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Abstract

In this note, we show sharp upper bounds of the size of simple bipartite
and tripartite 1-embeddable graphs on closed surfaces.
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1. Introduction

In this note, we denote the vertex set and the edge set of a graph G by V (G)
and E(G), respectively. A graph G is 1-embeddable into a closed surface F 2 if it
can be drawn on F 2 so that each of its edges crosses at most one other edge at a
point. We consider only proper drawings such that (i) all the vertices are put on
different points on the surface, (ii) edges are simple arcs not containing any vertex
in its interior (except its end vertices), (iii) two adjacent edges do not cross, (iv)
two non-adjacent edges having an intersection always cross transversally at the
point (i.e., don’t touch tangentially), and (v) no more than two edges cross at a
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single point. We can also regard the drawing as a continuous map f : G → F 2

which may not be injective. In this note, we call the above map f a 1-embedding

of G into F 2. We often consider that a given 1-embeddable graph G is already
mapped on a closed surface F 2, and we denote its image by G itself to simplify the
notation. In this case, we say that G is a 1-embedded graph on F 2. In particular,
when F 2 is the sphere, a 1-embeddable graph on F 2 is called 1-planar . The
notion of 1-planar graphs was first introduced by Ringel [5] and this class of
graphs has been widely studied in literature (e.g., see the survey paper [2]).

An edge of a 1-embedded graph G is crossing if it crosses another edge, and
is non-crossing otherwise. If an edge v0v2 of a 1-embedded graph G crosses an
edge v1v3 at a crossing point z, then we say that the arc viz is a half-edge of G
for each i ∈ {0, 1, 2, 3}. A connected component D of F 2 − G whose boundary
contains no crossing point is a face of the 1-embedded graph G; the boundary of
the face D is a set of closed walks consisting of non-crossing edges only. A k-gonal
face is a 2-cell face bounded by a closed walk of length exactly k. A 1-embedded
graph is topologically simple if G does not have any k-gonal face for k ≤ 2. A
connected component D of F 2 −G whose boundary contains a crossing point is
a fake face; note that a fake face is not a face of G, and vise-versa.

Let G be a simple 1-embedded graph on a closed surface F 2 exceptK1 andK2

on the sphere. Then, it was proved in [6] that |E(G)| ≤ 4|V (G)| − 4χ(F 2) where
χ(F 2) is the Euler characteristic of F 2. (The simple proof was also given in [4].
The proof works for topologically simple 1-embedded graphs.) A topologically
simple 1-embedded graph G is optimal if it satisfies the equality in the above
inequality. It is known that every simple optimal 1-embedded graph is obtained
from a polyhedral, i.e., 3-connected and 3-representative, quadrangulation H by
adding a pair of crossing edges in each face of H (see [4]).

In this note, we discuss the upper bounds of the size of 1-embeddable mul-
tipartite graphs on closed surfaces. For bipartite 1-planar graphs, the following
result is known.

Theorem 1 (Karpov [1]). Every simple bipartite 1-planar graph with n vertices

has at most 3n − 8 edges for even n 6= 6 and at most 3n − 9 for odd n and for

n = 6.

Note that “the planarity” (or “the orientability”) was used in the proof of
Theorem 1, and hence the strategy cannot be applied at least to graphs on nonori-
entable closed surfaces. In the next section, we extend the above result to sim-
ple bipartite 1-embeddable graphs on nonspherical closed surfaces and show the
sharp upper bounds of the size of such graphs. In Section 3, we discuss the up-
per bounds for simple tripartite 1-embeddable graphs on closed surfaces. Note
that the results in [3] guarantee the existence of simple 4-colorable optimal 1-
embedded graphs on any closed surface. This implies that for any k ≥ 4, the
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upper bounds of the size of simple k-partite 1-embeddable graphs on a closed
surface F 2 cannot be less than 4n− 4χ(F 2).

2. Bipartite Case

Let G be a simple bipartite 1-embeddable graph on a closed surface F 2. We add
additional edges to the 1-embedded graph G as much as possible to create a new
multigraph 1-embedded on F 2, denoted by G′, which satisfies the followings: (a)
G′ is topologically simple, and (b) G′ has no new crossing points other than those
of G. We call the above G′ an expansion of G. (See the center of Figure 1, which
represents a graph on the torus. To obtain the torus, identify two horizontal sides
and vertical sides of the square in the figure, respectively.) By the maximality,
every crossing point z of G′ created by two edges b1w1 and b2w2 is surrounded
by a 4-cycle b1b2w1w2 such that zb1b2, zb2w1, zw1w2 and zw2b1 are fake faces;
since we can draw those edges, say b1b2 here, almost along two half-edges zb1 and
zb2 if it does not exist in G. Moreover, G′ is connected since the boundary of
any connected component of F 2 −G has at least two vertices of G; observe that
crossing points are not consecutive on the boundary.

Furthermore, we remove all crossing edges of G′ to obtain a multigraph G′′

embedded on F 2, which is called an associated mosaic of G (see the right-hand
side of Figure 1). By the maximality of G′, it is easy to see that every face of G′′ is
either triangular or quadrangular. Note that there is one-to-one correspondence
between quadrangular faces of G′′ and crossing points of G (or G′) by the above
conditions (a) and (b).

G G′ G′′

Figure 1. Expansion and associated mosaic of G.

