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Abstract

A path factor is a spanning subgraph F of G such that every component
of F is a path with at least two vertices. We write P≥k = {Pi : i ≥ k}.
Then a P≥k-factor of G means a path factor in which every component
admits at least k vertices, where k ≥ 2 is an integer. A graph G is called
a P≥k-factor avoidable graph if for any e ∈ E(G), G admits a P≥k-factor
excluding e. A graph G is called a (P≥k, n)-factor critical avoidable graph
if for any Q ⊆ V (G) with |Q| = n, G − Q is a P≥k-factor avoidable graph.
Let G be an (n + 2)-connected graph. In this paper, we demonstrate that
(i) G is a (P≥2, n)-factor critical avoidable graph if tough(G) > n+2

4
; (ii) G

is a (P≥3, n)-factor critical avoidable graph if tough(G) > n+1

2
; (iii) G is a

(P≥2, n)-factor critical avoidable graph if I(G) > n+2

3
; (iv) G is a (P≥3, n)-

factor critical avoidable graph if I(G) > n+3

2
. Furthermore, we claim that

these conditions are sharp.

Keywords: graph, toughness, isolated toughness, P≥k-factor, (P≥k, n)-factor
critical avoidable graph.
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1. Introduction

In this paper, we discuss only finite undirected simple graphs. Let G = (V (G),
E(G)) be a graph, where V (G) denotes the vertex set of G and E(G) denotes the
edge set of G. For x ∈ V (G), the degree of x in G is denoted by dG(x). For a set
X ⊆ V (G), we use G[X] to denote the subgraph of G induced by X and write
G − X for G[V (G) \ X]. We let i(G) and ω(G) denote the number of isolated
vertices and the number of connected components of G, respectively. Let Pn and
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Kn denote the path and the complete graph of order n, respectively. The join
G+H denotes the graph with vertex set V (G) ∪ V (H) and edge set

E(G+H) = E(G) ∪ E(H) ∪ {xy : x ∈ V (G) and y ∈ V (H)}.

Chvátal [2] first introduced the toughness of a graph G, denoted by tough(G),
namely,

tough(G) = min

{

|X|

ω(G−X)
: X ⊆ V (G), ω(G−X) ≥ 2

}

,

if G is not complete; otherwise, tough(G) = +∞.
Yang, Ma and Liu [13] first posed isolated toughness of a graph G, denoted

by I(G), namely,

I(G) = min

{

|X|

i(G−X)
: X ⊆ V (G), i(G−X) ≥ 2

}

if G is not a complete graph; otherwise, I(G) = +∞.
A path factor is a spanning subgraph F of G such that every component of

F is a path with at least two vertices. We write P≥k = {Pi : i ≥ k}. Then a
P≥k-factor of G means a path factor in which every component admits at least
k vertices, where k ≥ 2 is an integer. A {Pk}-factor F of G is simply called a
Pk-factor if every component of F is isomorphic to Pk.

A 1-factor of G is a spanning subgraph F of G such that dF (x) = 1 holds for
any x ∈ V (G). A graph R is a factor-critical graph if for any x ∈ V (R), R− {x}
admits a 1-factor. Let R be a factor-critical graph with V (R) = {x1, x2, . . . , xn}.
n new vertices y1, y2, . . . , yn together with new edges x1y1, x2y2, . . . , xnyn are
added to R. Then the resulting graph is said to be a sun. By Kaneko [7], K1

and K2 are also suns. A big sun is a sun of order at least 6. We use sun(G) to
denote the number of sun components of G.

Las Vergnas [11] posed a criterion for the existence of P≥2-factors in graphs.

Theorem 1 [11]. A graph G admits a P≥2-factor if and only if i(G−X) ≤ 2|X|
for every X ⊆ V (G).

Kaneko [7] derived a characterization for the existence of P≥3-factors in
graphs.

Theorem 2 [7]. A graph G admits a P≥3-factor if and only if sun(G−X) ≤ 2|X|
for every X ⊆ V (G).

A graph G is called a P≥k-factor avoidable graph if for any e ∈ E(G), G
admits a P≥k-factor excluding e. A graph G is called a (P≥k, n)-factor critical
avoidable graph if for any Q ⊆ V (G) with |Q| = n, G − Q is a P≥k-factor
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avoidable graph. Obviously, a (P≥k, 0)-factor critical avoidable graph is simply
called a P≥k-factor avoidable graph.

