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Abstract

A dominating set of a graph is a vertex subset such that every vertex
not in the subset is adjacent to at least one in the subset. In this paper we
study whenever there exists a new dominating set contained (respectively,
containing) the subset obtained by removing a common vertex from the
union of two minimal dominating sets. A complete description of the graphs
satisfying such elimination properties is provided.
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1. Introduction

A set D of vertices of a graph G is a dominating set if every vertex of G belongs
to D or is adjacent to some vertex of D. A minimal dominating set is a domi-
nating set with no proper dominating subsets. Domination in graphs is a widely

∗Partially supported by grant PGC2018-095471-B-I00.
†Partially supported by grants MTM2015-63791-R (MINECO/FEDER), H2020-MSCA-RISE

project 734922-CONNECT, DGR 2017SGR1336 (Gen. Cat.).
‡Partially supported by grants MTM2015-63791-R (MINECO/FEDER) and RTI2018-

095993-B-I00.

https://doi.org/10.7151/dmgt.2354
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researched branch of graph theory, both from a theoretical and an algorithmic
point of view (see [5, 6]).

Since the deletion of a vertex from a minimal dominating set results in a
non-dominating set of G, a natural question that arises at this point is to find
minimal dominating sets, not containing a vertex u, close to the minimal dom-
inating sets that contain u. This approach can be done in several ways, for
example, by considering exchange type properties or by considering elimination

type properties. Roughly speaking, the exchange and the elimination type prop-
erties can be understood as follows: the deletion of a vertex can be seen as a node
that fails in a network modelled by the graph and so, in this framework, with
the exchange type properties we want to change the node that fails to another
node; while with the elimination type properties we want to replace the node
that fails by nodes belonging to some special sets containing it. These kinds of
exchange and elimination type properties appear in some other contexts, such as
determining sets and resolving sets of graphs or computational geometry (see for
example [2, 3]). As far as the authors know, neither exchange nor elimination
type properties have been considered for minimal dominating sets of graphs.

This paper deals with the study of two elimination type properties for mini-
mal dominating sets of graphs. Namely, here we consider the lower and the upper
elimination properties defined as follows.

We say that a graph G satisfies the lower elimination property if for any two
different minimal dominating setsD1, D2 of G such thatD1∩D2 6= ∅ and for every
vertex u ∈ D1∩D2, there is a minimal dominating set contained in (D1∪D2)\{u},
(observe that the lower elimination property is the circuit elimination property
in Matroid Theory, see [10, 11]). Analogously, we say that G satisfies the upper

elimination property if for any two different minimal dominating sets D1, D2 of
G such that D1 ∩D2 6= ∅ and for every vertex u ∈ D1 ∩D2, there is a minimal
dominating set that contains (D1 ∪D2) \ {u}.

Notice that a trivial class of graphs satisfying both elimination properties
is the class of graphs whose minimal dominating sets are pairwise disjoint (that
is, graphs where the family of minimal dominating sets forms a partition of the
vertex set or, in other words, graphs where every vertex belongs to exactly one
minimal dominating set). Even though the elimination type properties that we
study have not been considered previously, several results concerning pairwise
disjoint minimal dominating sets have been studied from different points of view
(see for instance [1, 7]).

The goal of this paper is to characterize the family of graphs satisfying these
elimination properties. We have completely solved this problem obtaining, sur-
prisingly, that both families are exactly the same, that is, a graph satisfies the
upper elimination property if and only if it satisfies the lower elimination prop-
erty.
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The structure of the paper is as follows. Some definitions and notations on
graphs are recalled in Section 2. In Section 3 we provide a complete descrip-
tion of the graphs such that their family of minimal dominating sets forms a
partition (Proposition 3), and we present a complete description of the graphs
satisfying the lower elimination property (Theorem 4). The results concerning
the upper elimination property are gathered in Section 4. Namely, we present the
description of general families of subsets satisfying the upper elimination prop-
erty (Theorem 10); we demonstrate that the upper elimination property implies
the lower elimination property (Corollary 11); and, in the domination case, we
prove that both properties are equivalent (Corollary 12). Finally, in Section 5 we
summarise our results and we present some open problems.

2. Preliminaries

A graph G is an ordered pair (V (G), E(G)) comprising a finite set V (G) of vertices
together with a (possibly empty) set E(G) of edges which are two-element subsets
of V (G) (for general references on graph theory see [4, 12]). If e = {x, y} ∈ E(G),
then x and y are said to be adjacent vertices. An edge {x, y} will be denoted by
xy. A vertex x of a graph G is a universal vertex if x is adjacent to y for every
vertex y ∈ V (G) \ {x}. For every W ⊆ V (G), we denote by G[W ] the subgraph
of G induced by W .

