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Abstract

Let G be a graph, and let u, v, and w be vertices of G. If the distance
between u and w does not equal the distance between v and w, then w is
said to resolve u and v. The metric dimension of G, denoted β(G), is the
cardinality of a smallest set W of vertices such that every pair of vertices of
G is resolved by some vertex of W . The threshold dimension of G, denoted
τ(G), is the minimum metric dimension among all graphs H having G as
a spanning subgraph. In other words, the threshold dimension of G is the
minimum metric dimension among all graphs obtained from G by adding
edges. If β(G) = τ(G), then G is said to be irreducible.

We give two upper bounds for the threshold dimension of a graph, the
first in terms of the diameter, and the second in terms of the chromatic
number. As a consequence, we show that every planar graph of order n
has threshold dimension O(log

2
n). We show that several infinite families of

graphs, known to have metric dimension 3, are in fact irreducible. Finally,
we show that for any integers n and b with 1 ≤ b < n, there is an irreducible
graph of order n and metric dimension b.
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1. Introduction

Slater [12], being motivated by the problem of uniquely determining the location
of an intruder in a network, first introduced the notion of ‘resolvability’ in graphs.
For vertices x and y of a graph G, let dG(x, y) denote the distance between x and
y in G. We write d(x, y) in place of dG(x, y) if G is clear from context. A vertex w
is said to resolve a pair u, v of vertices in G if d(u,w) 6= d(v, w). A set W ⊆ V (G)
of vertices resolves the graph G, and we say that W is a resolving set for G, if
every pair of vertices of G is resolved by some vertex of W . A smallest resolving
set of G is called a basis of G, and its cardinality is called the metric dimension

of G, denoted β(G). Since being introduced by Slater [12], and independently
by Harary and Melter [5], the metric dimension has been studied extensively.
See the work of Cáceres et al. [3] for an extensive list of publications related to
the theoretical aspects of the metric dimension, and the work of Belmonte et al.

[1] for an extensive list of publications related to the computational aspects of
the metric dimension. Henceforth, when we say dimension in this paper, unless
qualified, we are referring to the metric dimension.

The question of how the metric dimension of a graph relates to that of its
subgraphs has been studied, for example, by Chartrand et al. [4] and Khuller et
al. [6]. In this article, we focus on the metric dimension of those graphs that have
a given graph G as a spanning subgraph. Suppose that distance detecting devices
can be installed at nodes (vertices) of a network G that indicate the distance to an
intruder in the network. If W is a resolving set for G, and if a detecting device
is installed at each node of W , then these devices can uniquely determine the
location of an intruder in the network. It is natural to ask whether the number
of detecting devices that are needed can be reduced if additional edges are added
to the existing network. The threshold dimension of a graph G, denoted τ(G),
is defined as min{β(H) : H contains G as a spanning subgraph}. A graph H
having G as a spanning subgraph and such that β(H) = τ(G) is called a threshold

graph of G. A graph G is called irreducible if τ(G) = β(G); otherwise, it is called
reducible.

The threshold dimension of a graph was introduced in a recent article by the
current authors [10], in which the following statements were proven.

• There is a geometric interpretation of the threshold dimension of a graph, in
terms of a minimum number of strong products of paths (each of sufficiently
large order) that admits a certain type of embedding of the graph.

• Every tree T with β(T ) ≥ 3 is reducible.

• Every tree with metric dimension 3 or 4 has threshold dimension 2.

• There exist trees with arbitrarily large metric dimension having threshold
dimension 2.
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In this article, we continue the study of the threshold dimension of a graph.
Section 2 is devoted to some preliminaries. In Section 3, we present two upper
bounds on the threshold dimension of a graph G; the first in terms of the diameter
of G, and the second in terms of the chromatic number of G. The latter bound
is shown to be sharp. In Section 4, we focus on irreducible graphs. We show
that the highly symmetric graphs of metric dimension 3 studied by Javaid et al.

[9] are irreducible, and that for every n ≥ 4 and b ∈ {3, . . . , n − 1}, there is an
irreducible graph of order n and dimension b.

2. Preliminaries

Let G be a graph. We let V (G) denote the vertex set of G, and E(G) denote the
edge set of G. The diameter of G is denoted diam(G). A shortest path between
two vertices u, v ∈ V (G) is called a diametral path of G if it has length diam(G).
The minimum degree among all vertices of G is denoted δ(G), and the maximum
degree among all vertices of G is denoted ∆(G). The chromatic number of G is
denoted χ(G). We adopt the convention that β(K1) = 0.

The complement of G is denoted by G. For any set S ⊆ E
(

G
)

, the graph
obtained from G by adding the edges of S is denoted by G + S. For disjoint
graphs G and H, the join of G and H, denoted G ∨ H, is the graph on vertex
set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {uv : u ∈ V (G) and v ∈ V (H)}.
For a graph G and a positive integer k, let Gk denote the kth power of G, that
is, the graph with vertex set V (G) and edge set {uv : dG(u, v) ≤ k}.