Kelmas [10] claimed a result on the existence of path factors in subgraphs.

Theorem 3 [10]. Let G be a 3-connected claw-free graph and |V (G)| ≡ 1 (mod 3).
Then for any x ∈ V (G) and any e ∈ E(G), G−{x, e} has a {P3}-factor, namely,

G− {x} is a {P3}-factor avoidable graph.

Motivated by Theorem 3, we consider a more general problem.

Problem 1. Find sufficient conditions for a graph to be a (P≥k, n)-factor critical
avoidable graph.

Kano, Lu and Yu [8] verified that a graph G has a {P3}-factor if i(G− S) ≤
2

3
|S| for every S ⊂ V (G). Zhou, Yang and Xu [22] proved that an n-connected

graph G is (P≥3, n)-factor critical if its toughness tough(G) ≥ n+1

2
. Some other

results on path factors can be found in [3, 15, 17, 18]. Lots of authors derived
some toughness conditions for the existence of graph factors [4, 5, 9, 20]. Some
results on the relationships between isolated toughness and graph factors are
obtained by Gao, Liang and Chen [6]. For many other results on graph factors,
see [1, 12, 14, 16, 19, 21, 23]. In this paper, we study (P≥k, n)-factor critical
avoidable graphs and get some sufficient conditions for graphs to be (P≥k, n)-
factor critical avoidable graphs depending on toughness and isolated toughness,
which are given in Sections 2 and 3.

2. Toughness and (P≥k, n)-Factor Critical Avoidable Graphs

In this section, we explore the relationship between toughness and (P≥k, n)-factor
critical avoidable graphs, and derive two toughness conditions for the existence
of (P≥k, n)-factor critical avoidable graphs for k = 2, 3.

Theorem 4. Let G be an (n + 2)-connected graph, where n ≥ 0 is an integer.

If its toughness tough(G) > n+2

4
, then G is a (P≥2, n)-factor critical avoidable

graph.

Proof. Theorem 4 obviously holds for a complete graph. Next, we assume that G
is not complete. Let Q ⊂ V (G) with |Q| = n, and G′ = G−Q, and let e ∈ E(G′)
and H = G′−e. Since G is (n+2)-connected, H is connected. To prove Theorem
4, it suffices to show that H admits a P≥2-factor. On the contrary, suppose that
H has no P≥2-factor. Then by Theorem 1, there exists a set X ⊂ V (H) such
that

(1) i(H −X) ≥ 2|X|+ 1.
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Since H is connected, we have X 6= ∅. Thus,

(2) i(H −X) ≥ 2|X|+ 1 ≥ 3.

Note that ω(G− (Q ∪X)) ≥ ω(G− (Q ∪X)− e)− 1. Combining this with
(2), we derive

(3) ω(G−(Q∪X)) ≥ ω(G−(Q∪X)−e)−1 = ω(H−X)−1 ≥ i(H−X)−1 ≥ 2.

Claim 1. |X| ≥ 2.

Proof. Assume |X| = 1. SinceH = G′−e, we easily know that i(H−X) = i(G′−
e−X) ≤ i(G′−X)+2. Then by (2), we derive i(G′−X) ≥ i(H−X)−2 ≥ 1, which
implies that there exists an isolated vertex u in G′−X, i.e., dG′−X(u) = 0. Thus,
we have dG(u) ≤ dG′(u)+|Q| = dG′(u)+n ≤ dG′−X(u)+|X|+n = 0+1+n = n+1,
contradicting that G is (n+ 2)-connected. Therefore, |X| ≥ 2. �

According to (1), (2), (3), Claim 1 and the definition of tough(G), we have

tough(G) ≤
|Q ∪X|

ω(G− (Q ∪X))
≤

|Q|+ |X|

i(H −X)− 1

=
n+ |X|

i(H −X)− 1
≤

n+ |X|

2|X|
=

1

2
+

n

2|X|
≤

1

2
+

n

4
=

n+ 2

4
,

which contradicts tough(G) > n+2

4
. Theorem 4 is verified.

