Discussiones Mathematicae Graph Theory 43 (2023) 225–231 https://doi.org/10.7151/dmgt.2360

EXTENDING POTOČNIK AND ŠAJNA'S CONDITIONS ON THE EXISTENCE OF VERTEX-TRANSITIVE SELF-COMPLEMENTARY *k*-HYPERGRAPHS

LINDA LESNIAK

Western Michigan University, Kalamazoo, MI USA e-mail: linda.lesniak@wmich.edu

Henri Thuillier

Université d'Orléans, France e-mail: henri.thuillier@orange.fr

AND

A. PAWEŁ WOJDA

AGH University of Science and Technology, Kraków, Poland e-mail: wojda@agh.edu.pl

Abstract

Let ℓ be a positive integer, $k = 2^{\ell}$ or $k = 2^{\ell} + 1$, and let n be a positive integer with $n \equiv 1 \pmod{2^{\ell+1}}$. For a prime p, $n_{(p)}$ denotes the largest integer i such that p^i divides n. Potočnik and Šajna showed that if there exists a vertex-transitive self-complementary k-hypergraph of order n, then for every prime p we have $p^{n_{(p)}} \equiv 1 \pmod{2^{\ell+1}}$. Here we extend their result to a larger class of integers k.

Keywords: vertex-transitive hypergraphs, self-complementary hypergraphs. 2010 Mathematics Subject Classification: 05C65.

1. INTRODUCTION

In 1985 Rao [6] determined a sufficient condition on the order n of a vertextransitive self-complementary graph. Following many partial results, Muzychuk [2] showed in 1999, in an elegant proof, that Rao's sufficient condition was, indeed, also necessary. For a prime p and a positive integer n, let $n_{(p)}$ denote the largest integer i for which p^i divides n. Using this notation, we combine the theorems of Rao and Muzychuk as follows.

Theorem 1.1 (Rao/Muzychuk). For a positive integer n, there exists a vertextransitive self-complementary graph of order n if and only if $p^{n_{(p)}} \equiv 1 \pmod{4}$ for every prime p.

For an interesting discussion of the history of the vertex-transitive self-complementary graph problem, see [1].

For every integer $k \geq 2$, a k-uniform hypergraph, or k-hypergraph, for short, is a pair (V; E) consisting of a vertex set V and edge set $E \subseteq \binom{V}{k}$, where $\binom{V}{k}$ denotes the set of all k-subsets of V. Clearly a 2-hypergraph is just a simple graph. A hypergraph H is called vertex-transitive if for every two vertices u, v of H there is an automorphism ϕ of H for which $u = \phi(v)$. A k-hypergraph H = (V; E)is called self-complementary if there is a permutation σ of the set V, called a self-complementing permutation, such that for every k-subset e of V, $e \in E$ if and only if $\sigma(e) \notin E$. In other words, H is isomorphic to $\overline{H} = (V; \binom{V}{k} \setminus E)$. In 2009, Potočnik and Šajna [5] proposed studying the problem analogous to the previous theorem for k-hypergraphs. In particular, they extended Muzychuk's necessary condition to k-hypergraphs when $k = 2^{\ell}$ or $k = 2^{\ell} + 1$ for some positive integer ℓ . Shortly after, Gosselin [3] established the sufficiency of the Potočnik and Šajna result.

Theorem 1.2 (Potočnik-Šajna/Gosselin). Let m be a positive integer, $k = 2^m$ or $k = 2^m + 1$, and let n be a positive integer with $n \equiv 1 \pmod{2^{m+1}}$. Then there exists a vertex-transitive self-complementary k-hypergraph of order n if and only if for every prime p we have $p^{n(p)} \equiv 1 \pmod{2^{m+1}}$.

In Theorem 1.2, the only considered values of k are of the form $k = 2^m$ or $k = 2^m + 1$, for some positive integer m. We now consider any integer $k \ge 2$ and look at the binary expansion of k. Then there are positive integers ℓ and m such that $k = \sum_{\ell \le i < m} k_i 2^i + 2^m$ or $k = 1 + \sum_{\ell \le i < m} k_i 2^i + 2^m$, where $k_i \in \{0, 1\}$, for every i. In Theorem 1.2, each such $k_i = 0$. Furthermore, in Theorem 1.2, $n \equiv 1 \pmod{2^{m+1}}$. This suggests our next theorem which extends the necessary condition of Potočnik and Šajna for more values of k.

