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Abstract

A graph is called equimatchable if all of its maximal matchings have the
same size. Lesk et al. [Equi-matchable graphs, Graph Theory and Combina-
torics (Academic Press, London, 1984) 239–254] has provided a character-
ization of equimatchable bipartite graphs. Motivated by the fact that this
characterization is not structural, Frendrup et al. [A note on equimatchable

graphs, Australas. J. Combin. 46 (2010) 185–190] has also provided a struc-
tural characterization for equimatchable graphs with girth at least five, in
particular, a characterization for equimatchable bipartite graphs with girth
at least six. In this paper, we extend the characterization of Frendrup by
eliminating the girth condition. For an equimatchable graph, an edge is said
to be a critical-edge if the graph obtained by the removal of this edge is not
equimatchable. An equimatchable graph is called edge-critical, denoted by
ECE, if every edge is critical. Noting that each ECE-graph can be obtained
from some equimatchable graph by recursively removing non-critical edges,
each equimatchable graph can also be constructed from some ECE-graph
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by joining some non-adjacent vertices. Our study reduces the characteriza-
tion of equimatchable bipartite graphs to the characterization of bipartite
ECE-graphs.
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1. Introduction

A graph G is called equimatchable if every maximal matching of G is a maximum
matching, that is, every maximal matching in G has the same cardinality. The
concept of equimatchability was introduced in 1974 independently by Grünbaum
[7], Lewin [11], and Meng [13]. In 1984, Lesk et al. [10] formally introduced
equimatchable graphs and provided a characterization of equimatchable graphs
via Gallai-Edmonds decomposition, yielding a polynomial-time recognition algo-
rithm. In 2014, Demange and Ekim [2] gave an alternative characterization of
equimatchable graphs yielding a more efficient recognition algorithm using alter-
nating chain-based arguments.

In the literature, the structure of equimatchable graphs are extensively stud-
ied by several authors. The first study is the characterization of equimatchable
graphs with a perfect matching, that is, randomly matchable graphs. In 1979,
Sumner [14] proved that the only connected randomly matchable graphs are the
complete graphs K2n and complete bipartite graphs Kn,n for n ≥ 1. On the
other hand, the work in [10] provided a characterization for general equimatchable
graphs, that is, not only randomly matchable but also equimatchable graphs with-
out a perfect matching. Particularly, [10] gave a characterization of equimatch-
able bipartite graphs in terms of subsets of neighborhoods of vertices in the
smaller partite set. Although it is a complete characterization of equimatch-
able bipartite graphs, it does not provide much insight about the structure of
equimatchable bipartite graphs. Besides, this characterization does not lead to
an efficient polynomial-time recognition algorithm, namely O(n4) time recogni-
tion algorithm as in [2], for equimatchable bipartite graphs. Recently, the work
in [3] reformulated the characterization of equimatchable bipartite graphs given
in [10]. A connected bipartite graph is equimatchable if and only if each of its
maximal matchings saturates all vertices in the smaller partite set. Furthermore,
Frendrup et al. [6] provided a structural characterization of equimatchable graphs
with girth at least five. Particularly, they showed that an equimatchable graph
with girth at least five is either one of C5 and C7 or a member of graph family,
which consists of K2 and all bipartite graphs with partite sets V1 and V2 such
that all vertices in V1 are stems and no vertex from V2 is a stem. However, the
work in [6] provides a partial characterization of equimatchable bipartite graphs,
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namely, a characterization of equimatchable bipartite graphs with girth at least
six.

Motivated by the lack of a structural characterization for the general case of
equimatchable bipartite graphs, we study equimatchable bipartite graphs in this
paper. By the reformulation given in [3] for the characterization of equimatchable
bipartite graphs, any bipartite supergraph of an equimatchable bipartite graph
obtained by joining some pair of non-adjacent vertices from different partite sets
is also an equimatchable bipartite graph with the same vertex partition. Hence,
we intuitively consider equimatchable bipartite subgraphs of an equimatchable
bipartite graph with the same vertex partition. For an equimatchable graph, an
edge is said to be a critical-edge if the graph obtained by the removal of this edge
is not equimatchable. An equimatchable graph is called edge-critical, denoted
by ECE, if every edge is critical. Notice here that the smallest equimatchable
bipartite subgraph of an equimatchable bipartite graph with the same vertex
partition is indeed an edge-critical equimatchable bipartite graph with the same
vertex partition. That is, each bipartite ECE-graph can be obtained from some
equimatchable bipartite graph having the same vertex partition by recursively
removing non-critical edges; moreover, each equimatchable bipartite graph can
also be constructed from some bipartite ECE-graph by joining some non-adjacent
vertices from different partite sets. Hence, it is sufficient to focus on the structure
of edge-critical equimatchable bipartite graphs instead of the structure of the
general case of equimatchable bipartite graphs.

Section 2 is devoted to basic definitions, notations, and known results on
equimatchable graphs. In Section 3, we provide some structural results for
equimatchable bipartite graphs by using Gallai-Edmonds decomposition. Par-
ticularly, we extend the partial characterization of Frendrup et al. [6] to all
equimatchable bipartite graphs by showing that at least one of the following is
true: each vertex in the smaller partite set of an equimatchable bipartite graph is
a stem or a vertex of an induced K2,2. We also show that removing a cut vertex
from an equimatchable bipartite graph preserves the smaller and larger partite
sets in the partition vertices. In Section 4, we discuss the structure of bipartite
ECE-graphs. We first point out that every connected bipartite ECE-graph is
2-connected. We then provide a characterization for the general case of bipartite
ECE-graphs. Finally, in Section 5 we conclude the paper and present an open
question.