Let v be a vertex of G. The k-neighbourhood of v in G, denoted NG
k (v), is

the set of vertices in G whose distance from v is exactly k. We usually use NG(v)
instead of NG

1 (v). Let W ⊆ V (G). Then the W -neighbourhood of v in G, denoted
NG

W (v), is defined as NG
W (v) = NG(v)∩W . A vertex v is said to be W -universal

in G if NG
W (v) = W ; i.e., if v is adjacent to all vertices in W . Whenever the

graph G is clear from context, we omit the superscript in NG
k (v) and NG

W (v).

In the sequel, the key idea used in establishing an upper bound for the thresh-
old dimension of a graph G is to find a set W of vertices for which it is possible to
add edges to G in such a manner that every two vertices in G−W have distinct
W -neighborhoods in the resulting graph. For a set S, we use P(S) to denote the
power set of S. Let G be a graph, and let P,W ⊆ V (G) satisfy the following
conditions:

(i) W ∩ P = ∅;

(ii) |P | ≤ 2|W |; and

(iii) for every pair of vetices u, v ∈ P with nonempty W -neighbourhoods, we
have NW (u) 6= NW (v).
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Then the following algorithm outputs a set of edges E such that all vertices in
P have distinct W -neighbourhoods in G + E . In particular, this means that W
resolves P in G+ E .

Algorithm 2.1 (The Shortlex Assignment Algorithm). Input a graph G, along
with sets P,W ⊆ V (G) satisfying conditions (i)–(iii) above. LetW = {x1, . . . , xk}
and P = {u1, . . . , ur} ∪ {v1, . . . , vs}, where NG

W (ui) 6= ∅ for all i ∈ {1, . . . , r} and
NG

W (vj) = ∅ for all j ∈ {1, . . . , s}.

1. Collect subsets. Let N = {NW (ui) : 1 ≤ i ≤ r}. Let S = P(W )−N .

2. Sort subsets. Sort S using the shortlex ordering, i.e., sort first by cardi-
nality, with the smallest subsets appearing first, and then lexicographically
within each cardinality, with x1 < · · · < xk. Let S = {S1, . . . , S|S|}, where

|S1| < · · · <
∣

∣S|S|

∣

∣. (By condition (ii), we have |S| = 2|W | − r ≥ |P | − r = s.)

3. Output edges. For all j ∈ {1, . . . , s}, let Ej = {vjx : x ∈ Sj}. Let E =
⋃s

j=1Ej . Output E .

In the graph G+E , the W -neighbourhood of vj is exactly Sj . In other words,
the algorithm assigns the W -neighbourhood Sj to the vertex vj . The shortlex
ordering guarantees that some vertex in P has empty W -neighbourhood in G+E
(unless s = 0), and that no vertex in P is W -universal in G + E (unless some
ui is W -universal or |P | = 2|W |). We will also make use of the Reverse Shortlex

Assignment Algorithm, which is the same as the Shortlex Assignment Algorithm,
except at step 2, the reverse shortlex ordering is used. This guarantees that some
vertex in P is assigned the entire set W (unless s = 0), i.e., that some vertex in
P is W -universal in G+ E .

We now state two elementary results which will be useful in several parts
of the paper. The first is a generalization of the fact that no graph of metric
dimension 2 has K5 as a subgraph [6, Theorem 3.2]. Khuller et al. [6] noted that
the result could be generalized, and the proof of the following lemma is indeed
straightforward.

Lemma 2.2. Let G be a graph with Kn as a subgraph. Then β(G) ≥ ⌈log2 n⌉ .

We also use a tight lower bound on the metric dimension of a graph of order
n and diameter 2, proven by Khuller et al. [6], and independently by Chartrand
et al. [4]. We note that a tight bound on the metric dimension of a graph of
any given order n and diameter d was later proven by Hernando et al. [8], but
we only need the special case d = 2. Define g : (1,∞) → N as follows: g(x) is
the smallest integer d such that 2d + d ≥ x, i.e., we have g(x) = d if and only if
x ∈ (2d−1 + d− 1, 2d + d].

Lemma 2.3. Let G be a graph of order n and diameter 2. Then β(G) ≥ g(n).
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3. Bounds on the Threshold Dimension of a Graph

In this section, we prove upper bounds on the threshold dimension of a graph.
We begin with a general result from which a bound in terms of diameter follows
in a straightforward manner. The proof relies on a process similar to that of the
Shortlex Assignment Algorithm.

Theorem 3.1. Let G be a graph of order n. Suppose that there exists a set

W ⊆ V (G) and an integer ℓ ∈ {0, 1, . . . , |W | − 1} such that:

(i) 2|W |−ℓ ≥ n− |W |; and

(ii) for every x ∈ V (G)−W , we have |NW (x)| ≤ ℓ.

Then τ(G) ≤ |W |.

Proof. Let P = V (G)−W . We show that we can add edges to G so that every
vertex x ∈ P has a unique W -neighbourhood.

