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Abstract

A familyA of sets is said to be intersecting if every two sets inA intersect.
An intersecting family is said to be trivial if its sets have a common element.
A graph G is said to be r-EKR if at least one of the largest intersecting
families of independent r-element sets of G is trivial. Let α(G) and ω(G)
denote the independence number and the clique number of G, respectively.
Hilton and Spencer recently showed that if G is the vertex-disjoint union of
a cycle C raised to the power k and s cycles 1C, . . . , sC raised to the powers
k1, . . . , ks, respectively, 1 ≤ r ≤ α(G), and

min
(

ω
(

1
Ck1

)

, . . . , ω
(

s
Cks

))

≥ ω
(

Ck
)

,

then G is r-EKR. They had shown that the same holds if C is replaced by
a path P and the condition on the clique numbers is relaxed to

min
(

ω
(

1
Ck1

)

, . . . , ω
(

s
Cks

))

≥ ω
(

P k
)

.

We use the classical Shadow Intersection Theorem of Katona to obtain a
significantly shorter proof of each result for the case where the inequality for
the minimum clique number is strict.

Keywords: cycle, independent set, intersecting family, Erdős-Ko-Rado the-
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1. Introduction

Unless stated otherwise, we shall use small letters such as x to denote non-
negative integers or elements of a set, capital letters such as X to denote sets,
and calligraphic letters such as F to denote families (sets whose members are sets
themselves). The set of positive integers is denoted by N. The set {i ∈ N : m ≤
i ≤ n} is denoted by [m,n], [1, n] is abbreviated to [n], and [0] is taken to be the
empty set ∅. For a set X, the power set of X (that is, {A : A ⊆ X}) is denoted
by 2X . The family of r-element subsets of X is denoted by

(

X
r

)

. The family of

r-element sets in a family F is denoted by F (r). If F ⊆ 2X and x ∈ X, then
the family {A ∈ F : x ∈ A} is denoted by F(x) and called the star of F with
centre x.

A family A is said to be intersecting if for every A,B ∈ A, A and B intersect
(that is, A∩B 6= ∅). The stars of a family F are among the simplest intersecting
subfamilies of F . We say that F has the star property if at least one of the largest
intersecting subfamilies of F is a star of F .

Determining the size of a largest intersecting subfamily of a given family F is
one of the most popular endeavours in extremal set theory. This started in [11],
which features the classical result known as the Erdős-Ko-Rado (EKR) Theorem.
The EKR Theorem states that if r ≤ n/2 and A is an intersecting subfamily of
(

[n]
r

)

, then |A| ≤
(

n−1
r−1

)

. Thus,
(

[n]
r

)

has the star property for r ≤ n/2 (clearly,

for n/2 < r ≤ n,
(

[n]
r

)

itself is intersecting). There are various proofs of the EKR
Theorem (see [9,16,24,25,27]), two of which are particularly short and beautiful:
Katona’s [25], which introduced the elegant cycle method, and Daykin’s [9], using
the fundamental Kruskal-Katona Theorem [26,28]. The EKR Theorem gave rise
to some of the highlights in extremal set theory [1, 14, 27, 30] and inspired many
variants and generalizations; see [4, 10, 13, 15, 17, 21, 22].

Let G be a graph with vertex set V (G) and edge set E(G). We may represent
an edge {v, w} by vw. A subset I of V (G) is an independent set of G if vw /∈ E(G)
for every v, w ∈ I. Let IG denote the family of independent sets of G. An
independent set J of G is maximal if J * I for each independent set I of G such
that I 6= J . The size of a smallest maximal independent set of G is denoted by
µ(G). The size of a largest independent set of G is denoted by α(G). A subset X
of V (G) is a clique of G if vw ∈ E(G) for every v, w ∈ X with v 6= w. The size
of a largest clique of G is called the clique number of G and denoted by ω(G).

