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Abstract

Let ¢ be a positive integer, k = 2¢ or k = 2¢ 4 1, and let n be a positive
integer with n = 1 (mod 2*'). For a prime p, n(py denotes the largest
integer 7 such that p’ divides n. Poto¢nik and Sajna showed that if there
exists a vertex-transitive self-complementary k-hypergraph of order n, then
for every prime p we have p"® = 1 (mod 2¢*1). Here we extend their result
to a larger class of integers k.
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1. INTRODUCTION

In 1985 Rao [6] determined a sufficient condition on the order n of a vertex-
transitive self-complementary graph. Following many partial results, Muzychuk
[2] showed in 1999, in an elegant proof, that Rao’s sufficient condition was, indeed,
also necessary.
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For a prime p and a positive integer n, let n(, denote the largest integer i
for which p’ divides n. Using this notation, we combine the theorems of Rao and
Muzychuk as follows.

Theorem 1.1 (Rao/Muzychuk). For a positive integer n, there exists a vertezx-
transitive self-complementary graph of order n if and only if p"® = 1 (mod 4)
for every prime p.

For an interesting discussion of the history of the vertex-transitive self-com-
plementary graph problem, see [1].

For every integer k > 2, a k-uniform hypergraph, or k-hypergraph, for short, is
a pair (V; F) consisting of a vertex set V and edge set E C (Z), where (Z) denotes
the set of all k-subsets of V. Clearly a 2-hypergraph is just a simple graph. A
hypergraph H is called vertex-transitive if for every two vertices u,v of H there
is an automorphism ¢ of H for which u = ¢(v). A k-hypergraph H = (V; E)
is called self-complementary if there is a permutation o of the set V', called a
self-complementing permutation, such that for every k-subset e of V', e € E if and
only if o (€) ¢ E. In other words, H is isomorphic to H = (V; (‘]g) \ E). In 2009,
Potoénik and Sajna [5] proposed studying the problem analogous to the previous
theorem for k-hypergraphs. In particular, they extended Muzychuk’s necessary
condition to k-hypergraphs when k = 2¢ or k = 2¢ + 1 for some positive integer £.
Shortly after, Gosselin [3] established the sufficiency of the Poto¢nik and Sajna
result.

Theorem 1.2 (Poto¢nik-Sajna/Gosselin). Let m be a positive integer, k = 2™
ork =2"+1, and let n be a positive integer with n = 1 (mod 2™*1). Then there
exists a vertex-transitive self-complementary k-hypergraph of order n if and only
if for every prime p we have p"® =1 (mod 2™*1).

In Theorem 1.2, the only considered values of k are of the form k£ = 2™ or
k = 2™ 4 1, for some positive integer m. We now consider any integer k > 2
and look at the binary expansion of k. Then there are positive integers ¢ and m
such that k =Y, o, k2" + 2™ or k =1+, k2" + 2™, where k; € {0,1},
for every i¢. In Theorem 1.2, each such k; = 0. Furthermore, in Theorem 1.2,
n = 1(mod 2™*1). This suggests our next theorem which extends the necessary
condition of Potoénik and Sajna for more values of k.

Theorem 1.3. Let £, k,n and m be positive integers such that 1 < k <n, 1 <
¢ < mandn = 1(mod 2™+), k = Zegjgmkﬂj ork = 3 icicm k27 + 1,
where kj € {0,1} for every j, £ < j < m. If there exists a vertex-transitive self-

complementary k-hypergraph of order n, then for every prime p we have p™® =1
(mod 2¢1).
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2. PROOF OF THEOREM 1.3

If H is a self-complementary k-hypergraph, then the set of all self-complementing
permutations of H will be denoted by C(H). In [7] the following characterization
of self-complementing permutations for k-hypergraphs was given. Here |c| denotes
the order of a cycle c.

Theorem 2.1. Let n and k be positive integers, 2 < k < n. A permutation o of
[1,n] with cycles c1,. .., cy is a self-complementing permutation of a k-hypergraph
of order n if and only if there is a nonnegative integer t such that the following
hold.

(i) k= a;2! + s;, for some integers a; and sy, where a; is odd and 0 < sy < 2¢;
(i) n = b2 + 1y, for some integers by and ry, where 0 < ry < 2t + s;; and
(lll) Zi:|ci‘(2>§t ’CZ‘ =Tt

In [7], the condition (iii) has the form of inequality }_;,.. lci| < r¢. However,

l2)<t
since 1, = Zi:|6i|(2)§t lc;| (mod 2+1) and r, < 21+, we have equality (iii).

Theorem 2.1 implies the following corollary.

Corollary 2.2. Let {,k,n and m be positive integers such that 1 < k < n,
1<?¢<mandn=1(mod 2", k = de<i<m k;27 or k = > 0<i<m k20 + 1,
where k; € {0,1} for every j, £ < j < m. Then every cycle of order greater than
one of any self-complementing permutation of a self-complementary k-hypergraph
of order n has order divisible by 2°t1.