Theorem 2. Let G be a simple bipartite 1-embeddable graph on a nonspherical

closed surface F 2 with n vertices. Then the inequality |E(G)| ≤ 3n − 3χ(F 2)
holds. In particular, if F 2 is the projective plane, then |E(G)| ≤ 3n− 4.
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Proof. Let c denote the number of crossing points of the 1-embedded graph G.
Further, let fk denote the number of k-gonal faces of the associated mosaic G′′

of G for k ∈ {3, 4}. Thus, we have c = f4 by the definition. By Euler’s formula,
f3 + 2f4 = 2n − 2χ(F 2) holds, and hence we have f4 ≤ n − χ(F 2). Now, we
consider a bipartite graph H embedded on F 2 which can be obtained from G by
removing a crossing edge from every pair of crossing edges. Since H has no face
bounded by a closed walk of odd length, we have |E(H)| ≤ 2n−2χ(F 2) by Euler’s
formula. Hence, it follows from |E(G)| = |E(H)|+ c that |E(G)| ≤ 3n− 3χ(F 2).

In particular, when f4 = n−χ(F 2) in the above argument, the expansion G′

of G is optimal, that is, we have |E(G′)| = 4n − 4χ(F 2) and every face of G′′ is
quadrangular, which contains a single crossing point of G. Here, we consider the
graph G̃ obtained from G′′ by removing edges joining two vertices belonging to
the same partite set; G̃ might be disconnected. By the way to construct G̃, each
face (or each connected component of F 2 − G) is homeomorphic to an annulus;
observe that the subgraph of the dual of G′′ induced by edges which cross edges
of G′′ joining two vertices belonging to the same partite set is 2-regular. Let
FA denote the number of such annular faces of G̃. By Euler’s formula again,
we obtain n− (|E(G̃)|+ FA) + FA = χ(F 2); since every annular face becomes a
face homeomorphic to a 2-cell by adding an edge joining two vertices on different

boundaries. By the above equality, the average degree of G̃ is 2 − 2χ(F 2)
n

. This
implies that if χ(F 2) is the positive integer, i.e., F 2 is either the sphere or the
projective plane, then G̃ has a vertex of degree 1. However, this is not the
case, since G̃ would have the configuration as shown in Figure 2, a contradiction;
observe that every crossing edge is an edge of G, and recall that G is simple.

Figure 2. Vertex of degree 1 in G̃.

By the above argument, if F 2 is the projective plane, then c ≤ n−χ(F 2)−1,
and hence we obtain the upper bound in the theorem.

The upper bound in Theorem 2 is the best possible. See Figure 3, which
exhibits bipartite 1-embeddings on the projective plane and on the torus, respec-
tively. (To obtain the projective plane, identify antipodal pairs of points of the
outermost circle in the left-hand side of the figure.) It is not difficult to check
that each of those graphs attains the upper bounds. By inserting multilayer an-
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Figure 3. Bipartite 1-embeddings on the projective plane and the torus.

nular faces to G̃, we can construct our desired example with n > n0 vertices for
any natural number n0. Furthermore, for other closed surfaces, it is not difficult
to divide the surface into annular faces, which is of G̃, and obtain our desired
bipartite 1-embeddings as well as the toroidal case.

3. Tripartite Case

Theorem 3. Let G be a simple tripartite 1-embeddable graph on a closed surface

F 2 with n vertices. Then we have |E(G)| ≤ 7
2n− 7

2χ(F
2).

Proof. Let c be the number of crossing points of G. For every pair of crossing
edges {v0v2, v1v3} of G, we perform the following operation. Note that there is
a pair of vertices {vi, vi+1}, say {v0, v1} without loss of generality, such that v0
and v1 belong to the same partite set. We remove an edge v0v2 from G and add
an edge v0v1 so that v0v1v3 forms a corner of a face (see Figure 4). Now denote
the resulting multigraph by H. Observe that H is probably not tripartite. If
there exists a pair of multiple edges forming a 2-gonal face of H, then such edges
come from left and right pairs of crossing edges of G; note that such edges do not
exist in G since each of them joins vertices in the same partite set (see Figure 4
again). Therefore, H has at most c

2 such pairs of multiple edges. If we remove
an edge from every pair of multiple edges forming a 2-gonal face of H, then we
obtain a topologically simple multigraph Ĥ embedded on F 2. Hence the number
of edges of Ĥ is at most 3n− 3χ(F 2). Furthermore, since the number of faces of
quadrangulations of F 2 with n vertices equals n− χ(F 2) by Euler’s formula, we
have c ≤ n − χ(F 2); recall the argument in the proof of Theorem 2. Therefore,
we obtain the following.

|E(G)| = |E(H)| ≤ |E(Ĥ)|+
c

2
≤ 3n− 3χ

(

F 2
)

+
n− χ

(

F 2
)

2
=

7

2
n−

7

2
χ
(

F 2
)

.
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G H

v0

v1v2

v3

Figure 4. Operation in the proof of Theorem 3.

Therefore, the theorem follows.

The upper bound in the above theorem is sharp. See Figure 5. If we identify
two horizontal sides and vertical sides of the square in the figure, then we obtain
a tripartite 1-embedded graph on the torus attaining the upper bound of the
theorem. On the other hand, if we identify antipodal pairs of points of the square,
then we obtain one on the projective plane. Furthermore, taking a double cover
of the above example on the projective plane, we obtain one on the sphere. For
other closed surfaces, it is not difficult to construct such examples attaining the
upper bounds by using the above examples; use above examples as “parts” and
paste those suitably to obtain examples on a closed surface of higher genus.

Figure 5. Tripartite 1-embedded graph on F 2 with 7

2
n− 7

2
χ(F 2) edges.
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