Remark 5. Now, we claim that the result in Theorem 4 is sharp. To see this,
we construct the graph G = Kn+2 + (3K1 ∪K2). Clearly, G is (n+ 2)-connected
and tough(G) = n+2

4
. Let Q ⊂ V (Kn+2) ⊆ V (G) with |Q| = n and e be the edge

of K2. Then G − Q − e is a graph isomorphic to K2 + (5K1), and it obviously
has no P≥2-factor. Thus, G is not a (P≥2, n)-factor critical avoidable graph.

Theorem 6. Let G be an (n + 2)-connected graph, where n ≥ 0 is an integer.

If its toughness tough(G) > n+1

2
, then G is a (P≥3, n)-factor critical avoidable

graph.

Proof. Theorem 6 obviously holds for a complete graph. In the following, we
assume that G is not complete. Let Q ⊂ V (G) with |Q| = n, and G′ = G − Q,
and let e ∈ E(G′) and H = G′− e. Since G is (n+2)-connected, H is connected.
To prove Theorem 6, it suffices to show that H admits a P≥3-factor. On the
contrary, suppose that H has no P≥3-factor. Then by Theorem 2, there exists a
set X ⊂ V (H) such that

(4) sun(H −X) ≥ 2|X|+ 1.
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Claim 1. X 6= ∅.

Proof. Assume that X = ∅. Then it follows from (4) that

(5) sun(H) ≥ 1.

Since H is connected, we have sun(H) = 1 and H itself is a sun.
Since G is (n+2)-connected, |V (G)| ≥ n+3. Thus, |V (H)| = |V (G)|−n ≥ 3,

which implies that H is a big sun. Hence, |V (H)| ≥ 6. Let R be the factor-
critical graph of H. Then |V (R)| ≥ 3 and there exists w ∈ V (R) such that
ω(G′ − {w}) = ω(H − {w}) = 2. Thus, we have

(6) ω(G−Q− {w}) = ω(G′ − {w}) = 2.

In terms of (6) and the definition of tough(G), we get

tough(G) ≤
|Q ∪ {w}|

ω(G− (Q ∪ {w}))
=

n+ 1

2
,

contradicting to tough(G) > n+1

2
. Hence, X 6= ∅. �

By (4) and Claim 1, we gain ω(G−(Q∪X)) = ω(G′−X) ≥ ω(G′−X−e)−1 =
ω(H −X)− 1 ≥ sun(H −X)− 1 ≥ 2|X| ≥ 2. Combining this with Claim 1 and
the definition of tough(G), we have

tough(G) ≤
|Q ∪X|

ω(G− (Q ∪X))
≤

n+ |X|

2|X|
=

1

2
+

n

2|X|
≤

1

2
+

n

2
=

n+ 1

2
,

this contradicts tough(G) > n+1

2
. This finishes the proof of Theorem 6.

Remark 7. Now, we show that the conditions in Theorem 6 are best possible,
which cannot be replaced by G being (n+ 1)-connected and tough(G) ≥ n+1

2
.

Let G = Kn+1 + (2K2). We easily see that G is (n + 1)-connected and
tough(G) = n+1

2
. Let Q ⊂ V (Kn+1) ⊆ V (G) with |Q| = n, and e be an edge of

2K2. Then G−Q− e is a graph isomorphic to K1+(2K1∪K2), and it obviously
has no P≥3-factor, and so G is not a (P≥3, n)-factor critical avoidable graph.

3. Isolated Toughness and (P≥k, n)-Factor Critical Avoidable

Graphs

In this section we give two sufficient conditions using isolated toughness for a
graph to be a (P≥k, n)-factor critical avoidable graph for k = 2, 3.

Theorem 8. Let G be an (n+ 2)-connected graph, where n ≥ 0 is an integer. If

its isolated toughness I(G) > n+2

3
, then G is a (P≥2, n)-factor critical avoidable

graph.
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Proof. Theorem 8 obviously holds for a complete graph. In what follows, we
assume that G is not complete. Let Q ⊂ V (G) with |Q| = n, and G′ = G − Q,
and let e ∈ E(G′) and H = G′− e. Since G is (n+2)-connected, H is connected.
To prove Theorem 8, it suffices to show that H admits a P≥2-factor. On the
contrary, suppose that H has no P≥2-factor. Then by Theorem 1, there exists a
set X ⊂ V (H) such that

(7) i(H −X) ≥ 2|X|+ 1.