Theorem 1.3. Let ℓ, k, n and m be positive integers such that $1 < k < n, 1 \le \ell \le m$ and $n \equiv 1 \pmod{2^{m+1}}$, $k = \sum_{\ell \le j \le m} k_j 2^j$ or $k = \sum_{\ell \le j \le m} k_j 2^j + 1$, where $k_j \in \{0,1\}$ for every $j, \ell \le j \le m$. If there exists a vertex-transitive self-complementary k-hypergraph of order n, then for every prime p we have $p^{n_{(p)}} \equiv 1 \pmod{2^{\ell+1}}$.

2. Proof of Theorem 1.3

If H is a self-complementary k-hypergraph, then the set of all self-complementing permutations of H will be denoted by C(H). In [7] the following characterization of self-complementing permutations for k-hypergraphs was given. Here |c| denotes the order of a cycle c.

Theorem 2.1. Let n and k be positive integers, $2 \le k \le n$. A permutation σ of [1, n] with cycles c_1, \ldots, c_{λ} is a self-complementing permutation of a k-hypergraph of order n if and only if there is a nonnegative integer t such that the following hold.

(i) $k = a_t 2^t + s_t$, for some integers a_t and s_t , where a_t is odd and $0 \le s_t < 2^t$;

(ii) $n = b_t 2^{t+1} + r_t$, for some integers b_t and r_t , where $0 \le r_t < 2^t + s_t$; and

(iii)
$$\sum_{i:|c_i|_{(2)} \le t} |c_i| = r_t$$

In [7], the condition (iii) has the form of inequality $\sum_{i:|c_i|_{(2)} \leq t} |c_i| \leq r_t$. However, since $r_t \equiv \sum_{i:|c_i|_{(2)} \leq t} |c_i| \pmod{2^{t+1}}$ and $r_t < 2^{t+1}$, we have equality (iii).

Theorem 2.1 implies the following corollary.

Corollary 2.2. Let ℓ, k, n and m be positive integers such that 1 < k < n, $1 \leq \ell \leq m$ and $n \equiv 1 \pmod{2^{m+1}}$, $k = \sum_{\ell \leq j \leq m} k_j 2^j$ or $k = \sum_{\ell \leq j \leq m} k_j 2^j + 1$, where $k_j \in \{0,1\}$ for every $j, \ell \leq j \leq m$. Then every cycle of order greater than one of any self-complementing permutation of a self-complementary k-hypergraph of order n has order divisible by $2^{\ell+1}$.

Note that any such a permutation has exactly one cycle of order one.

Proof. Let σ be a self-complementing permutation of a self-complementary k-hypergraph of order n with cycles c_1, \ldots, c_{λ} . By Theorem 2.1 there exists a non-negative integer t such that

- 1. $k = a_t 2^t + s_t$, where a_t is odd and $0 \le s_t < 2^t$,
- 2. $n = b_t 2^{t+1} + r_t, r_t \in \{0, \dots, 2^t 1 + s_t\}$, and
- 3. $\sum_{|c_i|_{(2)} \leq t} |c_i| = r_t.$

First observe that t = 0 implies $s_t = 0$, and hence $r_t = 0$ and n is even, a contradiction. Thus, $t \ge 1$. Since a_t is odd, it follows that $t \ge \ell$, and since $k < 2^{m+1}$, we have $t \le m$. Consequently, as $n \equiv 1 \pmod{2^{m+1}}$, we have that $n \equiv 1 \pmod{2^{t+1}}$ and $r_t = 1$. Thus, exactly one cycle c_i , necessarily of length 1, satisfies (3). In other words, with exception of a single fixed point, every cycle of σ has order divisible by 2^{t+1} , and hence by $2^{\ell+1}$.