2. Preliminaries

In this section, we first give some graph-theoretical definitions and notations that
will be used in the forthcoming sections and then present some results about
equimatchable bipartite graphs, which will lay the foundation for our arguments
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in Section 3.

All graphs in this paper are finite, simple, and undirected. For a graph
G = (V (G), E(G)), V (G) and E(G) denote the set of vertices and edges in G,
respectively. An edge joining the vertices u and v in G will be denoted by uv. A
bipartite graph G is a graph whose vertex set V (G) can be partitioned into two
subsets V1 and V2 such that every edge of G joins V1 with V2. If |V1| = |V2|, then
we say that G is balanced. For a vertex v in G and a subset X ⊆ V (G), NG(v)
denotes the set of neighbors of v in G, while NG(X) denotes the set of all vertices
adjacent to at least one vertex of X in G. We omit the subscript G when it is
clear from the context. The order of G is denoted by |V (G)| and the degree of
a vertex v of G is denoted by d(v). A vertex of degree one is called a leaf and
a vertex adjacent to a leaf is called a stem. For a graph G and U ⊆ V (G), the
subgraph induced by U is denoted by G[U ]. The difference G\H of two graphs
G and H is defined as the subgraph induced by the difference of their vertex sets,
that is, G\H = G[V (G)\V (H)]. For a graph G and a vertex v of G, the subgraph
induced by V (G) \ v is denoted by G− v for the sake of brevity. We also denote
by G\e the graph G(V,E\{e}). The cycle and complete graph on n vertices
are denoted by Cn and Kn, respectively, while the complete bipartite graph with
partite sets of sizes n and m is denoted by Kn,m. The length of a shortest cycle in
G is called the girth of G. For a graph G, c(G) denotes the number of components
in G. A set of vertices S of a graph G such that c(G\S) > c(G) is called a cut set.
A vertex v is called a cut vertex if {v} is a cut set. A graph is called 2-connected
if its cut sets have at least 2 vertices.

A matching in a graph G is a set M ⊆ E(G) of pairwise nonadjacent edges of
G. A vertex v of G is saturated by M if v ∈ V (M) and exposed by M otherwise.
A matching M is called maximal in G if there is no other matching of G that
contains M . A matching is called a minimum maximal matching of G if it is a
maximal matching of minimum size. A matching is called a maximum matching

of G if it is a matching of maximum size. The size of a maximum matching of
G is denoted by ν(G). A matching M in G is a perfect matching if M saturates
all vertices in G, that is, V (M) = V (G). For a vertex v, a matching M is
called a matching isolating v if {v} is a component of G\V (M). A graph G
is equimatchable if every maximal matching of G is a maximum matching, that
is, every maximal matching has the same cardinality. A graph G is randomly

matchable if it is an equimatchable graph admitting a perfect matching. A graph
G is almost equimatchable if the difference between the maximum and minimum
size of maximal matchings of G is 1. A graph G is factor-critical if G− v has a
perfect matching for every vertex v of G. Note here that a factor-critical graph
cannot be bipartite, since if you choose a vertex from the smaller partite set (or
from any partite set if their cardinalities are equal) there cannot be a perfect
matching in the rest of the graph.
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The characterization of randomly matchable graphs was provided in [14] as
follows.

Theorem 1 [14]. A connected graph is randomly matchable if and only if it is

isomorphic to K2n or Kn,n, n ≥ 1.

The following well-known result, which is called Hall’s Theorem, gives neces-
sary and sufficient condition for the existence of a perfect matching in bipartite
graphs as follows.

Theorem 2 [8]. A bipartite graph G = (A∪B,E) contains a matching saturating

all vertices in A if and only if it satisfies |N(S)| ≥ |S| for all subset S ⊆ A.

3. Structure of Equimatchable Bipartite Graphs

This section is devoted to investigate the structure of equimatchable bipartite
graphs, more simply EB-graphs. Since a graph is equimatchable if and only if
all of its components are equimatchable, it suffices to focus on connected EB-
graphs. Indeed, some characterizations of EB-graphs are already provided in
the literature, see [6] and [10]. For example, the following characterization of
equimatchable graphs with girth at least five, not necessarily bipartite, was pro-
vided in [6].

Theorem 3 [6]. Let G be a connected equimatchable graph with girth at least 5.
Then G ∈ F ∪ {C5, C7}, where F is the family of graphs containing K2 and all

connected bipartite graphs with bipartite sets V1 and V2 such that all vertices in

V1 are stems and no vertex from V2 is a stem.

Although this characterization provides information about the structure of
EB-graphs, it is only a partial characterization. More precisely, Theorem 3 ex-
plicitly describes the structure of EB-graphs with girth at least six. On the other
hand, the work in [10] provides a general characterization for EB-graphs in the
following way.

Theorem 4 [10]. A connected bipartite graph G = (U ∪ V,E) with |U | ≤ |V | is
equimatchable if and only if for all u ∈ U , there exists a non-empty X ⊆ N(u)
such that |N(X)| ≤ |X|.

This characterization yields a polynomial-time recognition algorithm for EB-
graphs, namely O(n4) time recognition algorithm [2]. The following result is a
more intuitive reformulation of the characterization of EB-graphs in Theorem 4
by using Hall’s Theorem.
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Theorem 5 [3]. Let G = (U∪V,E) be a connected bipartite graph with |U | ≤ |V |.
Then G is equimatchable if and only if every maximal matching of G saturates

all vertices in U .

