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Abstract

Let ℓ be a positive integer, k = 2ℓ or k = 2ℓ + 1, and let n be a positive
integer with n ≡ 1 (mod 2ℓ+1). For a prime p, n(p) denotes the largest

integer i such that pi divides n. Potočnik and Šajna showed that if there
exists a vertex-transitive self-complementary k-hypergraph of order n, then
for every prime p we have pn(p) ≡ 1 (mod 2ℓ+1). Here we extend their result
to a larger class of integers k.
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1. Introduction

In 1985 Rao [6] determined a sufficient condition on the order n of a vertex-
transitive self-complementary graph. Following many partial results, Muzychuk
[2] showed in 1999, in an elegant proof, that Rao’s sufficient condition was, indeed,
also necessary.
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For a prime p and a positive integer n, let n(p) denote the largest integer i
for which pi divides n. Using this notation, we combine the theorems of Rao and
Muzychuk as follows.

Theorem 1.1 (Rao/Muzychuk). For a positive integer n, there exists a vertex-

transitive self-complementary graph of order n if and only if pn(p) ≡ 1 (mod 4)
for every prime p.

For an interesting discussion of the history of the vertex-transitive self-com-
plementary graph problem, see [1].

For every integer k ≥ 2, a k-uniform hypergraph, or k-hypergraph, for short, is
a pair (V ;E) consisting of a vertex set V and edge set E ⊆

(

V
k

)

, where
(

V
k

)

denotes
the set of all k-subsets of V . Clearly a 2-hypergraph is just a simple graph. A
hypergraph H is called vertex-transitive if for every two vertices u, v of H there
is an automorphism φ of H for which u = φ(v). A k-hypergraph H = (V ;E)
is called self-complementary if there is a permutation σ of the set V , called a
self-complementing permutation, such that for every k-subset e of V , e ∈ E if and
only if σ (e) /∈ E. In other words, H is isomorphic to H = (V ;

(

V
k

)

\E). In 2009,
Potočnik and Šajna [5] proposed studying the problem analogous to the previous
theorem for k-hypergraphs. In particular, they extended Muzychuk’s necessary
condition to k-hypergraphs when k = 2ℓ or k = 2ℓ+1 for some positive integer ℓ.
Shortly after, Gosselin [3] established the sufficiency of the Potočnik and Šajna
result.

Theorem 1.2 (Potočnik-Šajna/Gosselin). Let m be a positive integer, k = 2m

or k = 2m+1, and let n be a positive integer with n ≡ 1 (mod 2m+1). Then there

exists a vertex-transitive self-complementary k-hypergraph of order n if and only

if for every prime p we have pn(p) ≡ 1 (mod 2m+1).

In Theorem 1.2, the only considered values of k are of the form k = 2m or
k = 2m + 1, for some positive integer m. We now consider any integer k ≥ 2
and look at the binary expansion of k. Then there are positive integers ℓ and m
such that k =

∑

ℓ≤i<m ki2
i +2m or k = 1+

∑

ℓ≤i<m ki2
i +2m, where ki ∈ {0, 1},

for every i. In Theorem 1.2, each such ki = 0. Furthermore, in Theorem 1.2,
n ≡ 1 (mod 2m+1). This suggests our next theorem which extends the necessary
condition of Potočnik and Šajna for more values of k.

Theorem 1.3. Let ℓ, k, n and m be positive integers such that 1 < k < n, 1 ≤
ℓ ≤ m and n ≡ 1 (mod 2m+1), k =

∑

ℓ≤j≤m kj2
j or k =

∑

ℓ≤j≤m kj2
j + 1,

where kj ∈ {0, 1} for every j, ℓ ≤ j ≤ m. If there exists a vertex-transitive self-

complementary k-hypergraph of order n, then for every prime p we have pn(p) ≡ 1
(mod 2ℓ+1).
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2. Proof of Theorem 1.3

If H is a self-complementary k-hypergraph, then the set of all self-complementing
permutations of H will be denoted by C(H). In [7] the following characterization
of self-complementing permutations for k-hypergraphs was given. Here |c| denotes
the order of a cycle c.