A dominating set for a graph G = (V (G), E(G)) is a subset D of V (G) such
that every vertex not in D is adjacent to at least one member of D. Since any
superset of a dominating set ofG is also a dominating set ofG, the collectionD(G)
of the dominating sets of a graph G is a monotone increasing family of subsets of
V (G). Therefore, D(G) is uniquely determined by the family min

(

D(G)
)

of its
inclusion-minimal elements. Let us denote by D(G) the family of the inclusion-

minimal dominating sets of the graph G. This family has been studied under
different points of view, see for instance [8, 9].

Dominating sets of a graph are closely related to independent sets. An inde-

pendent set of a graph G is a set of vertices such that no two of them are adjacent.
It is clear that an independent set is also a dominating set if and only if it is an
inclusion-maximal independent set (see [4]). Therefore, any inclusion-maximal
independent set of a graph is necessarily also an inclusion-minimal dominating
set.

The join G1 ∨ G2 of two graphs G1 and G2 with pairwise disjoint sets of
vertices V (G1) and V (G2) is the graph with vertex set V (G1) ∪ V (G2) and edge
set E(G1) ∪ E(G2) ∪ {x1x2 : x1 ∈ V (G1), x2 ∈ V (G2)}. The following lemma
deals with the minimal dominating sets of the join of two graphs. Its proof is a
straightforward consequence of the definitions.
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Lemma 1. Let G1, G2 be two graphs with pairwise disjoint set of vertices. Then

D(G1 ∨G2) = D(G1) ∪ D(G2) ∪ {{x1, x2} : xi ∈ V (Gi) and xi is not a universal

vertex in Gi, i ∈ {1, 2}}. In particular, D(G1∨G2) = D(G1)∪D(G2) if and only

if the graph G1 or the graph G2 is isomorphic to a complete graph Kn.

3. Lower Elimination Property

In this section we characterize those graphs G that satisfy the lower elimination
property. Recall that a graph G satisfies the lower elimination property if for
every pair of different sets D1, D2 ∈ D(G) such that D1 ∩ D2 6= ∅ and every
x ∈ D1 ∩D2, there exists D3 ∈ D(G) such that D3 ⊆ (D1 ∪D2) \ {x}.

Remark 2. Notice that the case D1 = D2 has no sense, because if D1 = D2,
then D3 ⊆ (D1 ∪D2) \ {x} = D1 \ {x}  D1, and so a contradiction is obtained
because D1 and D3 are two inclusion-minimal dominating sets.

Trivial examples of graphs satisfying the lower elimination property are com-
plete graphs and empty graphs. In general, every graph whose minimal dom-
inating sets are pairwise disjoint satisfies the lower elimination property. The
following proposition provides a complete description of these graphs.

Proposition 3. The minimal dominating sets of a graph G are pairwise disjoint

if and only if G is isomorphic to a complete graph Kn, or to an empty graph Kn,

or to the join Kr ∨Ks of a complete graph and an empty graph.

Proof. Clearly, if G is isomorphic to Kn or Kn, then D(G) is a partition of
V (G). Now, by applying Lemma 1 we get that if G is isomorphic to the join
graph Kr ∨Ks then the minimal dominating sets of G are pairwise disjoint.

Conversely, assume that G is a graph such that D(G) is a pairwise disjoint
family of subsets. Suppose that G is neither a complete graph nor an empty
graph. Let D be a maximal independent set of vertices of G with |D| ≥ 2
(such a set D exists because G is not a complete graph), and let z ∈ V (G) \D
(such a vertex z exists because G is not an empty graph). We claim that z is
adjacent to every vertex of D. Indeed, if z is not adjacent to some x ∈ D, then
the independent set {z, x} can be extended to a maximal independent set, so
a minimal dominating set, that has a non-empty intersection with the minimal
dominating set D, contradicting the hypothesis. Thus every vertex of V (G) \D
is adjacent to every vertex of D. Hence G = G[D] ∨ G[V \ D], where G[D] is
an empty graph. We want to prove that V \ D induces a complete subgraph
of G. Suppose on the contrary that there exists a non-universal vertex z in
G[V \D]. From Lemma 1 it follows that, for every x ∈ D, the vertex set {x, z}
is a minimal dominating set of G that has a non-empty intersection with the
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minimal dominating set D. This leads us to a contradiction because D(G) is a
pairwise disjoint family of subsets.