Holroyd and Talbot introduced the problem of determining whether IG
(r)

has the star property for a given graph G and an integer r ≥ 1. Following their
terminology, a graph G is said to be r-EKR if IG

(r) has the star property. The
Holroyd-Talbot (HT) Conjecture [22, Conjecture 7] claims that G is r-EKR if
µ(G) ≥ 2r. This was verified by Borg [2] for µ(G) sufficiently large depending
on r (see also [6, Lemma 4.4 and Theorem 1.4]). By the EKR Theorem, the
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conjecture is true if G has no edges. The HT Conjecture has been verified for
several classes of graphs [2, 3, 7, 8, 12, 18–23, 29, 31]. As demonstrated in [8], for
r > µ(G)/2, whether G is r-EKR or not depends on G and r (both cases are
possible). Naturally, graphs G of particular interest are those that are r-EKR for
all r ≤ α(G).

For n ≥ 1, the graphs
(

[n],
(

[n]
2

)

)

and ([n], {{i, i + 1} : i ∈ [n − 1]}) are

denoted by Kn and Pn, respectively. For n ≥ 3, ([n], E(Pn)∪{{n, 1}}) is denoted
by Cn. A copy of Kn is called a complete graph. A copy P of Pn is called an
n-path or simply a path, and a vertex of P is called an end-vertex if it is not
adjacent to more than one vertex. A copy of Cn is called an n-cycle or simply
a cycle (normally, this terminology is used for n ≥ 3, but we may include the
case n = 2). If H is a subgraph of a graph G (that is, V (H) ⊆ V (G) and
E(H) ⊆ E(G)), then we say that G contains H. For v, w ∈ V (G), the distance

dG(v, w) is min{k : v, w ∈ V (P ) for some (k + 1)-path P contained by G}. The
kth power of G, denoted by Gk, is the graph with vertex set V (G) and edge set
{vw : v, w ∈ V (G), 1 ≤ dG(v, w) ≤ k}; Gk is also referred to as G raised to the

power k.
Note that Pn

k = Kn for n ≤ k + 1, and Cn
k = Kn for n ≤ 2k + 1. Also

note that ω(Pn
k) = k + 1 if n ≥ k + 1, ω(Pn

k) = n if n ≤ k, ω(Cn
k) = k + 1 if

n ≥ 2k+2, ω(Cn
k) = n if n ≤ 2k+1, α(Pn

k) = ⌈n/(k+1)⌉, α(Cn
k) = ⌊n/(k+1)⌋

if n ≥ k + 1, and α(Cn
k) = 1 if 2 ≤ n ≤ k + 1.

The following remarkable analogue of the EKR theorem was obtained by
Talbot [29].

Theorem 1 [29]. For 1 ≤ r ≤ α(Cn
k), Cn

k is r-EKR.

Talbot introduced a compression technique to prove Theorem 1. In vague
terms, his compression technique rotates anticlockwise the elements of the inde-
pendent sets of the intersecting family which are distinct from a specified vertex
(see Section 2).

If G,G1, . . . , Gk are graphs such that the vertex sets of G1, . . . , Gk are pair-

wise disjoint and G =
(

⋃k
i=1 V (Gi),

⋃k
i=1E(Gi)

)

, then G is said to be the disjoint

union of G1, . . . , Gk, and G1, . . . , Gk are said to be vertex-disjoint.
Inspired by the work of Talbot, Hilton and Spencer [19] went on to prove the

following result, which is stated with notation used in [19, 20].

Theorem 2 [19]. If G is the disjoint union of a path P raised to the power k and

s cycles 1C, . . . , sC raised to the powers k1, . . . , ks, respectively, 1 ≤ r ≤ α(G),
and

(1) min
(

ω
(

1
Ck1

)

, . . . , ω
(

s
Cks

))

≥ ω(P k
)

,

then G is r-EKR. Moreover, for any end-vertex x of P , IG
(r)(x) is a largest

intersecting subfamily of IG
(r).



280 P. Borg and C. Feghali

However, it was desired to obtain a generalization of Theorem 1, and this
was eventually achieved by Hilton and Spencer [20] with the following theorem.

Theorem 3 [20]. If G is the disjoint union of s + 1 cycles C, 1C, . . . , sC raised

to the powers k, k1, . . . , ks, respectively, 1 ≤ r ≤ α(G), and

(2) min
(

ω
(

1
Ck1

)

, . . . , ω
(

s
Cks

))

≥ ω(Ck
)

,

then G is r-EKR. Moreover, for any x ∈ V (C), IG
(r)(x) is a largest intersecting

subfamily of IG
(r).