Although Theorem 4 provides a complete characterization for EB-graphs
leading to a polynomial-time recognition algorithm, it lacks an explicit description
of the structure. We also note that recognition algorithm generated from the
characterization in Theorem 4 does not lead to an efficient algorithm. These
observations about the characterizations given in Theorem 3 and Theorem 4
motivated us to reexamine the structure of EB-graphs.

The class of equimatchable graphs is separated into two complementary sub-
classes, namely factor-critical and non-factor-critical equimatchable graphs. Since
a factor-critical (equimatchable) graph cannot be bipartite, all EB-graphs are
non-factor-critical. However, the converse is not necessarily true; that is, not all
non-factor-critical equimatchable graphs are bipartite. For instance, the graph
consisting of two K4 with one common vertex is a non-factor-critical equimatch-
able graph that is not bipartite. Therefore, we concentrate only on non-factor-
critical equimatchable graphs in this paper.

The following well-known structural result, which is called Gallai-Edmonds

decomposition, provides an important characterization for general graphs based
on maximum matchings as follows.

Theorem 6 [12]. For any graph G, let us denote by D(G) the set of vertices

which are exposed by at least one maximum matching of G and by A(G) the

vertices of V (G)\D(G) which are neighbors of at least one vertex of D(G). Let

C(G) = V (G)\(D(G) ∪A(G)). Then:

1. Every component of the graph G[D(G)] is factor-critical,

2. G[C(G)] has a perfect matching,

3. Every maximum matching of G matches every vertex of A(G) to a vertex of

a distinct component of G[D(G)].

By definition, for an equimatchable graph G, if G admits a perfect matching
then C(G) = V (G). Remark that by Theorem 1, a connected EB-graph G admit-
ting a perfect matching is Kn,n where n ≥ 1. If G is a connected equimatchable
graph G without a perfect matching, one can observe the following result.

Lemma 7 [10]. Let G be a connected equimatchable graph with no perfect match-

ing. Then C(G) = ∅ and A(G) is an independent set in G.

By the Gallai-Edmonds decomposition, if G is a connected equimatchable
graph without a perfect matching and A(G) = ∅, then G is factor-critical. That
is, the class of EB-graphs does not contain such a graph G since each EB-graph
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is non-factor-critical. Therefore, it suffices to focus on connected equimatchable
graphs without a perfect matching and A(G) 6= ∅, or equivalently connected
non-factor-critical equimatchable graphs without a perfect matching. The fol-
lowing result is not explicitly given in [10], but it is an immediate consequence of
Theorems 3 and 4 in [10].

Lemma 8 [10]. Let G be a connected equimatchable non-factor-critical graph

with no perfect matching. Then G is bipartite if and only if each component of

G[D(G)] is a singleton.

Corollary 9. Let G be a connected EB-graph with no perfect matching. Then,

C(G) = ∅, and each of D(G) and A(G) is a nonempty independent set.

For the rest of the paper, G = (U ∪ V,E) denotes a connected EB-graph
with |U | < |V |. By Theorems 1 and 5, the only connected EB-graph with equal
partite sets is Kn,n where n ≥ 1. In the next lemma, we show that the parts U
and V of G correspond to the sets A(G) and D(G), respectively, where C(G) is
empty.

Lemma 10. Let G = (U ∪ V,E) with |U | < |V | be a connected EB-graph and

(D,A,C) be its Gallai-Edmonds decomposition. Then we have C = ∅, A = U
and D = V .

Proof. LetG = (U∪V,E) with |U | < |V | be a connected EB-graph and (D,A,C)
be its Gallai-Edmonds decomposition. By Corollary 9, we have C = ∅ and each
of D and A is a nonempty independent set since G has no perfect matching.
By Theorem 5, every maximal matching of G saturates all vertices in U . The
Gallai-Edmonds decomposition implies that D does not have any vertex from U
and then all vertices of U are in A. By Corollary 9, we observe that A = U and
D = V since A is a nonempty independent set.

Corollary 11. Let G = (U ∪ V,E) with |U | < |V | be a connected EB-graph.

Then there exists an isolating matching for each v ∈ V and there is no isolating

matching for any u ∈ U .

The following result, which provides a characterization for EB-graphs by
using the Gallai-Edmonds decomposition, can be easily verified by combining
Theorem 1 and Lemma 10.

Corollary 12. Let G = (U ∪ V,E) with |U | ≤ |V | be a connected EB-graph with

Gallai-Edmonds decomposition (D,A,C).

(i) If G admits a perfect matching, that is, |U | = |V |, then C = V (G), D = ∅
and A = ∅. In particular, G is Kn,n where n ≥ 1.
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(ii) If G admits no perfect matching, that is, |U | < |V |, then C = ∅, A = U and

D = V .

In the next result, we extend the characterization of Frendrup et al. [6] stated
in Theorem 3 to all EB-graphs as follows.

Lemma 13. Let G = (U ∪ V,E) with |U | < |V | be a connected EB-graph. Then

each vertex u ∈ U satisfies at least one of the followings.

(i) u is a stem in G,

(ii) u is included in a subgraph K2,2 in G.