Claim 1. |X| ≥ 2.

Proof. If X = ∅, then by (7) and H being connected, we obtain

1 ≤ i(H) = 0,

which is a contradiction.

Next, we consider |X| = 1. Note that i(H−X) = i(G′−e−X) ≤ i(G′−X)+2.
Combining this with (7), we derive i(G′ −X) ≥ i(H −X)− 2 ≥ 2|X|+ 1− 2 =
2|X| − 1 = 1, which hints that there exists w ∈ V (G′) \ X with dG′−X(w) =
0. Therefore, we admit dG(w) = dG′+Q(w) ≤ dG′(w) + |Q| = dG′(w) + n ≤
dG′−X(w) + |X| + n = 0 + 1 + n = n + 1, which contradicts that G is (n + 2)-
connected. Thus, we derive |X| ≥ 2. �

According to (7) and Claim 1, we get

(8) i(G− (Q ∪X)) ≥ i(G− (Q ∪X)− e)− 2 = i(H −X)− 2 ≥ 2|X| − 1 ≥ 3.

It follows from (8), Claim 1 and the definition of I(G) that

I(G) ≤
|Q ∪X|

i(G− (Q ∪X))
≤

|Q|+ |X|

2|X| − 1

=
n+ |X|

2|X| − 1
=

n+ 1

2

2|X| − 1
+

|X| − 1

2

2(|X| − 1

2
)

=
n+ 1

2

2|X| − 1
+

1

2
≤

n+ 1

2

3
+

1

2
=

n+ 2

3
,

which contradicts I(G) > n+2

3
. Theorem 8 is proved.

Remark 9. Now, we explain that the result in Theorem 8 is sharp. To see this,
we construct the graph G = Kn+2+(3K1∪K2). Obviously, G is (n+2)-connected
and I(G) = n+2

3
. Let Q ⊂ V (Kn+2) ⊆ V (G) with |Q| = n, and e be the edge of

K2. Then G−Q− e is a graph isomorphic to K2 + (5K1), and it obviously has
no P≥2-factor. Thus, G is not a (P≥2, n)-factor critical avoidable graph.
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Theorem 10. Let G be an (n+2)-connected graph, where n is a positive integer.

If its isolated toughness I(G) > n+3

2
, then G is a (P≥3, n)-factor critical avoidable

graph.

Proof. Theorem 10 obviously holds for a complete graph. Next, we assume that
G is not complete. Let Q ⊂ V (G) with |Q| = n, and G′ = G − Q, and let
e = xy ∈ E(G′) and H = G′ − e. Since G is (n + 2)-connected, H is connected.
To prove Theorem 10, it suffices to show that H admits a P≥3-factor. On the
contrary, suppose that H has no P≥3-factor. Then by Theorem 2, there exists a
set X ⊂ V (H) such that

(9) sun(H −X) ≥ 2|X|+ 1.

Claim 1. X 6= ∅.

Proof. Assume X = ∅. Then sun(H) ≥ 1. This implies sun(H) = 1 since H is
connected.

Note that G is (n + 2)-connected. Hence, |V (G)| ≥ n + 3. Thus, |V (H)| =
|V (G)| − n ≥ (n + 3) − n = 3, which implies that H is a big sun. Therefore,
|V (H)| ≥ 6. Let R be the factor-critical subgraph of H. Then i(H − V (R)) =
|V (R)| ≥ 3. Next, we consider two cases.

Case 1. x, y ∈ V (H) \V (R). Clearly, there exists z ∈ V (R) with yz ∈ E(G).
Thus, we easily see

i(G− (Q ∪ (V (R) \ {z}) ∪ {y})) = i(G′ − ((V (R) \ {z}) ∪ {y}))

= i(G′ − ((V (R) \ {z}) ∪ {y})− e)

= i(H − ((V (R) \ {z}) ∪ {y}))

= |V (R)| ≥ 3.