The proof of Theorem 1.3 uses the technique of Muzychuk [2]. The proof also depends on the first two Sylow theorems (see [4], for example). The following theorem is well-known. We give it however with proof, for completeness.

Theorem 2.3. Let p be a prime and G a finite group. If P is a Sylow p-subgroup of its normalizer in G, then P is a Sylow p-subgroup of the group G.

Proof. To prove this theorem, we shall use the notion of group action. If we have a group G acting on a set X, we use symbols X_{fix} , G_x , and \mathcal{O}_x to denote the set of all fixed points of X, the stabilizer of a point x in G, and the orbit of x, respectively. Recall that for any point x, the Orbit-Stabilizer Theorem (see, for instance, [4] Section 8.3 Lemma 3) asserts that $|\mathcal{O}_x| = |G/G_x|$, and clearly $\mathcal{O}_x = \{x\}$ if and only if $G_x = G$.

The well-known Orbit Decomposition Theorem (see [4]) states that if a group G acts on a finite set $X \neq \emptyset$, and $x_1, \ldots, x_n \in X$ are representatives of mutually disjoint orbits with at least two elements, then

$$|X| = |X_{fix}| + \sum_{i=1}^{n} |G/G_{x_i}|.$$

Thus, the Orbit Decomposition Theorem implies that if G is a p-group, then

$$|X| \equiv |X_{fix}| \pmod{p}.$$

By $N_G(H)$ we denote the normalizer of a subgroup H in G; that is the largest subgroup of G in which H is normal, namely $N_G(H) = \{g \in G : gHg^{-1} = H\}$. Now we have the following fact.

Fact. If H is a p-subgroup of G, then $|N_G(H)/H| \equiv |G/H| \pmod{p}$.

To prove it, we consider the following action of H on the set G/H of right cosets: for every $a \in H$ and every coset Hb, we define $a(Hb) = Hba^{-1}$. It is straightforward to verify that we are indeed defining a group action. Clearly, for every $a \in H$, and for every $b \in G$, $Hba^{-1} = Hb$ if and only if $bab^{-1} \in H$, and hence, $(G/H)_{fix} = N_G(H)/H$. Since H is a p-group, $|G/H| - |N_G(H)/H| =$ $|G/H| - |(G/H)_{fix}|$ is divisible by p.

If P is a Sylow p-subgroup of $N_G(P)$, then $|N_G(P)/P| \neq 0 \pmod{p}$, and by our Fact, it follows that P is a Sylow p-subgroup of G.

Proof of Theorem 1.3. Suppose that H = (V; E) is a self-complementary vertex-transitive k-hypergraph of order n, where k and n satisfy the conditions of our theorem. Let p be a prime; if $n_{(p)} = 0$, then the result is clear. Thus assume that $n_{(p)} > 0$. We shall find a self-complementary vertex-transitive k-subhypergraph H' of H of order $p^{n_{(p)}}$ such that the cycles of a self-complementing permutation of H' are cycles of a self-complementing permutation σ of H and the fixed point of σ is one of the vertices of H'. By Corollary 2.2, all cycles of σ have order divisible by $2^{\ell+1}$, with the exception of a single fixed point. Hence

the order of H', that is $p^{n_{(p)}}$, is congruent to 1 modulo $2^{\ell+1}$, and the statement of Theorem 1.3 follows.

Let $M = \operatorname{Aut}(H)$ be the automorphism group of H. For any group K, denote the set of the Sylow *p*-subgroups of K by $\operatorname{Syl}_p(K)$.

Note that for every $\sigma \in C(H)$ we have $\sigma^2 \in \operatorname{Aut}(H)$. Moreover a product of a number of automorphisms and self-complementing permutations is an automorphism of H if the number of self-complementing permutations is even; otherwise, the product is a self-complementing permutation of H. The set G = $\operatorname{Aut}(H) \cup C(H)$ is a group which is generated by $\operatorname{Aut}(H) \cup \{\sigma\}$, where σ is an arbitrary element of C(H).

