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Abstract

A facial-parity edge-coloring of a 2-edge-connected plane graph is a fa-
cially-proper edge-coloring in which every face is incident with zero or an
odd number of edges of each color. A facial-parity vertex-coloring of a 2-
connected plane graph is a proper vertex-coloring in which every face is inci-
dent with zero or an odd number of vertices of each color. Czap and Jendrol’
in [Facially-constrained colorings of plane graphs: A survey, Discrete Math.
340 (2017) 2691–2703], conjectured that 10 colors suffice in both colorings.
We present an infinite family of counterexamples to both conjectures.

A facial (Pk, P`)-WORM coloring of a plane graph G is a vertex-coloring
such that G contains neither rainbow facial k-path nor monochromatic facial
`-path. Czap, Jendrol’ and Valiska in [WORM colorings of planar graphs,
Discuss. Math. Graph Theory 37 (2017) 353–368], proved that for any
integer n ≥ 12 there exists a connected plane graph on n vertices, with
maximum degree at least 6, having no facial (P3, P3)-WORM coloring. They
also asked whether there exists a graph with maximum degree 4 having
the same property. We prove that for any integer n ≥ 18, there exists a
connected plane graph, with maximum degree 4, with no facial (P3, P3)-
WORM coloring.
Keywords: plane graph, facial coloring, facial-parity edge-coloring, facial-
parity vertex-coloring, WORM coloring.
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1. Introduction

Historically, the Four Color Problem became a great motivation for researchers to
study many different types of colorings restricted to planar graphs. Among some
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of the recent studies are those that study colorings of plane graphs where certain
constraints are given by the faces. Czap and Jendrol’ [7] wrote a survey devoted to
presenting many of such colorings, in which they also presented a number of open
problems. In this note, we consider three types of facially constrained colorings
of plane graphs.

All graphs considered are finite and planar with a fixed embedding, where V
denotes the set of vertices, E denotes the set of edges and F denotes the set of
faces of G. With Pt we denote a path on t vertices. Let C be a set of colors. For
simplicity we take C = N, where each positive integer denotes a single color. A
vertex-coloring of a graph G is a function f : V (G) 7→ N, assigning to each vertex
of G a color c ∈ N. An edge-coloring of a graph G is a function g : E(G) 7→ N,
assigning to each edge of G a color c ∈ N. We say that a vertex-coloring (edge-
coloring) is proper if every two adjacent vertices (edges) receive distinct colors.
An edge-coloring is facially-proper if for every face α ∈ F , any two incident edges
appearing consecutively on the boundary of the face α receive distinct colors.

2. Facial-Parity Edge-Coloring

A facial-parity edge-coloring of a 2-edge-connected plane graph G, is a facially-
proper edge-coloring of G such that every face is incident with zero or an odd
number of edges of each color. We denote with χ′

fp(G) the minimum number
k, for which there exists a facial-parity edge-coloring of G with k colors. Facial-
parity edge-coloring was first studied by Czap, Jendrol’ and Kardoš in [8], where
they proved that 92 colors suffice to color every 2-edge-connected plane graph.
This bound was later improved by Czap et al. [9] to 20 colors. The best known
upper bound so far is 16 colors, due to Lužar and Škrekovski [15]. In [5], an
example of an outerplane graph is presented, namely two cycles C5 sharing a
single vertex, which needs 10 colors. Later Czap and Jendrol’ [7] proposed the
following conjecture.

Conjecture 1. If G is a 2-edge-connected plane graph, then χ′
fp(G) ≤ 10.

The Theta graph, Θi,j,k, is the graph consisting of two distinct vertices joined
by three internally vertex-disjoint paths of lengths i, j, and k. We present the
following result, which disproves Conjecture 1 and shows that the general upper
bound for χ′

fp(G) is at least 12.

Theorem 2. For any integer k ≥ 3, there exists a 2-edge-connected plane graph
G with 4k edges and χ′

fp(G) = 12.