Proof. Let G = (U ∪ V,E) with |U | < |V | be a connected EB-graph. Let u ∈ U
and N(u) = {v1, v2, . . . , vn} be the set of neighbors of u in V . If one vertex in
N(u) is a leaf in G, then we are done. Assume to the contrary that none of
the vertices in N(u) is a leaf in G. If u is not included in a subgraph K2,2 in
G, then there is no pair of vertices in N(u) having a common neighbor except
u. It implies that there exists a matching isolating u in G. Since it contradicts
with Corollary 11, we deduce that there exists at least one pair, say {v1, v2}, of
vertices in N(u) having a common neighbor except u, say u∗. It follows that the
vertices {u, v1, u

∗, v2} induce a K2,2 in G, as desired.

Corollary 14. For a connected EB-graph G = (U ∪ V,E) with |U | < |V |, there
is no leaf in U and there is no stem in V .

Thus, each vertex u ∈ U has at least two neighbors in V . Unless |U | = 1,
since G is connected, each vertex u ∈ U has a neighbor v ∈ V which is not a
leaf. Remark that Theorem 3 states that in an EB-graph with girth at least 5,
all vertices in either U or V are stems, whereas Lemma 13 provides that in such
a graph, all vertices in U are indeed stems. Hence, Lemma 13 together with
Theorem 3 lead to the following corollary.

Corollary 15. Let G be a connected EB-graph with girth at least 6. Then G ∈ F ,

where F is the family of graphs containing K2 and all connected bipartite graphs

with bipartite sets V1 and V2 with |V1| ≤ |V2| such that all vertices in V1 are stems

and no vertex from V2 is a stem.

Note here that the EB-graph family F described in Theorem 3 and Corollary
15 contains not only all EB-graphs with girth at least six but also some EB-graphs
with girth less than six, that is, EB-graphs with girth exactly four. On the other
hand, it is obvious that F contains some but definitely not all EB-graphs with
girth four. For instance, complete bipartite graphs which are not included in
the graph family F are trivially EB-graphs with girth four. So, in this paper we
deal with EB-graphs with girth exactly four, whereas some of these graphs are
contained in the graph family F .
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We conclude this section with some observations providing an insight about
the structure of connected EB-graphs.

Lemma 16 [5]. Let G 6= K2 be a connected equimatchable graph. Then ν(G) =
ν(G\e) for any edge e ∈ E(G).

Proof. Let G 6= K2 be a connected equimatchable graph and e = uv ∈ E(G).
For a maximal matching M of G containing uv, M\uv is a matching of G\uv
with size ν(G)− 1. It follows that ν(G\uv) ≥ ν(G)− 1; that is, ν(G\uv) equals
either ν(G)−1 or ν(G). Assume to the contrary that ν(G\uv) = ν(G)−1. Since
G 6= K2 and is connected, there exists a vertex w ∈ N(u) ∪N(v). Without loss
of generality, we say w ∈ N(u); that is, wu ∈ E(G). Hence, there also exists
another maximal matching M ′ in G which can be obtained by extending the
edge wu. Since G is equimatchable, |M ′| = |M |. Note here that M ′ is also a
maximal matching in G\uv with size ν(G), contradicting with the assumption
that ν(G\uv) = ν(G)− 1. Therefore, ν(G\uv) = ν(G) for every edge uv.

In Lemma 18, we extend the following known result about the cut vertices
in equimatchable graphs to EB-graphs as in the following way.

Lemma 17 [1]. Let G be a connected equimatchable graph with a cut vertex c.
Then each component of G− c is also equimatchable.

Lemma 18. Let G = (U ∪ V,E) with |U | < |V | be a connected EB-graph with

a cut vertex c. Then each component of G − c is also a connected EB-graph

H = (UH ∪ VH , EH) with |UH | < |VH | such that UH ⊆ U and VH ⊆ V .

Proof. Let G = (U ∪ V,E) with |U | < |V | be a connected EB-graph with a cut
vertex c. Let H1, H2, . . . , Hk (k ≥ 2) be the components of G− c. By Lemma 17,
each Hi is an EB-graph for i ∈ 1, 2, . . . , k. Assume that a connected EB-graph
H = (UH ∪VH , EH) with |UH | < |VH | is a component of G− c such that UH ⊆ U
and VH ⊆ V or UH ⊆ V and VH ⊆ U . Since G is connected, c is adjacent to
some vertices of H. Since G is bipartite, c is adjacent to some vertices of only
UH or VH . Let x be a neighbor of c in H and e = cx be an edge joining c and x
in G. We then examine the following complementary cases.

• In the case c ∈ V in G, x ∈ U in G. Assume to the contrary that x ∈ VH in
H. Then, by Corollary 11, there exists a matching MH isolating x in H. Note
here that the only neighbor of x in G which is not contained in H is the vertex c.
Since c is a cut vertex of G, that is, k ≥ 2, there exists another component H ′ of
G− c. Let x′ be a neighbor of c in H ′ and e′ = cx′ be an edge joining c and x′ in
G. Hence, it is easy to see that the matching MH ∪ {e′} is a matching isolating
x in G. By Corollary 11, it contradicts with x ∈ U in G. Therefore, we obtain
that x ∈ UH in the case c ∈ V .
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• In the case c ∈ U in G, x ∈ V in G. Assume to the contrary that x ∈ UH in H.
Then, by Corollary 11, there exists a matching M isolating x in G. Note that the
only neighbor of x in G which is not contained in H is the vertex c. Besides, the
vertices c and x have no common neighbor in G, since G is bipartite. Let e′ ∈ M
be such that e′ = cx′ is an edge joining c and x′ /∈ N(x) in G. Hence, it is easy
to see that the matching M\{e′} isolates x in H. By Corollary 11, it contradicts
with the assumption x ∈ UH in G. Therefore, we obtain that x ∈ VH in the case
c ∈ U .