Let P = {v1, . . . , vk}, where k = n − |W |. We assign to each vi a distinct
subset Si of W containing NG

W (vi) as follows. We begin by assigning v1 the
subset S1 = NG

W (v1). Now let i ≥ 2 and suppose that v1, . . . , vi−1 have been
assigned distinct subsets S1, . . . , Si−1 of W that contain NG

W (v1), . . . , N
G
W (vi−1),

respectively. Since we have 2|W |−|NG
W (vi)| ≥ 2|W |−ℓ ≥ n− |W | = k ≥ i, there is a

subset Si of W containing NG
W (vi) that is distinct from S1, . . . , Si−1. Assign vi

the subset Si.
Now let H = G + E , where E =

⋃k
i=1

{

vis : s ∈ Si\N
G
W (vi)

}

. For every
i ∈ {1, . . . , k}, we have NH

W (vi) = Si, and since the Si are all distinct, we conclude
that W is a resolving set for H. Therefore, τ(G) ≤ |W |.

As a consequence of Theorem 3.1, we see that if a graph G has sufficiently
large diameter (relative to its order), then the threshold dimension of G is
bounded above by its diameter. In fact, if the diameter of G is large enough,
then for any diametral path D in G, there is a graph H containing G as a span-
ning subgraph in which V (D) is a resolving set.

Corollary 3.2. Let G be a graph of order n and diameter d. If 2d−3 ≥ n − d,
then τ(G) ≤ d.

Proof. Suppose that 2d−3 ≥ n − d. Let D be a diametral path of G, and let
W = V (D). Note that every vertex in V (G) − W is adjacent to at most three
vertices in W , since D is a diametral path. The result now follows immediately
from Theorem 3.1.

We now work towards a bound on the threshold dimension for any graph of
order n and chromatic number k. By the following straightforward observation,
it suffices to bound the threshold dimension of all complete k-partite graphs of
order n.
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Observation 3.3. Let H be a graph that contains G as a spanning subgraph.

Then τ(G) ≤ τ(H).

The next result gives the exact value of the threshold dimension of every
complete multipartite graph. Before we proceed, we make some preliminary
observations and introduce some notation.

Let K = Kx1,...,xk
be a complete k-partite graph. Let X1, . . . , Xk be the

partite sets of K, where |Xi| = xi for 1 ≤ i ≤ k. Let H be a threshold graph of
K, and let W be a metric basis for H. Let u and v be two vertices of V (H)−W .
If u and v belong to two distinct partite sets of K, say u ∈ Xi and v ∈ Xj , then
either W contains a vertex of Xi which is not adjacent in H to u, or W contains
a vertex of Xj which is not adjacent in H to v. On the other hand, if u and v
belong to the same partite set Xi, then W must contain some vertex in Xi which
resolves u and v.

Define the function f : [1,∞) → N as follows: f(x) is the smallest integer d
such that 2d+d > x, i.e., we have f(x) = d if and only if x ∈ [2d−1+d−1, 2d+d).
Note that f(x) ≤ ⌈log2(x)⌉ for all x > 1. For a given integer d ≥ 1, define
ℓd = 2d−1 + d − 1; this is the smallest number that f maps to d, and these
numbers play an important role in the proofs that follow. Note that we have
ℓd − ℓd−1 = 2d−2 + 1.

Lemma 3.4. Let K = Kx1,...,xk
be a complete k-partite graph, and let SK =

∑k
i=1 f(xi). Then

τ(K) = TK :=

{

SK , if xi 6= ℓf(xi) for every 1 ≤ i ≤ k;

SK − 1, otherwise.

Proof. Let K and c be as above, and let X1, X2, . . . , Xk be the partite sets of
K, where |Xi| = xi for 1 ≤ i ≤ k. We first show that τ(K) ≤ TK .

First suppose that xi 6= ℓf(xi) for every i ∈ {1, . . . , k}. We construct a graph
H that contains G as a spanning subgraph and has a resolving set of cardinality
SK . For all i ∈ {1, . . . , k}, let Wi be a set of f(xi) vertices from Xi, and let
Pi = Xi − Wi. Since Xi is an independent set in G, the Wi-neighbourhood of
every vertex in Pi is empty. By the definition of f , we have xi < 2f(xi) + f(xi),
hence

|Pi| = |Xi| − |Wi| = xi − f(xi) < 2f(xi) = 2|Wi|.

Thus, for every i, we may apply the Shortlex Assignment Algorithm with inputs
G, Wi, and Pi, and no vertex of Pi is assigned the entire set Wi. Let Ei be the set
of edges output by the algorithm. Let E =

⋃k
i=1 Ei, and define H = G + E . We

claim that W =
⋃k

i=1Wi is a resolving set for H. Let u and v be in V (K)−W .
If u and v belong to the same set Xi, then NWi

(u) 6= NWi
(v), and thus u and v

are resolved by some vertex in Wi. Otherwise, we may assume that u ∈ Xi and
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v ∈ Xj for some i < j (switching the labels of u and v if necessary). Then u is
Wj-universal, while v is not. So u and v are resolved by some vertex from Wj .

Now suppose that xi = ℓf(xi) for some i ∈ {1, . . . , k}. Without loss of
generality, say x1 = ℓf(x1). We construct a graphH that contains G as a spanning
subgraph and has a resolving set of cardinality SK−1. LetW1 be a set of f(x1)−1
vertices from X1, and for all i ≥ 2, let Wi be a set of f(xi) vertices from Xi. For
all i ∈ {1, . . . , k}, let Pi = Xi −Wi. Since x1 = ℓf(x1) = 2f(x1)−1 + f(x1)− 1, we
have

|P1| = |X1| − |W1| = x1 − f(x1) + 1 = 2f(x1)−1 = 2|W1|.