Combining this with the definition of I(G) and I(G) > n+3

2
, we admit. Clearly,

there exists z ∈ V (R) with yz ∈ E(G). Thus, we easily get

n+ 3

2
< I(G) ≤

|Q ∪ (V (R) \ {z}) ∪ {y}|

i(G− (Q ∪ (V (R) \ {z}) ∪ {y}))

=
|Q|+ |V (R)|

|V (R)|
=

n

|V (R)|
+ 1 ≤

n

3
+ 1 =

n+ 3

3
,

which is a contradiction.

Case 2. x ∈ V (R) or y ∈ V (R). In this case, i(G − (Q ∪ (V (R))) = i(G′−
V (R)) = i(G′ − V (R)− e) = i(H − V (R)) = |V (R)| ≥ 3. Thus, we get

I(G) ≤
|Q ∪ V (R)|

i(G− (Q ∪ V (R)))
=

|Q|+ |V (R)|

|V (R)|
=

n

|V (R)|
+ 1 ≤

n

3
+ 1 =

n+ 3

3
,

which contradicts I(G) > n+3

2
. Hence, X 6= ∅. �
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Let Sun(H−X) denote the union of sun components ofH−X, which consists
of a isolated vertices, b K2-components and c big sun components S1, S2, . . . , Sc.
Let Ri be the factor-critical subgraph of Si for 1 ≤ i ≤ c, and write Z =
⋃

1≤i≤c V (Ri). We select one vertex from every K2 component of H−X, and the
set of such vertices is denoted by Y . Clearly, |Y | = b. Then i(H− (X∪Y ∪Z)) =
a+ b+ |Z| and it follows from (9) and Claim 1 that

(10) sun(H −X) = a+ b+ c ≥ 2|X|+ 1 ≥ 3.

Claim 2. 0 ≤ a ≤ 1.

Proof. Assume that a ≥ 2. By (10), c ≥ 0 and |V (Ri)| ≥ 3, we derive

i(G− (Q ∪X ∪ Y ∪ Z ∪ {x})) = i(G′ − (X ∪ Y ∪ Z ∪ {x})− e)

= i(H − (X ∪ Y ∪ Z ∪ {x}))

≥ i(H − (X ∪ Y ∪ Z))− 1

= a+ b+ |Z| − 1 ≥ a+ b+ 3c− 1

≥ a+ b+ c− 1 ≥ 2.

Combining this with the definition of I(G) and I(G) > n+3

2
, we derive

n+ 3

2
< I(G) ≤

|Q ∪X ∪ Y ∪ Z ∪ {x}|

i(G− (Q ∪X ∪ Y ∪ Z ∪ {x}))
≤

n+ |X|+ b+ |Z|+ 1

a+ b+ |Z| − 1
,

namely,

(11) 0 >
n+ 1

2
(a+ b+ |Z|) + a− |X| −

3n+ 5

2
.

It follows from (10), (11), a ≥ 2, c ≥ 0, |Z| =
∑c

i=1
|V (Ri)| ≥ 3c and Claim

1 that

0 >
n+ 1

2
(a+ b+ |Z|) + a− |X| −

3n+ 5

2

≥
n+ 1

2
(a+ b+ 3c) + 2− |X| −

3n+ 5

2

≥
n+ 1

2
(a+ b+ c)− |X| −

3n+ 1

2

≥
n+ 1

2
(2|X|+ 1)− |X| −

3n+ 1

2
= n(|X| − 1) ≥ 0,

which is a contradiction. Therefore, 0 ≤ a ≤ 1. �

We easily see that x /∈ V (aK1) or y /∈ V (aK1) since 0 ≤ a ≤ 1 (by Claim 2).
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Claim 3. x ∈ V (bK2)∪V (S1)∪ · · ·∪V (Sc) or y ∈ V (bK2)∪V (S1)∪ · · ·∪V (Sc).