Hilton and Spencer [20] conjectured that every disjoint union of powers of
cycles is r-EKR.

The proof of Theorem 3 is also inspired by Talbot’s proof of Theorem 1.
In particular, an essential ingredient in the proof of Theorem 3 is the use of
Theorem 2 for the special case where P k is a complete graph as the base case of
an induction argument.

In this paper, we give a significantly shorter and simpler proof of Theorem 2
and of Theorem 3, except for the cases of equality in conditions (1) and (2),
respectively. In other words, we prove the following two results.

Theorem 4. Theorem 2 is true if the inequality in (1) is strict.

Theorem 5. Theorem 3 is true if the inequality in (2) is strict.

Our argument is based on the Shadow Intersection Theorem of Katona [27],
hence demonstrating yet another application of this classical and useful result in
extremal set theory.

2. The New Proof

Let P, 1C, . . . , sC be as in Theorem 2. Let p = |V (P )| and ci = |V (iC)|. For
1 ≤ i ≤ s, we label the vertices of iC by v1,i, v2,i, . . . , vci,i, where E(iC) =
{vj,ivj+1,i : j ∈ [ci−1]}∪{vci,iv1,i}. We may assume that P = Pp, that is, V (P ) =
[p] and E(P ) = {{i, i + 1} : i ∈ [p − 1]}. Let H be the union of 1C

k1 , . . . , sC
ks ,

and let f : V (H) → V (H) be the bijection given by

f(vci,i) = v1,i and f(vj,i) = vj+1,i for 1 ≤ i ≤ s and 1 ≤ j ≤ ci − 1.

Let f1 = f , and for any integer t ≥ 2, let f t = f ◦ f t−1 and f−t = f−1 ◦ f−(t−1).
Note that for t ≥ 1, one can think of f t as t clockwise rotations, and of f−t as t
anticlockwise rotations. For I ∈ IH , we denote the set {f t(x) : x ∈ I} by f t(I),
and for A ⊆ IH , we denote the family {f t(A) : A ∈ A} by f t(A). The notation
f−t(I) and f−t(A) is defined similarly.

The new argument presented in this paper lies entirely in the proof of the
following important case, which both Theorem 4 and Theorem 5 pivot on.
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Lemma 6. Theorem 2 is true if P k is a complete graph and the inequality in (1)
is strict.

As shown in this section, Theorem 4 follows from Lemma 6 by applying the
compression method in [21], and Theorem 5 follows from Lemma 6 by applying
the same compression method of Talbot in [29].

We now start working towards the proof of Lemma 6.
Let A be a family of r-element sets. The shadow of A, denoted by ∂A, is the

family
⋃

A∈A

(

A
r−1

)

. A special case of Katona’s Shadow Intersection Theorem [27]
is that

(3) |A| ≤ |∂A| if A is intersecting.

Proof of Lemma 6. Suppose that P k is a complete graph. Then, ω(P k) = p.
Suppose min

(

ω(1C
k1), . . . , ω(sC

ks)
)

> p. Note that this implies that for every
i ∈ [s], ci ≥ p+ 1 and, for every vh,i, vj,i ∈ V (iC

ki),

(4) if vj,i ∈
{

f−q(vh,i) : q ∈ [p]
}

∪
{

f q(vh,i) : q ∈ [p]
}

, then vh,ivj,i ∈ E
(

i
Cki

)

.

It is worth pointing out that the strict inequality is only used for (4), from which
we obtain Claim 7.

Let A be an intersecting subfamily of IG
(r). Recall that V (P k) = [p]. Let

A0 = {A ∈ A : A∩ [p] = ∅} and Ai = {A ∈ A : A∩ [p] = {i}} for 1 ≤ i ≤ p. Since
P k is a complete graph, the families A0,A1, . . . ,Ap partition A. Let A′

0 = A0

and A′
i = {A\{i} : A ∈ Ai} for 1 ≤ i ≤ p. Since A is intersecting,

(5) for any i, j ∈ {0} ∪ [p] with i 6= j, each set in A′
i intersects each set in A′

j .

Claim 7. The families ∂A0, f
1(A′

1), f
2(A′

2), . . . , f
p(A′

p) are pairwise disjoint.