Define \mathcal{P} to be the set of *p*-subgroups *P* of *M* with the property that there exists a vertex *v* of *H* and $\tau \in C(H)$ such that

- (1) $\tau(v) = v;$
- (2) $\tau P \tau^{-1} = P \ (\tau \text{ normalizes } P);$
- (3) $P_v \in \operatorname{Syl}_p(M_v).$

We will show that \mathcal{P} is not empty and any maximal element of \mathcal{P} is, in fact, a Sylow *p*-subgroup of M.

Since H is self-complementary, C(H) is not empty. Choose any $\sigma \in C(H)$. By Corollary 2.2 there is a fixed point v of σ . Let $P \in \text{Syl}_n(M_v)$.

Note that if p does not divide $|M_v|$, then P is trivial. Since P is a subgroup of M_v , then $P = P_v$, and clearly $\sigma P \sigma^{-1}$ is a subgroup of M_v isomorphic to P. By the second Sylow Theorem, there exists $g \in M_v$ such that $\sigma P \sigma^{-1} = gPg^{-1}$. Set $\tau = g^{-1}\sigma$. Then $\tau \in C(H)$, $\tau(v) = v$, $\tau P \tau^{-1} = P$, and $P_v \in \text{Syl}_p(M_v)$. Hence $P \in \mathcal{P}$ and $\mathcal{P} \neq \emptyset$.

From now on we shall assume that

- $P \in \mathcal{P}$ is a maximal element of \mathcal{P} ,
- N is the normalizer of P in M,
- Q is a Sylow *p*-subgroup of N containing P (Q exists by the second Sylow Theorem).

Claim. P is a Sylow p-subgroup of M.

Proof. To prove this claim, it suffices to show that $Q \in \mathcal{P}$, and hence Q = P by the maximality of P. It will then follow that P is a Sylow p-subgroup of its own normalizer in M, and hence by Theorem 2.3, it is a Sylow p-subgroup of M.

Since $P \in \mathcal{P}$, there are $\tau \in C(H)$ and a vertex v such that $\tau(v) = v$, $\tau P \tau^{-1} = P$ and $P_v \in \text{Syl}_p(M_v)$. It is straightforward to show that τ normalizes N, that is, $\tau N \tau^{-1} = N$. Thus, $\tau N = N \tau$.

Since Q is a subgroup of N and $\tau N \tau^{-1} = N$, we have that $\tau Q \tau^{-1}$ is a subgroup of N and since $|\tau Q \tau^{-1}| = |Q|$, we conclude that $\tau Q \tau^{-1}$ is a Sylow p-subgroup of N.

Recall that v is a fixed point of τ , and let U = N(v), where $N(v) = \{h(v): h \in N\}$. Then we have $\tau(U) = \tau(N(v)) = (\tau N)(v) = (N\tau)(v)$, since $\tau N = N\tau$ by our previous argument. This implies that $\tau(U) = N(\tau(v)) = N(v) = U$.

By Corollary 2.2, every cycle c of the self-complementing permutation τ has length divisible by $2^{\ell+1}$, with the exception of one fixed point. Since $\tau(U) = U$, for every cycle c of the permutation τ we know that either all the vertices of c are in U or else, the set of vertices of c is disjoint with U. Therefore, U is a set of vertices of a self-complementary vertex-transitive k-hypergraph $H' = (U; E \cap {U \choose k})$ with self-complementing permutation τ (restricted to U) and vertex-transitive group of automorphisms containing N. Moreover, vertex v, the fixed point of τ , is in U. Hence we have

$$|U| \equiv 1 \left(\mod 2^{\ell+1} \right).$$

Since $\tau Q \tau^{-1}$ and Q are two Sylow *p*-subgroups of the group N, by the second Sylow Theorem, there is $g \in N$ such that $\tau Q \tau^{-1} = g Q g^{-1}$.

Hence $(g^{-1}\tau)Q(g^{-1}\tau)^{-1} = Q.$

Write $\sigma = \tau^{-1}g$. By the definition of U and since $g \in N$, we have g(U) = U, and hence, $\sigma(U) = U$. We have $\sigma Q \sigma^{-1} = Q$, and the restriction of $\sigma \in C(H)$ to the set U is also a self-complementing permutation of H'.