From Proposition 3 we get that, in general, minimal dominating sets do not
need to be pairwise disjoint (that is, the family of minimal dominating sets of
a graph does not necessarily provide a partition of the vertex set of the graph).
Therefore, in order to find a complete description of the graphs satisfying the
lower elimination property we must look for graphs G satisfying this property
and with non-disjoint minimal dominating sets. We stress that from our char-
acterization result (see Theorem 4) it follows that there are only two families of
graphs G fulfilling both conditions: the complete multipartite graph K2,...,2 and
the join Kr ∨K2,...,2 of a complete graph Kr and a complete multipartite graph
K2,...,2.

Theorem 4. A graph G satisfies the lower elimination property if and only if G
is isomorphic to one of the following graphs.

1. The complete graph Kn.

2. The empty graph Kn.

3. The complete multipartite graph K2,...,2.

4. The join of a complete graph and an empty graph Kr ∨Ks.

5. The join of a complete graph and a complete multipartite graph Kr ∨K2,...,2.

Proof. First, suppose that G is isomorphic to one of the graphs of the list above.
If G is isomorphic to Kn, or to Kn, or to Kr ∨Ks, then the minimal dominating
sets of G are pairwise disjoint and, so, G satisfies the lower elimination property.
In addition, the complete multipartite graph K2,...,2 satisfies the lower elimina-
tion property because its minimal dominating sets are all the vertex subsets of
cardinality 2. Moreover, from Lemma 1 it follows that: if G′ is a graph satisfying
the lower elimination property, then the join graph Kr ∨G′ of a complete graph
Kr and G′ also satisfies the lower elimination property. In particular, we get
that the join graph Kr ∨ K2,...,2 satisfies the lower elimination property. So we
conclude that if G is a graph isomorphic to one of the graphs of the list above,
then G satisfies the lower elimination property.

Now we are going to prove that if a graph G satisfies the lower elimination
property then G is isomorphic either to Kn, or to Kn, or to K2,...,2, or to Kr∨Ks,
or to Kr ∨K2,...,2. So, let G be a graph satisfying the lower elimination property.
We claim that, in such a case, the graph G is a complete multipartite graph.
Let us prove our claim. Suppose that G satisfies the lower elimination property
and that G is not a complete multipartite graph. It is well known that the
class of complete multipartite graphs is equivalent to the class of P3-free graphs.
Therefore, since we are assuming that G is not a complete multipartite graph,
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we conclude that G contains P3 as an induced subgraph. So, there exist vertices
u, v, w ∈ V (G) such that uv /∈ E(G), uw /∈ E(G) and vw ∈ E(G). Consider a
maximal independent set D1 containing u and v, and a maximal independent set
D2 containing u and w. Both sets D1 and D2 are minimal dominating sets with
no vertex adjacent to u. Therefore, the set (D1∪D2)\{u} has no vertex adjacent
to u, implying that (D1 ∪D2) \ {u} does not contain a minimal dominating set,
which is not possible for a graph that satisfies the lower elimination property.
This completes the proof of our claim.

From our claim it follows there are integers n1 ≥ · · · ≥ nk ≥ 1 such that
the graph G is isomorphic to the complete multipartite graph Kn1,...,nk

. Let
V (G) = V1 ∪ · · · ∪ Vk be the corresponding k-partition of the vertex set of G (so
|Vi| = ni for 1 ≤ i ≤ k). Observe that if k = 1 then G is isomorphic to the
empty graph Kn. Therefore, we may assume that k ≥ 2. Clearly, if n1 = 1 then
G is isomorphic to the complete graph Kn, while if n1 = 2 then G is isomorphic
either to a complete multipartite graph K2,...,2 or to a join of a complete graph
and a complete multipartite graph Kr ∨ K2,...,2. To complete the proof of the
theorem it is enough to show that n2 = · · · = nk = 1 whenever k ≥ 2 and
n1 ≥ 3 (because then we conclude that G is isomorphic to a join Kr ∨ Ks).
Suppose on the contrary that k ≥ 2, n1 ≥ 3 and n2 ≥ 2. Let x1, x2, x3 be three
different vertices of V1 and y1, y2 two different vertices of V2. Clearly, the sets
D1 = {x1, y1} and D2 = {x2, y1} are minimal dominating sets of G. However,
the set D1 ∪D2 \ {y1} = {x1, x2} does not contain any minimal dominating set,
because x3 is not dominated by {x1, x2}. Thus a contradiction follows because
we are assuming that the graph G satisfies the lower elimination property.