As above, we have |Pi| < 2|Wi| for all i ≥ 2. Thus, for every i, we may apply the
Shortlex Assignment Algorithm with inputs G, Wi, and Pi. Since |P1| = 2|W1|,
some vertex of P1 is assigned the entire set W1, but for every i ≥ 2, no vertex
of Pi is assigned the entire set Wi. Let Ei be the set of edges output by the
algorithm. Let E =

⋃k
i=1 Ei, and define H = G+ E . We claim that W =

⋃k
i=1Wi

is a resolving set for H. The proof is the same as in the previous case. (We
insisted that i < j in the previous case so that v 6∈ X1, guaranteeing that v is not
Wj-universal.)

We now prove that τ(K) ≥ TK . LetH be a graph containingK as a spanning
subgraph. Let W ⊆ V (H) be a resolving set for H. We show that |W | ≥ TK .
From the remark prior to Lemma 3.4, no vertex from V (H) − Xi resolves any
pair of vertices from Xi, for every 1 ≤ i ≤ k. So Wi := W ∩Xi must resolve Xi.
Further, since K (and hence H) has diameter 2, all vertices in Xi−Wi must have
distinct Wi-neighbourhoods. It follows that we must have 2|Wi| ≥ |Xi| − |Wi|, or
equivalently 2|Wi| + |Wi| ≥ |Xi|.

First of all, if xi 6= ℓf(xi), then we have xi > 2f(xi)−1 + f(xi) − 1. It follows

that |Wi| ≥ f(xi). Otherwise, if xi = ℓf(xi) = 2f(xi)−1 + f(xi)− 1, then we must
have |Wi| ≥ f(xi)− 1.

Now suppose that there exist distinct integers i and j such that |Wi| =
f(xi)− 1 and |Wj | = f(xj)− 1. Then xi = ℓf(xi) = 2|Wi|+ |Wi| and xj = ℓf(xj) =

2|Wj | + |Wj |. It follows that some vertex vi of Xi −Wi is Wi-universal, and some
vertex vj of Xj −Wj is Wj-universal. But then vi and vj are both W -universal,
and hence W does not resolve H, a contradiction. This completes the proof that
τ(K) ≥ TK .

We now establish a sharp upper bound for the threshold dimension of graphs
of order n and chromatic number k.

Theorem 3.5. Let G be a graph of order n with χ(G) = k. Then

τ(G) ≤ k(f(n/k) + 1)− 1.

Moreover, this bound is sharp for all k.
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Proof. Let X1, . . . , Xk be a partition of V (G) into k nonempty independent
sets. Let |Xi| = xi for 1 ≤ i ≤ k, and assume without loss of generality that
x1 ≤ · · · ≤ xk. By Observation 3.3, it is sufficient to show that τ(Kx1,...,xk

) ≤
k(f(n/k) + 1) − 1. Let d = f(n/k), and let f(xi) = di for 1 ≤ i ≤ k. By
Lemma 3.4, we have τ(Kx1,...,xk

) ≤
∑k

i=1 di. Observe that d1 ≤ d, otherwise

n =
∑k

i=1 xi ≥ k(2d + d), which implies that f(n/k) ≥ d + 1, a contradiction.
Further, if we have di ≤ d + 1 for all 2 ≤ i ≤ k, then the statement holds. So
suppose that dk ≥ d + 2. We demonstrate the existence of a set {x∗1, . . . , x

∗
k} of

positive integers such that

(i)
∑k

i=1 x
∗
i = n;

(ii) τ(Kx∗
1
,...,x∗

k
) ≥ τ(Kx1,...,xk

); and

(iii) for all 1 ≤ i ≤ k, we have f(x∗i ) ≤ d+ 1.

We claim that the theorem statement follows from this fact. Suppose that such
a set exists, and reorder, if necessary, so that x∗1 ≤ · · · ≤ x∗k. Then, by the above
argument, we have f(x∗1) ≤ d, and together with (ii) and (iii), this gives the
theorem statement.

Define x′k = ℓdk−1+1 and x′1 = x1+xk −x′k, and for all 2 ≤ i ≤ k− 1, define

x′i = xi. Note that
∑k

i=1 x
′
i = n and f(x′k) = f(xk)− 1. Since dk ≥ d+2, we also

have

xk − x′k ≥ ℓdk − ℓdk−1 − 1 = 2dk−2 ≥ 2d.(1)

We now show that τ
(

Kx′
1
,...,x′

k

)

≥ τ
(

Kx1,...,xk

)

. Since x1 ∈
[

2d1−1+d1−1, 2d1+d1
)

(and d1 ≤ d), we may consider the following three cases.