Proof. Suppose B ∈ f i(A′
i) ∩ f j(A′

j) for some i, j ∈ [p] with i < j. Then,

B = f i(Ai) = f j(Aj) for some Ai ∈ A′
i and Aj ∈ A′

j . Thus, Ai = f j−i(Aj).
Since 1 ≤ j − i < p, (4) gives us Ai ∩Aj = ∅, but this contradicts (5). Therefore,
f1(A′

1), f
2(A′

2), . . . , f
p(A′

p) are pairwise disjoint.
Suppose B ∈ ∂A0 ∩ f i(A′

i) for some i ∈ [p]. Then, C\{x} = B = f i(Ai) for
some C ∈ A0, x ∈ C, and Ai ∈ A′

i. Since 1 ≤ i ≤ p, (4) gives us C ∩Ai = ∅, but
this contradicts (5). The claim follows. �

Let A∗
0 = {A∪{1} : A ∈ ∂A0} and A∗

i = {A∪{1} : A ∈ f i(A′
i)} for 1 ≤ i ≤ p.

For 0 ≤ i ≤ p, A∗
i ⊆ IG

(r)(1). By Claim 7,
∑p

i=0 |A
∗
i | =

∣

∣

⋃p
i=0A

∗
i

∣

∣ ≤
∣

∣IG
(r)(1)

∣

∣.
By (3), |A0| ≤ |∂(A0)| = |A∗

0|. We have

|A| =

p
∑

i=0

|Ai| = |A0|+

p
∑

i=1

|A∗
i | ≤

p
∑

i=0

|A∗
i | ≤

∣

∣IG
(r)(1)

∣

∣,

and the lemma is proved.
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The full Theorem 4 is now obtained by the line of argument laid out in [21],
hence making use of established facts regarding compressions on independent
sets.

For any edge uv of a graph G, let δu,v : IG → IG be defined by

δu,v(A) =

{

(A\{v}) ∪ {u} if v ∈ A, u /∈ A, and (A\{v}) ∪ {u} ∈ IG;
A otherwise,

and let ∆u,v : 2
IG → 2IG be the compression operation (also called a shifting

operation) defined by

∆u,v(A) = {δu,v(A) : A ∈ A} ∪ {A ∈ A : δu,v(A) ∈ A}.

It is well known, and easy to see, that

|∆u,v(A)| = |A|

(see [11, 15]). For any x ∈ V (G), let NG(x) denote the set {y ∈ V (G) : xy ∈
E(G)}. The following is given by [8, Lemma 2.1] (which is actually stated for
IG

(r) but proved for IG) and essentially originated in [21]. We omit the proof.

Lemma 8 [8, 21]. If G is a graph, uv ∈ E(G), A is an intersecting subfamily

of IG, B = ∆u,v(A), B0 = {B ∈ B : v /∈ B}, B1 = {B ∈ B : v ∈ B}, and

B′
1 = {B\{v} : B ∈ B1}, then

(i) B0 is intersecting;

(ii) if |NG(u)\({v} ∪NG(v))| ≤ 1, then B′
1 is intersecting;

(iii) if NG(u)\({v} ∪NG(v)) = ∅, then B0 ∪ B′
1 is intersecting.

For a vertex v of a graph G, let G− v denote the graph obtained by deleting
v (that is, G − v = (V (G)\{v}, {xy ∈ E(G) : x, y /∈ {v}})), and let G ↓ v
be the graph obtained by deleting v and the vertices adjacent to v (that is,
G ↓ v = (V (G)\({v} ∪NG(v)), {xy ∈ E(G) : x, y /∈ {v} ∪NG(v)})).