Note that any such a permutation has exactly one cycle of order one.

Proof. Let o be a self-complementing permutation of a self-complementary k-
hypergraph of order n with cycles ¢, ..., cyx. By Theorem 2.1 there exists a non-
negative integer ¢ such that

1. k = a;2! + s;, where a; is odd and 0 < s; < 2¢,
2. n=b2" 41y 1, €40,...,20 =1+ 5}, and
3. Z|Ci\(2>§t il = 7.

First observe that t = 0 implies s; = 0, and hence 4 = 0 and n is even,
a contradiction. Thus, ¢ > 1. Since a; is odd, it follows that ¢ > ¢, and since
k < 2m*l we have t < m. Consequently, as n = 1 (mod 2"*!), we have that
n =1 (mod 2*1) and 7; = 1. Thus, exactly one cycle ¢;, necessarily of length 1,
satisfies (3). In other words, with exception of a single fixed point, every cycle of
o has order divisible by 2t+!, and hence by 2+, n

The proof of Theorem 1.3 uses the technique of Muzychuk [2]. The proof also
depends on the first two Sylow theorems (see [4], for example). The following
theorem is well-known. We give it however with proof, for completeness.
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Theorem 2.3. Let p be a prime and G a finite group. If P is a Sylow p-subgroup
of its mormalizer in G, then P is a Sylow p-subgroup of the group G.

Proof. To prove this theorem, we shall use the notion of group action. If we
have a group G acting on a set X, we use symbols X¢;,, G, and O, to denote
the set of all fixed points of X, the stabilizer of a point x in G, and the orbit of
x, respectively. Recall that for any point z, the Orbit-Stabilizer Theorem (see,
for instance, [4] Section 8.3 Lemma 3) asserts that |O,| = |G/G,|, and clearly
O, = {z} if and only if G, = G.

The well-known Orbit Decomposition Theorem (see [4]) states that if a group
G acts on a finite set X # (), and x1,...,z, € X are representatives of mutually
disjoint orbits with at least two elements, then

| X| = |Xfi1’| + Z |G/ Ga,l.
i=1

Thus, the Orbit Decomposition Theorem implies that if G is a p-group, then
| X| = |X}iz| (mod p).

By N¢(H) we denote the normalizer of a subgroup H in G; that is the largest
subgroup of G in which H is normal, namely Ng(H) = {g € G:gHg™! = H}.
Now we have the following fact.

Fact. If H is a p-subgroup of G, then |Ng(H)/H| = |G/H| (mod p).

To prove it, we consider the following action of H on the set G/H of right
cosets: for every a € H and every coset Hb, we define a(Hb) = Hba™1. Tt is
straightforward to verify that we are indeed defining a group action. Clearly, for
every a € H, and for every b € G, Hba~' = Hb if and only if bab~' € H, and
hence, (G/H)fiz = Ng(H)/H. Since H is a p-group, |G/H| — |Ng(H)/H| =
|G/H| — |(G/H)iz| is divisible by p.

If P is a Sylow p-subgroup of Ng(P), then |Ng(P)/P| # 0 (mod p), and by
our Fact, it follows that P is a Sylow p-subgroup of G. [

Proof of Theorem 1.3. Suppose that H = (V;E) is a self-complementary
vertex-transitive k-hypergraph of order n, where k and n satisfy the conditions
of our theorem. Let p be a prime; if n(, = 0, then the result is clear. Thus
assume that ng,) > 0. We shall find a self-complementary vertex-transitive k-
subhypergraph H' of H of order p™® such that the cycles of a self-complementing
permutation of H' are cycles of a self-complementing permutation o of H and
the fixed point of o is one of the vertices of H'. By Corollary 2.2, all cycles of
o have order divisible by 2¢*1, with the exception of a single fixed point. Hence
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the order of H’, that is p"®, is congruent to 1 modulo 2!, and the statement
of Theorem 1.3 follows.

Let M = Aut(H) be the automorphism group of H. For any group K, denote
the set of the Sylow p-subgroups of K by Syl,(K).

Note that for every o € C(H) we have o? € Aut(H). Moreover a prod-
uct of a number of automorphisms and self-complementing permutations is an
automorphism of H if the number of self-complementing permutations is even;
otherwise, the product is a self-complementing permutation of H. The set G =
Aut(H) U C(H) is a group which is generated by Aut(H) U {c}, where o is an
arbitrary element of C(H).

Define P to be the set of p-subgroups P of M with the property that there
exists a vertex v of H and 7 € C(H) such that

(1) 7(v) =v;
(2) 7Pt~! = P (7 normalizes P);
(3) P, € SyL, (M),

We will show that P is not empty and any maximal element of P is, in fact,
a Sylow p-subgroup of M.