4. Upper Elimination Property

In this section we characterize the graphs G that satisfy the upper elimination
property. Recall that G satisfies the upper elimination property if for every pair
of different sets D1, D2 ∈ D(G) such that D1 ∩D2 6= ∅ and every x ∈ D1 ∩D2,
there exists D3 ∈ D(G) such that (D1 ∪D2) \ {x} ⊆ D3.

Remark 5. Notice that if x ∈ D3, then D1, D2 ⊆ D3, and by the minimality
of D3, we obtain that D3 = D1 and D3 = D2, that is not possible because
D1 6= D2. Hence x 6∈ D3. On the other hand, the case D1 = D2 would give a
trivial property, taking D3 = D1.

As a consequence of Theorem 4, we obtain the following result relating both
elimination properties in a graph.

Proposition 6. If a graph G satisfies the lower elimination property, then it also

satisfies the upper elimination property.
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Proof. If G satisfies the lower elimination property, then the graph G is isomor-
phic to a graph in the list of Theorem 4. It is easy to check that these graphs
also satisfy the upper elimination property.

To characterize the graphs satisfying the lower elimination property (Corol-
lary 12), we will use several results concerning elimination properties for general
families of subsets. First we need to introduce some terminology.

Let Ω be a non-empty finite set. A clutter H on Ω, also known as Sperner

family, is a family of pairwise non-comparable subsets of Ω. Observe that, for a
graph G, the family D(G) is a clutter on V (G).

The elimination properties defined for the family of minimal dominating sets
of a graph can be extended to the more general frame of clutters. Concretely, we
say that a clutter H satisfies the lower elimination property if for every A,B ∈ H
with A 6= B such that A∩B 6= ∅, and for every x ∈ A∩B, there exists C ∈ H such
that C ⊆ (A∪B)\{x}. Analogously, we say that the clutter H satisfies the upper
elimination property if for every A,B ∈ H with A 6= B such that A∩B 6= ∅, and
for every x ∈ A ∩ B, there exists C ∈ H such that (A ∪ B) \ {x} ⊆ C. Clearly,
every clutter whose elements are pairwise disjoint satisfies both the lower and
upper elimination property.

Notice that, from the definition, the clutters H satisfying the lower elimina-
tion property are exactly the set of circuits of a matroid (the reader is referred
to [10, 11] for general references on matroid theory). However, as far as we know
the upper elimination property has not been considered in the literature and we
now focus on it.

Remark 7. From Proposition 6, if H = D(G) for some graph G and H satisfies
the lower elimination property, then it also satisfies the upper one. However,
this relationship between both elimination properties does not hold for a general
clutter. Let us give an example. On the finite set Ω = {1, 2, 3, 4} we consider
the clutter H = {{1, 2, 3}, {1, 2, 4}, {3, 4}}. It is easy to check that H satisfies
the lower elimination property. However, if A = {1, 2, 3}, B = {1, 2, 4}, then
1 ∈ A ∩ B and (A ∪ B) \ {1} = {2, 3, 4}. This last set is not contained in any
element of H. So H does not satisfy the upper elimination property.

From now on, our aim is to provide a complete characterization of clutters
satisfying the upper elimination property (Theorem 10). To this end we study
first the elimination properties for uniform clutters. Recall that the uniform

clutter Uk,Ω is the family of all subsets of cardinality k ≥ 1 of a finite set Ω.

Proposition 8. For every 1 ≤ k ≤ |Ω|, the uniform clutter Uk,Ω satisfies the

lower elimination property. Moreover, Uk,Ω satisfies the upper elimination prop-

erty if and only if k ∈ {1, 2, |Ω| − 1, |Ω|}.
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Proof. If k = 1, then the elements of Uk,Ω are pairwise disjoint, and so Uk,Ω

satisfies the lower elimination property. Next let us prove that Uk,Ω satisfies the
lower elimination property whenever 2 ≤ k ≤ |Ω|. For it, take A1, A2 ∈ Uk,Ω with
A1 6= A2, and let x ∈ A1∩A2. Since |A1| = |A2| = k, we have |(A1∪A2)\{x}| ≥ k,
and so (A1∪A2)\{x} contains a subset with cardinality k. Therefore, there exists
A3 ∈ Uk,Ω such that A3 ⊆ (A1 ∪A2) \ {x}.