Therefore, we conclude that UH ⊆ U and VH ⊆ V irrespective of whether
c ∈ U or c ∈ V .

In short, Lemma 18 implies that for each cut vertex c of G, the components
of G− c are induced EB-subgraphs preserving (U, V )-partitions of G.

4. Edge-Critical Equimatchable Bipartite Graphs

Recall that for an equimatchable graph, an edge is a critical-edge if the graph
obtained by removal of this edge is not equimatchable, and an equimatchable
graph is edge-critical if every edge is critical. For the sake of brevity, we will call
edge-critical equimatchable graphs as ECE-graphs. The goal of this section is to
describe the structure of a generating subclass of EB-graphs, namely edge-critical

EB-graphs.
Notice that the complete graph K2 (or equivalently the complete bipartite

graph K1,1) is equimatchable but not edge-critical. In fact, its edge is not critical
since the remaining graph obtained by removal of the edge contains only isolated
vertices, which is trivially equimatchable. The following results about ECE-
graphs, not necessarily bipartite, are frequently used in our arguments.

Lemma 19 [5]. Let G 6= K2 be a connected equimatchable graph. Then uv ∈
E(G) is critical if and only if there is a matching of G containing uv and satu-

rating NG\uv({u, v}).

Proof. Let G 6= K2 be a connected equimatchable graph with uv ∈ E(G).
(⇒) Assume that uv ∈ E(G) is critical; that is, G is equimatchable but

G\uv is not equimatchable. Then G\uv admits two maximal matchings M1 and
M2 with different sizes, say |M1| < |M2|. It follows that |M1| = ν(G) − 1 and
|M2| = ν(G), since G\uv is obtained by the removal of only uv from G. That is,
M2 is a maximal matching of G whereas M1 is not maximal in G. It implies that
M1 leaves both u and v exposed in G\uv and M1 ∪ {uv} is a maximal matching
of G. Hence, it follows that M1 saturates all vertices in NG\uv({u, v}), because
otherwise M1 cannot be maximal in G\uv. Therefore, the maximal matching
M1 ∪ {uv} of G is the desired matching.
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(⇐) Conversely, assume that there is a matching of G containing uv and
saturating NG\uv({u, v}). Without loss of generality, we extend this matching
to a maximal matching M of G containing uv and saturating NG\uv({u, v}). It
follows that M\uv is a maximal matching in G\uv. There also exist another
maximal matching M ′ in G\uv which can be obtained by extending the edge vw
for some w ∈ N(v) with w 6= u or uz for some z ∈ N(u) with z 6= v. Notice that
the matching M ′ has size ν(G) since it is also a maximal matching of G, which is
equimatchable. Hence, G\uv is not equimatchable since the maximal matchings
M and M ′ of G have different sizes ν(G) and ν(G)− 1. It implies that the edge
uv is critical.

Corollary 20. A connected equimatchable graph G 6= K2 is edge-critical if and

only if there is a matching containing uv and saturating N({u, v}) for every

uv ∈ E(G).

Corollary 21. All randomly matchable connected graphs except K2 are edge-

critical.

Recall that G = (U ∪ V,E) is a connected EB-graph with |U | < |V |. We
consider a bipartite supergraph G′ of G obtained by joining a pair of non-adjacent
vertices of u ∈ U and v ∈ V by the edge uv. By Theorem 5, a maximal matching
of G cannot be extended to a larger matching in G′ since maximal matchings of
G saturate all vertices in U . It follows that ν(G) = ν(G′) = |U |. Let us consider
a minimum maximal matching M of G′ which is obtained by extending the edge
uv. Note that all edges of M except uv are indeed the edges of G. Then, by
Theorem 5, the matching M − uv of G is not maximal since it does not saturate
the vertex u ∈ U . We extend M − uv to a maximal matching M ′ in G. Since
G is an EB-graph, by Theorem 5, we have ν(G) = |M ′| = |U |. Since M is a
maximal matching of G′ containing the edge uv /∈ E(G), we need to add at least
one and at most two edges to M\uv in order to extend it to M ′; namely, the
edges saturating u and v. Note here that M ′ has to saturate the vertex u but
may not saturate the vertex v. It follows that |U | ≥ |M | ≥ |M ′| − 1 = |U | − 1.
Thus, |M | is equal to either |U | or |U | − 1; equivalently, it is equal to either ν(G)
or ν(G)− 1.

In the case where |M | = ν(G), by definition of M , all maximal matchings
of G′ have the same size, namely |U |. Thus, the supergraph G′ of G is also
a connected EB-graph with the same vertex set U ∪ V . In such a case, uv is
a non-critical edge of G′. In the case where |M | = ν(G) − 1, we observe that
maximal matchings of G′ have size either |U | or |U | − 1. It follows that the
supergraph G′ of G is a connected almost equimatchable bipartite graph with
the vertex set U ∪ V . Besides, the work in [4] provides a characterization for
almost equimatchable graphs. All these leads us to the following observation.
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Observation 22. For a connected EB-graph G = (U ∪ V,E) with |U | < |V |
except Kn,m for some n and m, and a connected bipartite supergraph G′ of G
obtained by joining a pair of non-adjacent vertices of U and V by an edge, one

of the followings holds.

(i) G′ is equimatchable such that all maximal matchings of G′ have size |U |.

(ii) G′ is almost equimatchable such that a maximal matching of G′ has size |U |
or |U | − 1.

The next result is a characterization for EB-supergraphs of EB-graphs as
follows.