Proof. Let G be a Theta graph. Fix some plane embedding of G (e.g., see Figure
1). Clearly, G is 2-edge-connected and it can be edge decomposed into three
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Figure 1. The graph Θ4,4,4 with 12 edges and χ′
fp(G) = 12.

internally vertex-disjoint paths P1, P2 and P3, where Pi and Pj , 1 ≤ i < j ≤ 3,
are both incident with the unique face αij . Let f : E(G)→ N be any facial-parity
edge-coloring of G. First suppose that some color c appears an even number of
times on the edges of some path Pi. Without loss of generality, we can assume
that i = 1. Since P1 is incident with both α12 and α13, it follows that the color c
must appear an odd number of times on the edges of both P2 and P3, but then it
appears an even number of times on the edges incident with α23, a contradiction.
It follows directly that no color can appear on two distinct paths Pi and Pj at
the same time. Therefore, the number of colors needed to color the edges of G is
the sum of the number of colors needed to color the edges of each Pi individually.
Let us consider again a single path P ∈ {P1, P2, P3} and let the length of P be
`. In the case when ` = 1, it is easy to see that we need exactly 1 color to color
the single edge of P . Therefore, we need to consider the following remaining four
cases.

Case 1. If ` = 2m for some m ∈ N, where m is odd, then we can properly
color the edges of P with exactly two colors c1 and c2, each appearing m times
on P .

Case 2. If ` = 2m + 1 for some m ∈ N, where m is even, then we can color
the edges of P with exactly three colors c1, c2 and c3, where each of the colors c1
and c2 appears m− 1 times on P and the color c3 appears 3 times on P .

Case 3. If ` = 2m + 1 for some m ∈ N, where m is odd, then we can color
the edges of P with exactly three colors c1, c2 and c3, where each of the colors c1
and c2 appears m times on P and the color c3 appears only once on P .

Case 4. If ` = 4m for some m ∈ N, then we can color the edges of P with
exactly four colors c1, c2, c3 and c4, where each of the colors c1 and c2 appears
2m− 1 times on P and each of the colors c3 and c4 appears only once on P .

It follows that if each of the paths Pi has length divisible by 4, then χ′
fp(G) =

12, thus proving the theorem. The smallest such case is depicted in Figure 1,
where all three paths are of length 4 and G has 12 edges.
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3. Facial-Parity Vertex-Coloring

A facial-parity vertex-coloring of a 2-connected plane graph G is a proper vertex-
coloring of G such that every face is incident with zero or an odd number of
vertices of each color. We denote by χfp(G) the minimum number k, for which
there exists a facial-parity vertex-coloring of G with k colors. Czap, Jendrol’ and
Voigt [11] proved that 118 colors are sufficient to color every 2-connected plane
graph G. Kaiser et al. [14] improved the bound to 97 colors, which is the best
known bound so far. Czap [4] showed that there exists an outerplane graph which
needs 10 colors. In [18] the authors proved that there exist only two 2-connected
outerplane graphs with χfp = 10. Motivated by that, Czap and Jendrol’ [7]
proposed the following.

Conjecture 3. Every 2-connected plane graph admits a facial-parity vertex-color-
ing with at most 10 colors.

With the following theorem, we prove that there exists an infinite family of
2-connected plane graphs with χfp(G) = 12.

Figure 2. The line graph of the graph Θ4,4,4. It has 12 vertices and χfp(G) = 12.

Theorem 4. For any integer k ≥ 3, there exists a 2-edge-connected plane graph
G with 4k vertices and χfp(G) = 12.

Proof. First observe that the line graphs of Theta graphs Θi,j,k such that i, j, k
are divisible by four are 2-connected and planar. Let H be a Theta graph Θi,j,k

such that i, j, k are divisible by four and G be its line graph (Figure 2 represents a
particular embedding of a line graph of the graph from Figure 1). It is clear that
the number of vertices of G is at least 12 and divisible by four. Observe that any
facial-parity vertex-coloring of G defines a facial-parity edge-coloring of H and
vice-versa. Therefore, from the proof of Theorem 2 follows that χfp(G) = 12.