Theorem 2.1. Let n and k be positive integers, 2 ≤ k ≤ n. A permutation σ of

[1, n] with cycles c1, . . . , cλ is a self-complementing permutation of a k-hypergraph
of order n if and only if there is a nonnegative integer t such that the following

hold.

(i) k = at2
t + st, for some integers at and st, where at is odd and 0 ≤ st < 2t;

(ii) n = bt2
t+1 + rt, for some integers bt and rt, where 0 ≤ rt < 2t + st; and

(iii)
∑

i:|ci|(2)≤t |ci| = rt.

In [7], the condition (iii) has the form of inequality
∑

i:|ci|(2)≤t |ci| ≤ rt. However,

since rt ≡
∑

i:|ci|(2)≤t |ci| (mod 2t+1) and rt < 2t+1, we have equality (iii).

Theorem 2.1 implies the following corollary.

Corollary 2.2. Let ℓ, k, n and m be positive integers such that 1 < k < n,
1 ≤ ℓ ≤ m and n ≡ 1 (mod 2m+1), k =

∑

ℓ≤j≤m kj2
j or k =

∑

ℓ≤j≤m kj2
j + 1,

where kj ∈ {0, 1} for every j, ℓ ≤ j ≤ m. Then every cycle of order greater than

one of any self-complementing permutation of a self-complementary k-hypergraph
of order n has order divisible by 2ℓ+1.

Note that any such a permutation has exactly one cycle of order one.

Proof. Let σ be a self-complementing permutation of a self-complementary k-
hypergraph of order n with cycles c1, . . . , cλ. By Theorem 2.1 there exists a non-
negative integer t such that

1. k = at2
t + st, where at is odd and 0 ≤ st < 2t,

2. n = bt2
t+1 + rt, rt ∈ {0, . . . , 2t − 1 + st}, and

3.
∑

|ci|(2)≤t |ci| = rt.

First observe that t = 0 implies st = 0, and hence rt = 0 and n is even,
a contradiction. Thus, t ≥ 1. Since at is odd, it follows that t ≥ ℓ, and since
k < 2m+1, we have t ≤ m. Consequently, as n ≡ 1 (mod 2m+1), we have that
n ≡ 1 (mod 2t+1) and rt = 1. Thus, exactly one cycle ci, necessarily of length 1,
satisfies (3). In other words, with exception of a single fixed point, every cycle of
σ has order divisible by 2t+1, and hence by 2ℓ+1.

The proof of Theorem 1.3 uses the technique of Muzychuk [2]. The proof also
depends on the first two Sylow theorems (see [4], for example). The following
theorem is well-known. We give it however with proof, for completeness.
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Theorem 2.3. Let p be a prime and G a finite group. If P is a Sylow p-subgroup
of its normalizer in G, then P is a Sylow p-subgroup of the group G.

Proof. To prove this theorem, we shall use the notion of group action. If we
have a group G acting on a set X, we use symbols Xfix, Gx, and Ox to denote
the set of all fixed points of X, the stabilizer of a point x in G, and the orbit of
x, respectively. Recall that for any point x, the Orbit-Stabilizer Theorem (see,
for instance, [4] Section 8.3 Lemma 3) asserts that |Ox| = |G/Gx|, and clearly
Ox = {x} if and only if Gx = G.

The well-known Orbit Decomposition Theorem (see [4]) states that if a group
G acts on a finite set X 6= ∅, and x1, . . . , xn ∈ X are representatives of mutually
disjoint orbits with at least two elements, then

|X| = |Xfix|+
n
∑

i=1

|G/Gxi
|.

Thus, the Orbit Decomposition Theorem implies that if G is a p-group, then

|X| ≡ |Xfix| (mod p).