Proof. Assume that x, y /∈ V (bK2)∪V (S1)∪ · · ·∪V (Sc). Note that x /∈ V (aK1)
or y /∈ V (aK1). Hence, there is at least one vertex in {x, y} such that the
vertex does not belong V (aK1) ∪ V (bK2) ∪ V (S1) ∪ · · · ∪ V (Sc). Without loss
of generality, we let x /∈ V (aK1) ∪ V (bK2) ∪ V (S1) ∪ · · · ∪ V (Sc). Then x ∈
V (G) \ (Q ∪ V (aK1) ∪ V (bK2) ∪ V (S1) ∪ · · · ∪ V (Sc)). Thus, we easily deduce

i(G− (Q ∪X ∪ Y ∪ Z ∪ {x})) ≥ a+ b+ |Z| ≥ a+ b+ 3c ≥ 3

by (10), c ≥ 0 and |Z| =
∑c

i=1
|V (Ri)| ≥ 3c. In terms of the definition of I(G),

we derive

(12) I(G) ≤
|Q ∪X ∪ Y ∪ Z ∪ {x}|

i(G− (Q ∪X ∪ Y ∪ Z ∪ {x}))
≤

n+ |X|+ b+ |Z|+ 1

a+ b+ |Z|
.

It follows from (10), (12), a ≥ 0, c ≥ 0, |Z| =
∑c

i=1
|V (Ri)| ≥ 3c and

I(G) > n+3

2
that

0 ≥ (I(G)− 1)(a+ b+ |Z|) + a− n− |X| − 1

≥ (I(G)− 1)(a+ b+ 3c)− n− |X| − 1

≥ (I(G)− 1)(a+ b+ c)− n− |X| − 1

≥ (I(G)− 1)(2|X|+ 1)− n− |X| − 1

= I(G)(2|X|+ 1)− n− 3|X| − 2,

which implies

(13) I(G) ≤
3|X|+ n+ 2

2|X|+ 1
.

From (13), Claim 1 and n ≥ 1, we have

I(G) ≤
3|X|+ n+ 2

2|X|+ 1
=

3

2
+

n+ 1

2

2|X|+ 1
≤

3

2
+

n+ 1

2

3
=

n+ 3

2
+

1− n

6
≤

n+ 3

2
,

which contradicts I(G) > n+3

2
. Claim 3 is verified. �

Without loss of generality, we let x ∈ V (bK2)∪V (S1)∪· · ·∪V (Sc) by Claim 3.
Then there exists z ∈ V (bK2) ∪ V (S1) ∪ · · · ∪ V (Sc) such that xz ∈ E(G) and
there is at least one vertex of {x, z} with degree 1 in the subgraph (bK2) ∪ S1

∪ · · · ∪ Sc. Thus, we obtain

i(G− (Q ∪X ∪ ((Y ∪ Z) \ {z}) ∪ {x})) = a+ b+ |Z| ≥ a+ b+ 3c ≥ 3
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by (10), c ≥ 0 and |Z| =
∑c

i=1
|V (Ri)| ≥ 3c. Combining this with the definition

of I(G) and I(G) > n+3

2
, we obtain

n+ 3

2
< I(G) ≤

|Q ∪X ∪ ((Y ∪ Z) \ {z}) ∪ {x}|

i(G− (Q ∪X ∪ ((Y ∪ Z) \ {z}) ∪ {x}))
=

n+ |X|+ b+ |Z|

a+ b+ |Z|
,

that is,

0 >
n+ 1

2
(a+ b+ |Z|)− n− |X|+ a.

Combining this with (10), a ≥ 0, c ≥ 0, n ≥ 1, |Z| =
∑c

i=1
|V (Ri)| ≥ 3c and

Claim 1, we derive

0 >
n+ 1

2
(a+ b+ |Z|)− n− |X|+ a ≥

n+ 1

2
(a+ b+ c)− n− |X|

≥
n+ 1

2
(2|X|+ 1)− n− |X| = n|X|+

1

2
−

n

2
≥ n+

1

2
−

n

2
=

n+ 1

2
≥ 1,

which is a contradiction. This finishes the proof of Theorem 10.

Remark 11. Next, we elaborate that the conditions in Theorem 10 are best
possible, which cannot be replaced by G being (n+1)-connected and I(G) ≥ n+3

2
.

LetG = Kn+1+(2K2). It is clear that G is (n+1)-connected and I(G) = n+3

2
.

Let Q ⊂ V (Kn+1) ⊆ V (G) with |Q| = n, and e be an edge of 2K2. Then G−Q−e
is a graph isomorphic to K1 + (2K1 ∪ K2), and it obviously has no P≥3-factor.
Therefore, G is not a (P≥3, n)-factor critical avoidable graph.
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