Theorem 23. Let G = (U ∪V,E) with |U | < |V | be a connected EB-graph except

Kn,m for some n and m, and let G′ be a supergraph of G obtained by joining a pair

of non-adjacent vertices of u ∈ U and v ∈ V by the edge uv. G′ is a connected

EB-graph if and only if every maximal matching of G′ obtained by extending the

edge uv saturates NG(v).

Proof. Let G = (U ∪ V,E) with |U | < |V | be a connected EB-graph except
Kn,m for some n and m and G′ be a supergraph of G obtained by joining a
pair of non-adjacent vertices of u ∈ U and v ∈ V by the edge uv. It is clear
that G′ is connected. By Observation 22, G′ is either equimatchable or almost
equimatchable.

(⇒) Suppose that G′ is an EB-supergraph of G. Then, by Theorem 5, ev-
ery maximal matching of G′ saturates all vertices in U . Hence, every maximal
matching of G′ obtained by extending the edge uv saturates NG(v).

(⇐) Suppose that every maximal matching of G′ obtained by extending the
edge uv saturates NG(v). We will show that G′ is an EB-graph. Assume to the
contrary that G′ is almost equimatchable. Then, by Observation 22, G′ admits
maximal matchings of two different sizes, namely |U | − 1 and |U |. For maximal
matchings of G′ with |M | = |U |, the theorem holds and we are done. Let M be
a maximal matching of G′ with |M | = |U | − 1. Then, M is a maximal matching
obtained by extending the edge uv; otherwise M is a maximal matching of G,
which is equimatchable with ν(G) = |U |. Let u∗ ∈ U be the vertex exposed by
M . Since ν(G) = |U |, it is obvious that M\uv is not maximal in G; particularly,
M\uv does not saturate the vertices u and u∗ in U . Since G is equimatchable
with ν(G) = |U |, we can extend the matching M\uv to a maximal matching M∗

of G by adding two edges saturating the vertices u and u∗. Since u∗ is saturated
by all maximal matchings in G and exposed by M in G′, it follows that there
exists an edge u∗v in G; that is, u∗ is adjacent to v. Hence, u∗ ∈ N(v) is exposed
by M . Therefore, we conclude that every maximal matching of G′ with size
|U | − 1 exposes a vertex of N(v), a contradiction.
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Observation 22 and Theorem 23 imply that a supergraph G′ of G obtained
by joining a pair of non-adjacent vertices of u ∈ U and v ∈ V by the edge uv
is a connected bipartite almost equimatchable graph if and only if there exists
a maximal matching of G′ obtained by extending the edge uv such that the
matching leaves exposed a vertex of NG(v).

Note here that the largest such EB-supergraph of G is trivially the complete
bipartite graph. We intuitively consider EB-subgraphs of G with the same vertex
set U ∪ V . Note that the smallest such EB-subgraph of G, say H, is indeed an
edge-critical EB-graph with the same vertex set U ∪ V ; while the other EB-
subgraphs with the same vertex set U ∪ V are exactly bipartite supergraphs of
H. That is, each edge-critical EB-graph can be obtained from some EB-graph
having the same vertex set by recursively removing non-critical edges. Therefore,
in order to characterize all EB-graphs it is sufficient to characterize all edge-
critical EB-graphs; that is, the class of edge-critical EB-graphs form a generating
subclass of EB-graphs. Notice here that an edge-critical EB-graph H may not be
connected. Since a graph is equimatchable if and only if each of its components
is equimatchable, it suffices to focus on connected edge-critical EB-graphs.

From here onwards, we focus on edge-critical EB-graphs. In the following
lemma, we show that edge-critical EB-graphs cannot have a cut vertex; that is,
all edge-critical EB-graphs are 2-connected.

Lemma 24. Let G = (U ∪ V,E) with |U | ≤ |V | be a connected edge-critical

EB-graph. Then G is 2-connected; that is, G has no cut vertex.

Proof. Let G = (U∪V,E) with |U | ≤ |V | be a connected edge-critical EB-graph.
In the case where |U | = |V |, by Theorem 5, G has a perfect matching. Then by
Theorem 1, G is Kn,n for some n ≥ 1 and by Corollary 21, we omit K2 = K1,1

and we have n ≥ 2. That is, G is 2-connected and we are done.

We now suppose that |U | < |V |. Assume to the contrary that G has a cut
vertex c. Let H1, H2, . . . , Hk (k ≥ 2) be connected components of G−c such that
di ∈ Hi where d1, d2, . . . , dk ∈ N(c) and i ∈ [k]. By Lemma 18, each Hi is an
EB-subgraph preserving (U, V )-partitions of G where i ∈ [k]. By Corollary 20,
for each edge ei = cdi, there exists a matching M i containing the edge cdi and
saturating all vertices in N({c, di}) for i ∈ [k]. For j ∈ [k] with j 6= i, we define
M i

j = M i ∩ E(Hj) which is a matching in Hj saturating all vertices in NHj
(c).

Note that M i
1 ∪ M i

2 ∪ · · · ∪ M i
i−1 ∪ M i

i+1 ∪ · · · ∪ M i
k is a matching saturating

all neighbors of c except the neighbors in Hi. Without loss of generality, since
k ≥ 2, let us consider the cases i = 1 and i = 2. For i = 1, M1

2 ∪M1
3 ∪ · · · ∪M1

k

is a matching saturating all neighbors of c except the neighbors in H1; and for
i = 2, M2

1 ∪M2
3 ∪ · · · ∪M2

k is a matching saturating all neighbors of c except the
neighbors in H2. It follows that M = M2

1 ∪M1
2 ∪M1

3 ∪ · · · ∪M1
k is a matching

saturating all neighbors of c in G. Hence, by Corollary 11, we conclude that
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c ∈ V and d1, d2, . . . , dk ∈ U . By Lemma 18, it follows that di ∈ UHi
for i ∈ [k].