Case 1. f(x′1) = f(x1) + 1 and x′1 = ℓd1+1. In this case, we have 2d1 + d1 =
x′1 = x1 + xk − x′k ≥ x1 + 2d ≥ 2d1−1 + d1 − 1 + 2d. So 2d1−1 + 1 ≥ 2d. Since
d ≥ d1, this is only possible if d = d1 = 1 and xk −x′k = 2. Thus, by (1), we have
dk = 3 and xk = ℓ3 = 6. Hence x′1 = ℓf(x′

1
) and xk = ℓf(xk). By Lemma 3.4, it

follows that

τ
(

Kx′
1
,...,x′

k

)

=
k

∑

i=1

f(x′i)− 1 =
k

∑

i=1

f(xi)− 1 = τ (Kx1,...,xk
) .

Case 2. f(x′1) = f(x1) + 1 and x′1 6= ℓd1+1. In this case
∑k

i=1 f(x
′
i) =

∑k
i=1 f(xi). Further, x′1 6= ℓf(x′

1
) and x′k 6= ℓf(x′

k
). Hence if x′i = ℓf(x′

i)
for some

i ∈ {1, . . . , k}, then in fact i ∈ {2, . . . , k − 1}, and xi = ℓf(xi) as well. It follows
that τ(Kx′

1
,...,x′

k
) = τ(Kx1,...,xk

).

Case 3. f(x′1) ≥ f(x1) + 2. In this case,

τ
(

Kx′
1
,...,x′

k

)

≥
k

∑

i=1

f(x′i)− 1 ≥
k

∑

i=1

f(xi) ≥ τ (Kx1,...,xk
) .
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This completes the proof that τ
(

Kx′
1
,...,x′

k

)

≥ τ (Kx1,...,xk
).

Finally, note that x′1 < xk. It follows that

max
{

x′i : 1 ≤ i ≤ k
}

≤ max
{

xi : 1 ≤ i ≤ k
}

,

with equality if and only if xk−1 = xk. Hence, we may repeatedly apply the
entire process described above, and we will eventually reach a set

{

x∗1, . . . , x
∗
k

}

satisfying conditions (i)–(iii).
We now prove that the bound is sharp. For every k ≥ 2, we show that there is

an infinite family of complete k-partite graphs whose threshold dimension meets
the given upper bound. Fix k ≥ 2. Let d0 be the smallest positive integer such
that 2d0−2 + 1 > k. (Equivalently, d0 is the smallest positive integer such that
ℓd0+1 − ℓd0 > k.) For any d ≥ d0, let x1 = ℓd + 1, and let xi = ℓd+1 + 1 for all
i ∈ {2, . . . , k}. Let n =

∑k
i=1 xi. Using the fact that ℓd+1 − ℓd > k, it is easy to

verify that ℓd < n/k < ℓd+1. Hence f(n/k) = d. By Lemma 3.4, we have

τ
(

Kx1,...,xk

)

= (k − 1)(d+ 1) + d = k(d+ 1)− 1 = k(f(n/k) + 1)− 1,

as desired.

By the Four Colour Theorem and Theorem 3.5, we obtain the following
upper bound on the threshold dimension of every planar graph. Recall that
f(x) ≤ ⌈log2(x)⌉ for all x > 1.

Corollary 3.6. Let G be a planar graph of order n ≥ 5. Then

τ(G) ≤ 4(f(n/4) + 1)− 1 ≤ 4 ⌈log2(n)⌉ − 5.

4. Irreducible Graphs

In this section, we focus on finding irreducible graphs. In our previous paper [10],
we mentioned that every graph of order n and metric dimension 1, 2, or n − 1
is irreducible. But in general, it seems that irreducible graphs are more difficult
to find than reducible graphs. In Subsection 4.1, we present two infinite families
of graphs which are known to have metric dimension 3, and we show that these
graphs are irreducible. In Subsection 4.2, we construct an irreducible graph of
every order n and dimension b, where 1 ≤ b < n.

4.1. Some irreducible graphs of dimension 3

We begin by showing that every graph of dimension 3 and minimum degree at
least 4 is irreducible. This is actually a straightforward corollary of the following
result proven by Hernando et al. [8], and reproven in our earlier work on the
threshold dimension [10].
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Lemma 4.1. Let G be a graph with dimension b. If {w1, . . . , wb} is a basis for

G, then for each 1 ≤ i ≤ b and for each 1 ≤ k ≤ diam(G), we have |Nk(wi)| ≤
(2k + 1)b−1.

In particular, if G has metric dimension 2, then no vertex of degree at least
4 belongs to a metric basis of G. This immediately gives the following.

Corollary 4.2. Let G be a graph. If δ(G) ≥ 4, then β(G) ≥ τ(G) ≥ 3.

For example, Corollary 4.2 implies that C2
n, the square of the cycle of order

n, has threshold dimension at least 3 for n ≥ 5. It was shown by Javaid et al. [9]
that β(C2

n) = 3 for n ≥ 6 and n 6≡ 1 (mod 4), so we conclude that τ
(

C2
n

)

= 3 for
these values of n.†

Next, we establish that the threshold dimension of an infinite family of gen-
eralized Petersen graphs is 3. This requires more work, as these graphs are
3-regular, meaning that we cannot apply Corollary 4.2. Let P (n, k) denote the
generalized Petersen graph with parameters n and k, that is, the graph with
vertex set {u1, . . . , un, v1, . . . , vn}, and edge set {vivi+1, uivi, uiui+k : 1 ≤ i ≤ n},
with indices taken modulo n. We call {u1, . . . , un} the inner ring of P (n, k), and
we call {v1, . . . , vk} the outer ring of P (n, k). The graphs P (6, 2) and P (8, 2) are
illustrated in Figure 1.

u1

u2

u3

u4

u5

u6

v1

v2v3

v4

v5 v6

u1

u2
u3

u4

u5

u6 u7

u8

v1

v2

v3

v4

v5

v6

v7

v8

(a) The graph P (6, 2). (b) The graph P (8, 2).