Since H is self-complementary, C'(H) is not empty. Choose any o € C(H).
By Corollary 2.2 there is a fixed point v of 0. Let P € Syl,(M,).

Note that if p does not divide |M,|, then P is trivial. Since P is a subgroup
of M,, then P = P,, and clearly cPo~! is a subgroup of M, isomorphic to P.
By the second Sylow Theorem, there exists g € M, such that cPo~! = gPg~ .
Set 7 = g~'o. Then 7 € C(H), 7(v) = v, TP7~! = P, and P, € Syl,,(M,). Hence
P e P and P # 0.

From now on we shall assume that

e P € P is a maximal element of P,
e N is the normalizer of P in M,

e () is a Sylow p-subgroup of N containing P (Q exists by the second Sylow
Theorem).

Claim. P is a Sylow p-subgroup of M.

Proof. To prove this claim, it suffices to show that () € P, and hence () = P by
the maximality of P. It will then follow that P is a Sylow p-subgroup of its own
normalizer in M, and hence by Theorem 2.3, it is a Sylow p-subgroup of M.

Since P € P, there are 7 € C(H) and a vertex v such that 7(v) = v,
7Pr~t = P and P, € Syl,(M,). It is straightforward to show that 7 normalizes
N, that is, TN7~! = N. Thus, TN = NT.

Since Q is a subgroup of N and TN7~! = N, we have that 7Q7~! is a sub-
group of N and since |[7Q77'| = |Q|, we conclude that 7Q7~! is a Sylow p-
subgroup of N.
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Recall that v is a fixed point of 7, and let U = N (v), where N (v) = {h(v):h €
N}. Then we have 7(U) = 7(N(v)) = (tN)(v) = (N7)(v), since TN = N7 by
our previous argument. This implies that 7(U) = N(7(v)) = N(v) = U.

By Corollary 2.2, every cycle ¢ of the self-complementing permutation 7 has
length divisible by 2¢+!, with the exception of one fixed point. Since 7(U) = U, for
every cycle ¢ of the permutation 7 we know that either all the vertices of ¢ are in
U or else, the set of vertices of ¢ is disjoint with U. Therefore, U is a set of vertices
of a self-complementary vertex-transitive k-hypergraph H' = (U; E N (g)) with
self-complementing permutation 7 (restricted to U) and vertex-transitive group
of automorphisms containing N. Moreover, vertex v, the fixed point of 7, is in
U. Hence we have

Ul =1 (mod?”l) .

Since 7Q7~! and Q are two Sylow p-subgroups of the group N, by the second
Sylow Theorem, there is g € N such that TQ7~! = gQg"'.

Hence (g7'7)Q(¢7'7)!' = Q.

Write o = 771g. By the definition of U and since g € N, we have g(U) = U,
and hence, o(U) = U. We have cQo~! = Q, and the restriction of o € C(H) to
the set U is also a self-complementing permutation of H'.

By Corollary 2.2, the permutation ¢ has a fixed point u, and all remaining
cycles are of lengths congruent to 1 (mod 2¢F1). Since |U| = 1 (mod 2¢!) and
the cycles of the restriction of o to U are the cycles of o, we have u € U.

Since the group N is transitive on the set U, there is h € N such that
h(v) = u. Thus the subgroups M, and M, are conjugate, that is,

o M, =hM,h "
Moreover, we also have
e P, =hP,h L.

Hence |M,| = |M,| and |P,| = |P,|, and therefore P, is a Sylow p-subgroup
of M,. Since P, < Q, < M, and @, is a p-subgroup of M,, it follows that
Q. = P, and @, is a Sylow p-subgroup of M,. Finally, we have () € P. This
completes the proof of the claim. 0

Now we shall show that the orbit P(v) induces a self-complementary vertex-
transitive k-hypergraph of order p”, where r = n ;). Note first that since 7P = Pt
and 7(v) = v, we have

7(P(v)) = P(7(v)) = P(v)

and therefore the k-subhypergraph of H induced by P(v) is self-complementary
and vertex-transitive.
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Write |M| = p?q, where ¢ and p are relatively prime. Then |P| = p? by the
Claim. Since M acts transitively on V' we have

M plq _
‘ | . . pd TS,

M= @) = rm

for some positive integers m and s both relatively prime with p.
Since P, € Syl,(M,), it follows that |P,| = p?~". On the other hand, since
P € Syl,(M) and P, € Syl,(M,) we have
d—r |P| pd

P IR S R)] T Pl
This implies |P(v)| = p”. Since 7 is a self-complementing permutation of H, by
Corollary 2.2, the length of every cycle of 7, with exception of a single fixed point,
is divisible by 2*!. Since 7(P(v)) = P(v), we know that P(v) is the union of
orbits of 7, including the fixed point v. Hence p" = 1 (mod 2*1) as claimed. m
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