Proof of Theorem 4. We use induction on |V (P )|. If P k is a complete graph,
then the result is given by Lemma 6. Note that this captures the base case
|V (P )| = 1. Now suppose that P k is not a complete graph. Then, |V (P )| ≥ k+2.
If r = 1, then the result is trivial. Suppose r > 1. Let A be an intersecting
subfamily of IG

(r). Let u = p−1 and v = p. Let B = ∆u,v(A), B0 = {B ∈ B : v /∈
B}, B1 = {B ∈ B : v ∈ B}, and B′

1 = {B\{v} : B ∈ B1}. By Lemma 8(i), B0 is
intersecting. We have NG(u)\({v} ∪NG(v)) = {p − k − 1}, so, by Lemma 8(ii),
B′
1 is intersecting. Let H0 = Pp−1 and H1 = Pp−k−1. Clearly, B0 ⊆ IG−v

(r),

B′
1 ⊆ IG↓v

(r), G−v is the union of H0
k and 1C

k1 , . . . , sC
ks , and G ↓ v is the union

of H1
k and 1C

k1 , . . . , sC
ks . The condition min

(

ω(1C
k1), . . . , ω(sC

ks)
)

> ω(P k)
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in the theorem gives us min
(

ω(1C
k1), . . . , ω(sC

ks)
)

> ω(H0
k) ≥ ω(H1

k). By the

induction hypothesis, |B0| ≤
∣

∣IG−v
(r)(1)

∣

∣ and |B′
1| ≤

∣

∣IG↓v
(r−1)(1)

∣

∣. We have

|A| = |B| = |B0|+ |B′
1| ≤

∣

∣IG−v
(r)(1)

∣

∣+
∣

∣IG↓v
(r−1)(1)

∣

∣

=
∣

∣

{

A ∈ IG
(r) : 1 ∈ A, v /∈ A

}
∣

∣+
∣

∣

{

A ∈ IG
(r) : 1, v ∈ A

}
∣

∣ =
∣

∣IG
(r)(1)

∣

∣,

as required.

Proof of Theorem 5. We use induction on c = |V (C)|. We may assume that
C = Cc. If Ck is a complete graph, then the result is given by Lemma 6. Note
that this captures the base case c = 2. Now suppose that Ck is not a complete
graph. Then, c ≥ 2k + 2. If r = 1, then the result is trivial. Suppose r > 1. Let
A be an intersecting subfamily of IG

(r).
Let g : V (G) → V (G) be the Talbot compression [20, 29] given by

g(v) = v for v ∈ V (G)\V (C),

g(1) = 1, and

g(1 + j) = 1 + j − 1 for 1 ≤ j ≤ c− 1.

For X ∈ IG and X ⊆ IG, we use the notation gt(X) and gt(X ) similarly to the
way it is used above for f . Let F be the union of Cc−1

k and 1C
k1 , . . . , sC

ks . Let
K be the union of Cc−k−1

k and 1C
k1 , . . . , sC

ks . Let

B =
{

A ∈ A : 1 6∈ A, g(A) ∈ IF
(r)

}

,

C =
{

A ∈ A : 1 ∈ A, g(A) ∈ IF
(r)

}

,

D0 = {A ∈ A : 1, k + 2 ∈ A},

Di = {A ∈ A : 1 + c− i, k + 2− i ∈ A} for 1 ≤ i ≤ k.

Note that these families partition A. Let

F =
(

gk−1(E)− {1}
)

∪
k
⋃

i=0

(

gk(Di)− {1}
)

,

where E = g(B) ∩ g(C) and, for any family G, G − {1} = {G\{1} : G ∈ G}.

Claim 9 (See [20, 29]). The following hold

(i) |A| = |g(B ∪ C)|+ |F|;

(ii) g(B ∪ C) is an intersecting subfamily of IF
(r);

(iii) g(F) is an intersecting subfamily of IK
(r−1) of size |F|;

(iv)
∣

∣IG
(r)(1)

∣

∣ =
∣

∣IF
(r)(1)

∣

∣+
∣

∣IK
(r−1)(1)

∣

∣.



284 P. Borg and C. Feghali

By the induction hypothesis and Claim 9(ii)–(iii), |g(B∪C)| ≤
∣

∣IF
(r)(1)

∣

∣ and

|F| = |g(F)| ≤
∣

∣IK
(r−1)(1)

∣

∣. Thus, by Claim 9(i) and Claim 9(iv), we have

|A| = |g(B ∪ C)|+ |F| ≤
∣

∣IF
(r)(1)

∣

∣+
∣

∣IK
(r−1)(1)

∣

∣ =
∣

∣IG
(r)(1)

∣

∣,

and the theorem is proved.
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