Figure 1. The generalized Petersen graphs P (6, 2) and P (8, 2).

Javaid et al. [9] showed that β(P (n, 2)) = 3 for all n ≥ 5. Sudhakara et al.

[11] demonstrated that no graph of dimension 2 contains the Petersen graph as
a subgraph, from which it follows that P (5, 2) is irreducible. We now prove that
P (n, 2) is in fact irreducible for all n ≥ 5.

Theorem 4.3. If n ≥ 5, then P (n, 2) is irreducible.

†The graph C
2

n is an example of a Harary graph, and is denoted H4,n by Javaid et al. [9].
The graph C

2

2n is also called an anti-prism graph, and is denoted An by Javaid et al. [9].
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Proof. Let n ≥ 5, and let G = P (n, 2). Since it is known that β(P (n, 2)) = 3
[9], it suffices to show that τ(G) ≥ 3. Suppose, to the contrary, that there exists
a set of edges E ⊆ E

(

G
)

such that β(G+E) = 2. Let {x, y} be a basis for G+E .
We consider several cases, using the fact that G is 3-regular throughout.

Case 1. n ≥ 10, or n ≥ 5 and n is odd. In this case, for each vertex v ∈ V (G),
we have |NG

2 (v)| = 6. If no edge of E is incident with x, then NG+E
2 (x) ≥ 6. By

Lemma 4.1, this is not possible. Hence, there is an edge in E incident with x, and
some vertex of G in NG

2 (x). However, then NG+E
1 (x) ≥ 4. Again, by Lemma 4.1,

this is impossible. We conclude that τ(G) = 3.

Case 2. n = 6. The graph G is depicted in Figure 1(a). For each vertex
v on the outer ring, we have |NG

2 (v)| = 6. Hence, by the same argument as in
Case 1, we see that x and y must belong to the inner ring of G. Without loss
of generality, we may assume that x = u1, and y = ui for some i ∈ {2, 3, 4}. In
each case, it is straightforward to see that NG

2 (x) ∩NG
2 (y) contains some vertex

v. Since {x, y} resolves G + E , we see that E must contain one of the edges xv
or yv. But then either NG+E

1 (x) ≥ 4, or NG+E
1 (y) ≥ 4, and this is impossible by

Lemma 4.1.

Case 3. n = 8. The graph G is shown in Figure 1(b). As in Case 2, we see
that x and y must belong to the inner ring of G. Without loss of generality, we
may assume that x = u1 and y = ui for some i ∈ {2, 3, 4, 5}. In each case, one
can verify that NG

2 (x) ∩NG
2 (y) is nonempty, and we reach a contradiction as in

Case 2.

4.2. Irreducible graphs of given order and dimension

In this subsection, we prove that an irreducible graph of any given dimension and
any order exceeding this dimension exists. We begin with some theorems that
will be helpful in constructing irreducible graphs from other irreducible graphs.
Graphs of diameter 2 and the join operation will play an important role in our
constructions. Recall that the join of graphs G and H is denoted G ∨H.

Lemma 4.4. If diam(G) ≤ 2, then

(i) β
(

G ∨K2

)

= β(G) + 1; and

(ii) β(G ∨K2) ∈ {β(G) + 1, β(G) + 2}.

Proof. We prove only (i); the proof of (ii) is similar. Let H = G ∨K2. Let W
be a basis for H. Since diam(G) = 2, we have dH(u, v) = dG(u, v) for all vertices
u, v ∈ V (G). Moreover, neither of the two vertices in K2 resolves any pair of
vertices that belong toG. So,W∩V (G) resolvesG, and hence |W∩V (G)| ≥ β(G).
Moreover, W contains at least one of the two vertices joined to every vertex of
G; otherwise this pair is not resolved by W . Thus β(H) = |W | ≥ β(G) + 1.
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Now, if v ∈ V
(

K2

)

, and WG is a basis for G, then WG ∪ {v} is a resolving set
for H, since WG resolves each pair of vertices in V (G), and v resolves any pair of
vertices containing at least one vertex from K2. So β(H) = β(G) + 1.

If G is an arbitrary graph of diameter at most 2, note that both β(G∨K2) =
β(G)+1 and β(G∨K2) = β(G)+2 are possible. For example, it is straightforward
to verify that β(Kn∨K2) = β(Kn)+2 for all n ≥ 1, while β(C4∨K2) = β(C4)+1.
If G has diameter greater than 2, then it is possible that β(G∨K2) and β(G∨K2)
are both larger than β(G)+2. For example, let T be the tree obtained from K1,3

by subdividing every edge exactly twice. Then one can verify that β(T ) = 2,
while β(T ∨K2) = β(T ∨K2) = 5. See Figure 2(a) for an illustration of a metric
basis of T ∨K2. (The white vertices also form a metric basis of T ∨K2.)