Remember that for each edge ei = cdi, M i is a matching containing the
edge cdi and saturating all vertices in N({c, di}) for i ∈ [k]. By defining Ti =
M i ∩ E(Hi) for i ∈ [k], for each edge ei = cdi, there also exists a matching Ti

in Hi saturating all vertices in NHi
(di) for i ∈ [k]. It is easy to see that each Ti

is indeed a matching isolating di in Hi for i ∈ [k]. Hence, by Corollary 11, we
conclude that di ∈ VHi

, which is a contradiction.

The next theorem provides a characterization for edge-critical EB-graphs as
follows.

Theorem 25. A connected bipartite graph G = (U ∪ V,E) with |U | ≤ |V | except
K2 is an edge-critical EB-graph if and only if for every u ∈ U , |N(S)| ≥ |S| holds
for any subset S ⊆ N(u) and the equality holds only for S = N(u).

Proof. Let G = (U ∪ V,E) with |U | ≤ |V | be a connected bipartite graph
except K2.

(⇒) Suppose that G is an edge-critical EB-graph. We will first show that
for every u ∈ U , |N(S)| > |S| holds for any subset S ⊂ N(u). Assume to the
contrary that there exists u ∈ U such that |N(S)| ≤ |S| for some S ⊂ N(u).
Then there exists w ∈ N(u)\S. Since |N(S)| ≤ |S|, there is no matching of G
saturating NG\uw({u,w}) and containing uw. By Lemma 19, G is not an ECE-
graph which is a contradiction. Thus, for all u ∈ U , |N(S)| > |S| holds for any
subset S ⊂ N(u). We will now show that |N(S)| ≥ |S| for S = N(u). Since G is
an EB-graph, by Theorem 4, for all u ∈ U , there exists a non-empty S ⊆ N(u)
such that |N(S)| ≤ |S|. Since for all u ∈ U , |N(S)| > |S| holds for any subset
S ⊂ N(u), it follows that for all u ∈ U , S = N(u) satisfies |N(S)| ≤ |S|. Assume
that there exists u ∈ U , |N(S)| < |S| holds for S = N(u). Then, we observe that
there is no matching saturating all vertices in N(u). Hence, for any v ∈ N(u),
there is no matching of G saturating NG\uv({u, v}) and containing uv. By Lemma
19, the edge uv is not critical, contradicting with G being an ECE-graph. That
is, for all u ∈ U , |N(S)| = |S| holds for S = N(u). Therefore, for every u ∈ U ,
|N(S)| ≥ |S| for any subset S ⊆ N(u) and the equality holds only for S = N(u),
as desired.

(⇐) Suppose that for every u ∈ U , |N(S)| ≥ |S| holds for any subset S ⊆
N(u) and the equality holds only for S = N(u). Since S = N(u) satisfies
|N(S)| = |S|, G is an equimatchable graph by Theorem 4. Assume to the contrary
that there exists a vertex v such that u ∈ U , v ∈ N(u) and uv ∈ E(G) is not
critical; that is, G\uv is equimatchable. Then, by Theorem 4, there exists X ⊆
NG\uv(u) such that |NG\uv(X)| ≤ |X|. Note also that X ⊆ NG\uv(u) ⊂ N(u).
It follows that |N(X)| = |NG\uv(X)| ≤ |X|. Since X ⊂ N(u) and |N(S)| ≥ |S|
holds for any subset S ⊆ N(u), we also have |N(X)| ≥ |X|, implying that
|N(X)| = |X|. However, X 6= N(u) and this contradicts with the fact that
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|N(S)| = |S| holds only for S = N(u). Therefore, uv ∈ E(G) is critical for all
uv ∈ E(G) and hence, G is an edge-critical EB-graph.

If the equality |U | = |V | holds, we can give an explicit characterization for
edge-critical EB-graphs as follows.

Proposition 26. A connected bipartite graph G = (U ∪ V,E) with |U | = |V | is
an edge-critical EB-graph if and only if it is isomorphic to Kn,n for some n ≥ 2.

Proof. Let G = (U ∪V,E) with |U | = |V | be a connected bipartite graph except
K2. Suppose that G is an edge-critical EB-graph. By Theorem 5, G is has a
perfect matching. Then by Theorem 1 and Corollary 21, G is Kn,n for n ≥ 2.
Conversely, by Theorem 1 and Corollary 21, Kn,n is an edge-critical EB-graph
for some n ≥ 2.

The next theorem provides another characterization for edge-critical EB-
graphs in terms of induced subgraphs as follows.

Theorem 27. A connected bipartite graph G = (U ∪ V,E) with |U | ≤ |V | is
an edge-critical EB-graph if and only if for any u ∈ U , the subgraph H = (UH ∪
VH , EH) of G induced by the vertices N(u) and N(N(u)) is a 2-connected balanced

bipartite subgraph of G such that for all v ∈ VH , there exists a perfect matching

containing uv in H.