By Corollary 2.2, the permutation σ has a fixed point u, and all remaining cycles are of lengths congruent to 1 (mod $2^{\ell+1}$). Since $|U| \equiv 1 \pmod{2^{\ell+1}}$ and the cycles of the restriction of σ to U are the cycles of σ , we have $u \in U$.

Since the group N is transitive on the set U, there is $h \in N$ such that h(v) = u. Thus the subgroups M_v and M_u are conjugate, that is,

• $M_u = h M_v h^{-1}$.

Moreover, we also have

• $P_u = hP_v h^{-1}$.

Hence $|M_u| = |M_v|$ and $|P_u| = |P_v|$, and therefore P_u is a Sylow *p*-subgroup of M_u . Since $P_u \leq Q_u \leq M_u$ and Q_u is a *p*-subgroup of M_u , it follows that $Q_u = P_u$ and Q_u is a Sylow *p*-subgroup of M_u . Finally, we have $Q \in \mathcal{P}$. This completes the proof of the claim.

Now we shall show that the orbit P(v) induces a self-complementary vertextransitive k-hypergraph of order p^r , where $r = n_{(p)}$. Note first that since $\tau P = P\tau$ and $\tau(v) = v$, we have

$$\tau(P(v)) = P(\tau(v)) = P(v)$$

and therefore the k-subhypergraph of H induced by P(v) is self-complementary and vertex-transitive. Write $|M| = p^d q$, where q and p are relatively prime. Then $|P| = p^d$ by the Claim. Since M acts transitively on V we have

$$|M_v| = \frac{|M|}{|M(v)|} = \frac{p^d q}{p^r m} = p^{d-r} s_{t}$$

for some positive integers m and s both relatively prime with p.

Since $P_v \in \text{Syl}_p(M_v)$, it follows that $|P_v| = p^{d-r}$. On the other hand, since $P \in \text{Syl}_p(M)$ and $P_v \in \text{Syl}_p(M_v)$ we have

$$p^{d-r} = |P_v| = \frac{|P|}{|P(v)|} = \frac{p^d}{|P(v)|}$$

This implies $|P(v)| = p^r$. Since τ is a self-complementing permutation of H, by Corollary 2.2, the length of every cycle of τ , with exception of a single fixed point, is divisible by $2^{\ell+1}$. Since $\tau(P(v)) = P(v)$, we know that P(v) is the union of orbits of τ , including the fixed point v. Hence $p^r \equiv 1 \pmod{2^{\ell+1}}$ as claimed.

Acknowledgement

The authors express their thanks to the anonymous referees for reading carefully the manuscript and for their important comments.

References

- R.A. Beezer, Sylow subgraphs in self-complementary vertex transitive graphs, Expo. Math. 24 (2006) 185–194. https://doi.org/10.1016/j.exmath.2005.09.003
- M. Muzychuk, On Sylow subgraphs of vertex-transitive self-complementary graphs, Bull. Lond. Math. Soc. **31** (1999) 531–533. https://doi.org/10.1112/S0024609399005925
- S. Gosselin, Vertex-transitive self-complementary uniform hypergraphs of prime order, Discrete Math. **310** (2010) 671–680. https://doi.org/10.1016/j.disc.2009.08.011
- [4] W.K. Nicholson, Introduction to Abstract Algebra (Wiley-Interscience, 2007).
- P. Potočnik and M. Šajna, Vetrex-transitive self-complementary uniform hypergraphs, European J. Combin. 28 (2009) 327–337. https://doi.org/10.1016/j.ejc.2007.08.003
- S.B. Rao, On regular and strongly-regular self-complementary graphs, Discrete Math. 54 (1985) 73-82. https://doi.org/10.1016/0012-365X(85)90063-9
- [7] A. Szymański and A.P. Wojda, Self-complementing permutations of k-uniform hypergraphs, Discrete Math. Theor. Comput. Sci. 11 (2009) 117–124.

Received 11 March 2020 Revised 2 September 2020 Accepted 2 September 2020