By NG(H) we denote the normalizer of a subgroup H in G; that is the largest
subgroup of G in which H is normal, namely NG(H) = {g ∈ G: gHg−1 = H}.
Now we have the following fact.

Fact. If H is a p-subgroup of G, then |NG(H)/H| ≡ |G/H| (mod p).

To prove it, we consider the following action of H on the set G/H of right
cosets: for every a ∈ H and every coset Hb, we define a(Hb) = Hba−1. It is
straightforward to verify that we are indeed defining a group action. Clearly, for
every a ∈ H, and for every b ∈ G, Hba−1 = Hb if and only if bab−1 ∈ H, and
hence, (G/H)fix = NG(H)/H. Since H is a p-group, |G/H| − |NG(H)/H| =
|G/H| − |(G/H)fix| is divisible by p.

If P is a Sylow p-subgroup of NG(P ), then |NG(P )/P | 6≡ 0 (mod p), and by
our Fact, it follows that P is a Sylow p-subgroup of G.

Proof of Theorem 1.3. Suppose that H = (V ;E) is a self-complementary
vertex-transitive k-hypergraph of order n, where k and n satisfy the conditions
of our theorem. Let p be a prime; if n(p) = 0, then the result is clear. Thus
assume that n(p) > 0. We shall find a self-complementary vertex-transitive k-
subhypergraph H ′ of H of order pn(p) such that the cycles of a self-complementing
permutation of H ′ are cycles of a self-complementing permutation σ of H and
the fixed point of σ is one of the vertices of H ′. By Corollary 2.2, all cycles of
σ have order divisible by 2ℓ+1, with the exception of a single fixed point. Hence
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the order of H ′, that is pn(p) , is congruent to 1 modulo 2ℓ+1, and the statement
of Theorem 1.3 follows.

Let M = Aut(H) be the automorphism group of H. For any group K, denote
the set of the Sylow p-subgroups of K by Sylp(K).

Note that for every σ ∈ C(H) we have σ2 ∈ Aut(H). Moreover a prod-
uct of a number of automorphisms and self-complementing permutations is an
automorphism of H if the number of self-complementing permutations is even;
otherwise, the product is a self-complementing permutation of H. The set G =
Aut(H) ∪ C(H) is a group which is generated by Aut(H) ∪ {σ}, where σ is an
arbitrary element of C(H).

Define P to be the set of p-subgroups P of M with the property that there
exists a vertex v of H and τ ∈ C(H) such that

(1) τ(v) = v;

(2) τPτ−1 = P (τ normalizes P );

(3) Pv ∈ Sylp(Mv).

We will show that P is not empty and any maximal element of P is, in fact,
a Sylow p-subgroup of M .

Since H is self-complementary, C(H) is not empty. Choose any σ ∈ C(H).
By Corollary 2.2 there is a fixed point v of σ. Let P ∈ Sylp(Mv).

Note that if p does not divide |Mv|, then P is trivial. Since P is a subgroup
of Mv, then P = Pv, and clearly σPσ−1 is a subgroup of Mv isomorphic to P .
By the second Sylow Theorem, there exists g ∈ Mv such that σPσ−1 = gPg−1.
Set τ = g−1σ. Then τ ∈ C(H), τ(v) = v, τPτ−1 = P , and Pv ∈ Sylp(Mv). Hence
P ∈ P and P 6= ∅.

From now on we shall assume that

• P ∈ P is a maximal element of P,

• N is the normalizer of P in M ,

• Q is a Sylow p-subgroup of N containing P (Q exists by the second Sylow
Theorem).

Claim. P is a Sylow p-subgroup of M .

Proof. To prove this claim, it suffices to show that Q ∈ P, and hence Q = P by
the maximality of P . It will then follow that P is a Sylow p-subgroup of its own
normalizer in M , and hence by Theorem 2.3, it is a Sylow p-subgroup of M .

Since P ∈ P, there are τ ∈ C(H) and a vertex v such that τ(v) = v,
τPτ−1 = P and Pv ∈ Sylp(Mv). It is straightforward to show that τ normalizes
N , that is, τNτ−1 = N. Thus, τN = Nτ.