Proof. Let G = (U ∪ V,E) with |U | ≤ |V | be a connected bipartite graph.
(⇒) Suppose that G is an edge-critical EB-graph. Let u ∈ U and H be the

subgraph of G induced by the vertices N(u) and N(N(u)). By Theorem 25, we
have |N(u)| = |N(N(u))|, implying that |UH | = |VH |. That is, H is a balanced
bipartite subgraph of G. Then by Corollary 20, for any neighbor v of u, there
exists a matching containing uv and saturating all other neighbors of u in G.
It implies that for all v ∈ VH , there exists a perfect matching containing uv in
H since H is a balanced bipartite graph. Notice that by definition of H, u is
adjacent to all vertices in VH , implying that there is no cut vertex in VH . Suppose
that u∗ ∈ UH is a cut vertex in H. Then, we have u∗ = u since u is adjacent to
all vertices in VH . If u is a stem in H, then it is also a stem in G. However, G
is 2-connected by Theorem 24, contradiction. Therefore, u is not a stem in H.
Since H is a balanced bipartite graph, there exists a component H∗ of H − u
such that |UH∗ | < |VH∗ |. Then, for any v ∈ VH\VH∗ , there is no perfect matching
containing uv in H since |UH∗ | < |VH∗ |, contradicting with Corollary 20. Hence,
we conclude that u cannot be a cut vertex, which is a contradiction. Therefore,
H is a 2-connected balanced bipartite subgraph of G such that for all v ∈ VH ,
there exists a perfect matching containing uv in H.

(⇐) Suppose that for any u ∈ U , the subgraph H = (UH ∪ VH , EH) of
G induced by the vertices VH = N(u) and UH = N(N(u)) is a 2-connected
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balanced bipartite subgraph of G such that for all v ∈ VH , there exists a perfect
matching containing uv inH. Since for all v ∈ VH , there exists a perfect matching
containing uv in H, |N(S)| ≥ |S| holds for any subset S ⊆ N(u). We assume
that there exists a X ⊂ N(u) such that |N(X)| = |X|. By definition of H, it is
clear that u ∈ N(X). Then, there exists a vertex w in VH\X, and there exists
a perfect matching M containing uw in H. It implies that the vertices in X
is saturated by the vertices in N(X) − u in M . It gives a contradiction since
|N(X) − u| < |N(X)| = |X|. Hence, the equality |N(S)| = |S| holds only for
S = N(u). Therefore, by Theorem 25, we conclude that G is an edge-critical
EB-graph.

The next result can be verified by Theorem 27. Particularly, the subgraph
H = (UH ∪ VH , EH) of G induced by the vertices N(u) and N(N(u)) is 2-
connected, implying that each vertex in UH\{u} has two neighbors in VH and u
is adjacent to all vertices in VH .

Corollary 28. Let G = (U ∪ V,E) with |U | ≤ |V | be a connected edge-critical

EB-graph. If H = (UH ∪VH , EH) is a subgraph of G induced by the vertices N(u)
and N(N(u)) for any u ∈ U , then all vertices in UH\{u} form a C4 with u.

We conclude this section with an interesting result.

Lemma 29. Let G = (U ∪ V,E) with |U | ≤ |V | be a connected edge-critical

EB-graph and u1, u2 ∈ U . Then either N(u1) = N(u2) or both N(u1)\N(u2) and
N(u2)\N(u1) are nonempty.

Proof. Let G = (U ∪ V,E) with |U | ≤ |V | be a connected edge-critical EB-
graph and u1, u2 ∈ U . Without loss of generality, we assume to the contrary
that N(u1) ⊂ N(u2). Let X = N(u1) ⊂ N(u2). By Theorem 27, we have
|N(u1)| = |N(N(u1))|, implying that |N(X)| = |X|. However, by Theorem 25
since for u2 ∈ U , |N(S)| ≥ |S| holds for any subset S ⊆ N(u2) and the equality
holds only for S = N(u2), contradiction.

5. Concluding Remarks

Two characterizations for EB-graphs have been provided by Lesk et al. [10] and
Frendrup et al. [6]. The characterization given in [6] is only a partial charac-
terization for EB-graphs and the characterization given in [10] provides limited
information about the structure of EB-graphs.

In this paper, we initially present some observations and preliminary results
about the structure of general EB-graphs by using Gallai-Edmonds decompo-
sition. We then discuss bipartite ECE-graphs. An ECE-graph can be obtained
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from equimatchable graphs by recursively removing non-critical edges. In this pa-
per, we show that each EB-graph can be obtained by adding an arbitrary number
of edges to an edge-critical EB-graph. Thus, we reduce the characterization of
EB-graphs to the characterization of edge-critical EB-graphs. Particularly, we
provide some characterizations for bipartite ECE-graphs.

An interesting open question is to obtain an efficient algorithm that recog-
nizes whether a given bipartite graph is equimatchable by generating ECE-graphs.

References

[1] S. Akbari, A.H. Ghodrati, M.A. Hosseinzadeh and A. Iranmanesh, Equimatchable

regular graphs , J. Graph Theory 87 (2018) 35–45.
https://doi.org/10.1002/jgt.22138

[2] M. Demange and T. Ekim, Efficient recognition of equimatchable graphs , Inform.
Process. Lett. 114 (2014) 66–71.
https://doi.org/10.1016/j.ipl.2013.08.002

[3] Z. Deniz and T. Ekim, Edge-stable equimatchable graphs , Discrete Appl. Math. 261
(2019) 136–147.
https://doi.org/10.1016/j.dam.2018.09.033

[4] Z. Deniz, T. Ekim, T.R. Hartinger, M. Milanič and M. Shalom, On two extensions
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