor. Then each graph contains at least one of R, S as an induced subgraph.
Without loss of generality, we assume that G1 contains R as an induced subgraph.
Then R is K1,t (t ≥ 3) or K2,s (s ≥ 2).

Case 1. R is K1,t (t ≥ 5) or K2,s (s ≥ 2). Since G2, G4, G5 are {K1,5,K2,s}-
free, they must contain S as an induced subgraph. Since G2, G4 have no common
induced cycle and G5 is K1,3-free, S should be a path. Since the maximal induced
path of G2 is P3, S is an induced subgraph of P3, a contradiction.

Case 2. R is K1,4. Since G3, G5, G9 are K1,4-free, they must contain S as an
induced subgraph. Since G5 is K1,3-free, S should be a path or contain a cycle.
Note that the maximal induced path of G9 is P3. If S is a path, then S is an
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induced subgraph of P3, a contradiction. Then S contains a cycle. Note that the
maximal common induced cycle of G3 and G9 is K3. Furthermore, S contains
exactly one K3. Since the maximal common induced subgraph containing a K3 of
G3, G5, G9 is Z1, S is an induced subgraph of Z1. Therefore, {R,S} � {K1,4, Z1}.

Figure 3. Graphs with even factor but no 2-factor.

Case 3. R is K1,3. Since G5, G6, G7, G8, G10 are K1,3-free, they must contain
S as an induced subgraph. Then S should be a path or contain a cycle. Note
that the maximal induced path of G8 is P4. Thus, if S is a path, then S is an
induced subgraph of P4. Then {R,S} � {K1,3, P4}. Now we suppose that S
contains a cycle. Since G5 is K4-free, S contains no K4. Note that the maximal
common induced cycle of G5, G6, G7, G8, G10 is K3. Furthermore, S contains
at most two triangles. Note that G10 is Bi,j-free. Thus, if S contains exactly one
triangle, then S is Zi. Since the maximal induced subgraph containing Zi of them
is Z2, S should be an induced subgraph of Z2. Therefore, {R,S} � {K1,3, Z2}.
Since the maximal common induced subgraph containing exactly two triangles of
them is H0, S should be an induced subgraph of H0. Then {R,S} � {K1,3, H0}.
Note that P4 � Z2. Therefore, {R,S} � {K1,4, Z1}, {K1,3, Z2}, {K1,3, H0}. This
completes the necessity.

4. Concluding Remarks

In this paper, we consider what happen for pairs of forbidden subgraphs for a
graph to be hamiltonian or to have 2-factor if we impose a necessary conditions
(Theorems 5 and 6). In fact, they hold also for graphs with any sufficiently large
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order, from their proof.

It remains to consider the problem how to determine all pairs of forbidden
subgraphs for guaranteeing a 2-connected graph with an even factor to have a 2-
factor. We have tried this problem, however, it would be very complicated (there
are many pairs of forbidden subgraphs). More generally, it would be interesting
to consider the following question:

Question 15. Whether does forbidden pairs become wider for graphs with a high
connectivity if we impose a necessary condition? i.e.,

• How to determine all forbidden pairs for a k-connected graph with 2-factor to
be hamiltonian?

• How to determine all forbidden pairs for a k-connected graph with even factor
to have a 2-factor?
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