Next, we show that when we join K2 to an irreducible graph of diameter 2,
the resulting graph is also irreducible. This is an important tool in the proof of
the main result of this section.

(a) The graph T ∨K2, with the vertices
of a metric basis coloured white.

(b) A threshold graph for T ∨K2, with
the vertices of a metric basis coloured
white.

Figure 2. The graph T ∨ K2, where T is the tree obtained from K1,3 by subdividing
every edge exactly twice. (For clarity, only one end of each edge joining a vertex of T
to a vertex of K2 is drawn.) Note that β(T ) = τ(T ) = 2, while β(T ∨ K2) = 5 and
τ(T ∨K2) = 4.

Theorem 4.5. Let G be an irreducible graph, with diam(G) ≤ 2. Then G ∨K2

is also irreducible, with τ
(

G ∨K2

)

= β(G) + 1.

Proof. Let H = G ∨K2. By Lemma 4.4, we have that β(H) = β(G) + 1.
We now argue that H is irreducible. Suppose towards a contradiction that

there is a set {e1, . . . , ek} = E of edges such that β(H+E) < β(H). By Lemma 4.4,
we may assume that all of the edges in E join vertices of G. We claim that
β(G + E) < β(G). Let H ′ = H + E , and G′ = G + E . Let W be a basis for H ′.
From the proof of Lemma 4.4, we know that exactly one vertex from V

(

K2

)

, say
v, is in W . Also, note that H ′ = G′ ∨K2. Let W ′ = W − {v}. Then W ′ must
resolve G′, since for all u, v ∈ V (G) we have dH′(u, v) = dG′(u, v). So β(G′) ≤
|W ′| = β(H ′)−1 < β(H)−1 = β(G). But then G is reducible, a contradiction.
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While there are some irreducible graphs of diameter greater than 2 for which
the conclusion of Theorem 4.5 holds (e.g., every graph obtained from K1,3 by
subdividing every edge at most once), the conclusion of Theorem 4.5 need not
hold in general for graphs of diameter greater than 2. For example, the tree T
obtained by subdividing every edge of K1,3 exactly twice is an irreducible graph
of dimension 2, but one can verify that β(T ∨K2) = 5 and τ(T ∨K2) = 4 (see
Figure 2).

We next describe two infinite families of irreducible graphs that will be used to
establish the main result of this section. For the first of these, we use the function
g defined in Section 2. For every n ≥ 2, let An = Kg(n) and let Bn = Kn−g(n).
Apply the Reverse Shortlex Assignment Algorithm to the disjoint union An ∪Bn

with W = V (An) and P = V (Bn). Let E be the set of edges output by the
algorithm. Define Sn := (An ∪ Bn) + E . Note that Sn has order n, and that
the vertices of An form a basis for Sn. Hence Sn has order n and dimension
g(n). Since some vertex of An is assigned the entire set V (Bn) by the Reverse
Shortlex Assignment Algorithm, this vertex is universal in Sn. We conclude that
Sn has diameter at most 2. By Lemma 2.3, we conclude that Sn is irreducible.
Figure 3(a) shows the graph S8, with the vertices of A8 coloured black.

For integers b > 1 and s ≥ 1, let Fb,s be the graph obtained from the disjoint
union K2b∪Kb∪Ps by joining a leaf of the path Ps to a single vertex of Kb. Apply
the Shortlex Assignment Algorithm to Fb,s with W = V

(

Kb

)

and P = V (K2b),
and let the output be E . Define Sb,s := Fb,s+E . Note that Sb,s has order 2

b+b+s,
and that the set V

(

Kb

)

resolves Sb,s. By Lemma 2.2, Sb,s is irreducible. The
graph S2,3 is shown in Figure 3(b), with the vertices of the resolving set K2

coloured black.

(a) The graph S8. (b) The graph S2,3.

Figure 3. The graphs S8 and S2,3. The vertices of a metric basis for each graph are
coloured black.

Let
∨k

i=1Gi denote the join of the graphs G1, G2, . . . , Gk, i.e., we have
∨k

i=1Gi = G1 ∨G2 ∨ · · · ∨Gk.
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Theorem 4.6. For every integer n ≥ 2, and every integer b ∈ {1, . . . , n − 1},
there exists a connected irreducible graph of order n and dimension b.

Proof. If b = 1, then Pn is a connected irreducible graph of order n and dimen-
sion b. From now on, assume that b > 1. We consider three different cases.

Case 1. n > 2b + b. Let s = n− 2b − b. Then Sb,s is a connected irreducible
graph of dimension b and order n.

Case 2. 2b < n ≤ 2b + b. Let k be the smallest non-negative integer such
that

2b−k−1 + b− k ≤ n− 2k ≤ 2b−k + b− k.