4. Facial (P3, P3)-WORM Coloring

We say that a vertex-coloring of a graph is rainbow (e.g., see [1, 2]), if no two
vertices receive the same color. On the other hand, we say that a vertex-coloring
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of a graph is monochromatic (e.g., see [16]), if every vertex receives the same
color. Given three graphs G,H and F , an (H,F )-WORM coloring of G is a
vertex-coloring such that no subgraph of G isomorphic to H is rainbow and no
subgraph of G isomorphic to F is monochromatic. The study of WORM colorings
was initiated by Voloshin [17] and they have been extensively studied ever since
(e.g., see [3, 7, 10]). In [3], the authors studied a special case of (H,F )-WORM
coloring, namely an F -WORM coloring, where H and F are isomorphic. The idea
of an F -WORM coloring was first introduced by Goddard, Wash, and Xu [12, 13].

Facially constrained WORM colorings were studied in several papers (e.g.,
see [6]) and in [10] the authors introduce a facial (Pk, P`)-WORM coloring. That
is a vertex-coloring of a plane graph G, having no rainbow facial Pk and no
monochromatic facial P`. Among others, they proved that the graph G, with
∆(G) = 6, where ∆ denotes the maximum degree of a graph, obtained from
the graph depicted in Figure 3 by contracting the edges of the 4-cycles, incident
with the outer face, has no facial (P3, P3)-WORM coloring. They also asked a
question whether there exist plane graphs, with maximum degree 4, having no
facial (P3, P3)-WORM coloring. We answer the question in affirmative.
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Figure 3. A graph with 18 vertices, with maximum degree 4, having no facial (P3, P3)-
WORM coloring.

Theorem 5. For any integer n ≥ 18, there exists a connected plane graph G on
n vertices with ∆(G) = 4, having no facial (P3, P3)-WORM coloring.

Proof. Let G be a planar graph on 18 vertices with its planar embedding as given
in Figure 3. Suppose that G admits a facial (P3, P3)-WORM coloring. Note that
the vertices v1, v7 and v13 form a face of size 3. Since there is no rainbow facial
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path P3 and no monochromatic facial path P3 in G, it follows that exactly two of
the three vertices share a color. Without loss of generality, we can assume that v1
and v7 are colored with the same color c1. Now observe that the vertices v1, v2,
v6 and v7 form a face of size 4. Since the vertices v1 and v7 are adjacent and both
colored with color c1, and there is no monochromatic facial P3, it follows that the
vertices v2 and v6 are both colored with a color different from c1. We also know
that both v2 and v6 are colored with the same color c2, since there is no rainbow
facial P3 in G. Now observe that none of the vertices v3, v4 or v5 is colored with
color c2, otherwise we would obtain a monochromatic facial P3. Let c3 be the
color of the vertex v3. Suppose that the color of the vertex v4 is different from c3.
Then we obtain a rainbow facial P3 on the face of size 3, formed by vertices v2, v3
and v4, a contradiction. Thus, v4 must be colored with the color c3. Consider now
the vertex v5. If v5 is colored with the color c3, then we obtain a monochromatic
facial P3, formed by the vertices v3, v4 and v5. It follows that v5 must receive
a color different from c2 and c3, say c4, but then we obtain a rainbow facial P3,
formed by the vertices v4, v5 and v6, a contradiction.

If n > 18, then take the graph G and any connected planar graph H, with
∆(H) ≤ 4, having a planar embedding such that the outer face contains a vertex
v of degree at most 3. Then place H in any face α of G of size 3, distinct from
the face formed by the vertices v1, v7 and v12, and add the edge from v to the
only vertex of the face α, with degree less than 4.

5. Conclusion

Examples presented in the previous sections provide new bounds for their corre-
sponding coloring problems. It is shown that there are 2-edge-connected plane
graphs which need 12 colors in any facial-parity edge-coloring. The current upper
bound however remains 16, and hence there is still a gap of 4 colors. On the other
hand, for the vertex version, even though we presented an example which proves
that the upper bound is at least 12, the best known upper bound remains 97.

In regards with facial WORM vertex-coloring of plane graphs, it is known
that not all plane graphs have a (P3, P3)-WORM coloring. Czap, Jendrol’ and
Valiska [10] presented some results about a (P3, P4)-WORM coloring, yet their
conjecture that every connected plane graph admits a (P3, P4)-WORM coloring
with 2 colors remains open.
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