Since Q is a subgroup of N and τNτ−1 = N , we have that τQτ−1 is a sub-
group of N and since |τQτ−1| = |Q|, we conclude that τQτ−1 is a Sylow p-
subgroup of N .
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Recall that v is a fixed point of τ , and let U = N(v), where N(v) = {h(v):h ∈
N}. Then we have τ(U) = τ(N(v)) = (τN)(v) = (Nτ)(v), since τN = Nτ by
our previous argument. This implies that τ(U) = N(τ(v)) = N(v) = U.

By Corollary 2.2, every cycle c of the self-complementing permutation τ has
length divisible by 2ℓ+1, with the exception of one fixed point. Since τ(U) = U , for
every cycle c of the permutation τ we know that either all the vertices of c are in
U or else, the set of vertices of c is disjoint with U . Therefore, U is a set of vertices
of a self-complementary vertex-transitive k-hypergraph H ′ = (U ;E ∩

(

U
k

)

) with
self-complementing permutation τ (restricted to U) and vertex-transitive group
of automorphisms containing N . Moreover, vertex v, the fixed point of τ , is in
U . Hence we have

|U | ≡ 1
(

mod 2ℓ+1
)

.

Since τQτ−1 and Q are two Sylow p-subgroups of the group N , by the second
Sylow Theorem, there is g ∈ N such that τQτ−1 = gQg−1.

Hence (g−1τ)Q(g−1τ)−1 = Q.

Write σ = τ−1g. By the definition of U and since g ∈ N , we have g(U) = U ,
and hence, σ(U) = U . We have σQσ−1 = Q, and the restriction of σ ∈ C(H) to
the set U is also a self-complementing permutation of H ′.

By Corollary 2.2, the permutation σ has a fixed point u, and all remaining
cycles are of lengths congruent to 1 (mod 2ℓ+1). Since |U | ≡ 1 (mod 2ℓ+1) and
the cycles of the restriction of σ to U are the cycles of σ, we have u ∈ U.

Since the group N is transitive on the set U , there is h ∈ N such that
h(v) = u. Thus the subgroups Mv and Mu are conjugate, that is,

• Mu = hMvh
−1.

Moreover, we also have

• Pu = hPvh
−1.

Hence |Mu| = |Mv| and |Pu| = |Pv|, and therefore Pu is a Sylow p-subgroup
of Mu. Since Pu ≤ Qu ≤ Mu and Qu is a p-subgroup of Mu, it follows that
Qu = Pu and Qu is a Sylow p-subgroup of Mu. Finally, we have Q ∈ P. This
completes the proof of the claim.

Now we shall show that the orbit P (v) induces a self-complementary vertex-
transitive k-hypergraph of order pr, where r = n(p). Note first that since τP = Pτ
and τ(v) = v, we have

τ(P (v)) = P (τ(v)) = P (v)

and therefore the k-subhypergraph of H induced by P (v) is self-complementary
and vertex-transitive.
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Write |M | = pdq, where q and p are relatively prime. Then |P | = pd by the
Claim. Since M acts transitively on V we have

|Mv| =
|M |

|M(v)|
=

pdq

prm
= pd−rs,

for some positive integers m and s both relatively prime with p.
Since Pv ∈ Sylp(Mv), it follows that |Pv| = pd−r. On the other hand, since

P ∈ Sylp(M) and Pv ∈ Sylp(Mv) we have

pd−r = |Pv| =
|P |

|P (v)|
=

pd

|P (v)|
.

This implies |P (v)| = pr. Since τ is a self-complementing permutation of H, by
Corollary 2.2, the length of every cycle of τ , with exception of a single fixed point,
is divisible by 2ℓ+1. Since τ(P (v)) = P (v), we know that P (v) is the union of
orbits of τ , including the fixed point v. Hence pr ≡ 1 (mod 2ℓ+1) as claimed.
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