To see that such a k always exists, observe first that for k = b − 1 and n > 2b
we have 2b−k−1 + b − k = 2 < n − 2b + 2. So the lower bound holds for some
k. Moreover, the upper bound holds for k = 0. It suffices now to show that
there is a k for which both the upper and lower bounds hold. If the upper bound
holds for all k, then the result follows. Assume now that (k =)ℓ is the smallest
non-negative integer for which the upper bound fails. Then n− 2ℓ > 2b−ℓ+ b− ℓ.
From the above observation, we have ℓ > 0. Thus n − 2(ℓ − 1) = n − 2ℓ + 2 >
2b−ℓ + b − ℓ + 2 = 2b−(ℓ−1)−1 + b − (ℓ − 1) + 1. Hence for k = ℓ − 1, the lower
bound holds. Moreover, the upper bound holds, by assumption, if k = ℓ− 1. So
our assertion now follows.

Let G = Sn−2k ∨
(

∨k
i=1K2

)

. Note first that G has order n. Further, since

2b−k−1 + b − k ≤ n − 2k ≤ 2b−k + b − k we have g(n − 2k) = b − k. Hence,
we have β(Sn−2k) = b − k. By repeated application of Theorem 4.5, we have
τ(G) = β(G) = β(Sn−2k) + k = b. Thus, we have shown that G is an irreducible
graph with dimension b and order n.

Case 3. n ≤ 2b. Let k = n−1−b. Since b ≤ n−1, we must have k ≥ 0. Since

n ≤ 2b, we also have k ≤ n−1−n/2 ≤ n/2−1. Let G = Kn−2k∨
(

∨k
i=1K2

)

. Note

that G can also be obtained from the complete graph Kn by deleting a matching
of size k. By repeated application of Theorem 4.5, we conclude that G is an
irreducible graph of order n and dimension β(Kn−2k)+k = n−2k−1+k = b.

5. Conclusion

In this article, we gave two upper bounds on the threshold dimension of a graph of
order n, the first in terms of its diameter, and the second in terms of its chromatic
number. The latter bound implies that the threshold dimension of every planar
graph of order n is less than 4 log2 n. We also proved that several infinite families
of graphs with constant metric dimension are irreducible. Finally, we showed that
there exists an irreducible graph of order n and dimension b, for all n > b ≥ 1.
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We posed some questions concerning the computational complexity of the
threshold dimension in an earlier paper [10]. We add one more such question
here.

Question 5.1. Can the threshold dimension of every cograph be computed in

polynomial time?

The problem of characterizing irreducible graphs appears to be quite difficult.
Many well-known families of graphs have been characterized in terms of forbidden
induced subgraphs (see [2], for example). If F is a graph, then G is F -free if G
does not contain F as an induced subgraph. If F is a family of graphs, then a
graph G is F-free if G is F -free for all F ∈ F . For example, cographs are exactly
the P4-free graphs, and perfect graphs are precisely the

{

C2k+1, C2k+1 : k ≥ 2
}

-
free graphs. We now observe that the irreducible graphs do not have a forbidden
subgraph characterization.

Theorem 5.2. Let G be a graph. Then there exists an irreducible graph H with

G as an induced subgraph.

Proof. Let G be a graph of order n. Let p be the smallest positive integer
such that p + n = 2k for some positive integer k. Let G′ = G ∨ Kp, and let
U = Kk. Apply the Shortlex Assignment Algorithm to G′ ∪ U with W = V (U)
and P = V (G′), ordering the vertices of G′ so that a universal vertex of G′

appears last. Let E be the output of the algorithm, and let H = (G′ ∪ U) + E .
Since the last vertex of G′ becomes universal in H, we have diam(H) = 2. By
Lemma 2.3, the vertices of U form a basis for H, and H is irreducible.

We conclude with the following question.

Question 5.3. Is the problem of determining whether a graph is irreducible NP-

hard?
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the metric dimension of some families of graphs , Electron. Notes Discrete Math. 22
(2005) 129–133.
https://doi.org/10.1016/j.endm.2005.06.023

[8] C. Hernando, M. Mora, I.M. Pelayo, C. Seara and D.R. Wood, Extremal graph theory

for metric dimension and diameter , Electron. J. Combin. 17 (2010) #R30.
https://doi.org/10.37236/302

[9] I. Javaid, M.T. Rahim and K. Ali, Families of regular graphs with constant metric

dimension, Util. Math. 65 (2008) 21–33.

[10] L. Mol, M.J.H. Murphy and O.R. Oellermann, The threshold dimension of a graph,
Discrete Appl. Math. 287 (2020) 118–133.
https://doi.org/10.1016/j.dam.2020.08.007

[11] G. Sudhakara and A.R. Hemanth Kumar, Graphs with metric dimension two—a

characterization, World Academy of Science, Engineering and Technology 36 (2009)
622–627.

[12] P.J. Slater, Leaves of trees , Congr. Numer. 14 (1975) 549–559.

Received 25 February 2020
Revised 24 August 2020

Accepted 24 August 2020

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1137/050641867
https://doi.org/10.1016/S0166-218X\(00\)00198-0
https://doi.org/10.1016/0166-218X\(95\)00106-2
https://doi.org/10.1016/j.endm.2005.06.023
https://doi.org/10.37236/302
https://doi.org/10.1016/j.dam.2020.08.007
http://www.tcpdf.org