Now, we must demonstrate that Uk,Ω satisfies the upper elimination property
if and only if k ∈ {1, 2, |Ω|−1, |Ω|}. It is straightforward to check that the uniform
clutters U1,Ω, U2,Ω, U|Ω|−1,Ω and U|Ω|,Ω satisfy the upper elimination property.
Thus, the proof will be completed by showing that if |Ω| ≥ 5 and 3 ≤ k ≤ |Ω|−2,
then the uniform clutter Uk,Ω does not satisfy the upper elimination property.
So let |Ω| ≥ 5 and 3 ≤ k ≤ |Ω| − 2. Set Ω = {x1, . . . , x|Ω|} and let A1 =
{x1, . . . , xk} and A2 = (A1 ∪ {xk+1, xk+2}) \ {x1, x2}. Then A1, A2 ∈ Uk,Ω and
xk ∈ A1 ∩A2. However, there is no A ∈ Uk,Ω containing (A1 ∪A2) \ {xk} because
|(A1 ∪A2) \ {xk}| = k + 1.

Lemma 9. Let H be a clutter satisfying the upper elimination property. Let

A1 ∈ H be a set of maximum cardinality r among all elements of H with non-

empty intersection with some element of H. Then, r ≥ 2 and, if A2 ∈ H with

A1 6= A2 and A1 ∩A2 6= ∅, then the following statements hold.

(i) |A1| = |A2| = r, |A1 ∪A2| = r + 1 and |A1 ∩A2| = r − 1.

(ii) Ur,A1∪A2
⊆ H.

(iii) If r ≥ 3 and A ∈ H with (A1 ∪A2) ∩A 6= ∅, then A ∈ Ur,A1∪A2
.

Proof. First of all observe that r ≥ 2 because otherwise, if r = 1, then A1 =
{x1}, and so A1 ∩ A = ∅ for all A ∈ H different from A1 (recall that a clutter is
a family of pairwise non-comparable subsets).

Let us prove statement (i).

By assumption we have A1, A2 ∈ H with A1 6= A2 and A1 ∩ A2 6= ∅. Let
x ∈ A1 ∩ A2 and let A3 ∈ H such that (A1 ∪ A2) \ {x} ⊆ A3 (such a set A3 ∈ H
exists because H satisfies the upper elimination property).

We claim that A3 = (A1 ∪ A2) \ {x} and that |(A1 ∪ A2) \ {x}| = r. Let us
prove our claim. As H is a clutter, A1 \ {x} /∈ H. Hence A1 \ {x}  A3, and thus
|A3| ≥ r. But A1 ∩A3 6= ∅. So by the choice of A1 we have that |A3| ≤ |A1| = r.
Therefore we conclude that |A3| = r. Moreover, the sets A1 and A2 are non-
comparable (because A1, A2 ∈ H are different). So A1 \A2 6= ∅ and A2 \A1 6= ∅.
Hence A1 \{x}  (A1∪A2)\{x} ⊆ A3, so r−1 = |A1 \{x}| < |(A1∪A2)\{x}| ≤
|A3| = r. Therefore |(A1 ∪A2) \ {x}| = r, and thus A3 = (A1 ∪A2) \ {x}.

Now we will prove that |A1 \ A2| = 1 and that |A2 \ A1| = 1. Clearly
|A2\A1| = 1 because r = |(A1∪A2)\{x}| = |A1\{x}|+|A2\A1| = (r−1)+|A2\A1|.
Let us demonstrate that |A1\A2| = 1. Suppose on the contrary that |A1\A2| ≥ 2
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(recall that A1 \ A2 6= ∅ because A1, A2 ∈ H are different and so they are non-
comparable). Let {y1, y2} ⊆ A1 \ A2, with y1 6= y2. Since y1 ∈ A1 ∩ A3, by the
upper elimination property, there exists A4 ∈ H such that (A1∪A3) \ {y1} ⊆ A4.
On one hand, y1 /∈ A2. On the other hand, (A1 ∪ A3) \ {y1} = (A1 ∪ A2) \ {y1}.
Hence it follows that A2 ⊆ (A1 ∪ A3) \ {y1} ⊆ A4. Therefore, A2 = A4 because
A2, A4 ∈ H are non-comparable. However, y2 ∈ A1 \ A2 = A1 \ A4 and y2 ∈
(A1 ∪A3) \ {y1} ⊆ A4, which is a contradiction.

At this point we are going to complete the proof of statement (i). From
A3 = (A1 ∪ A2) \ {x} and |A1| = |A3| = r, we get that |A1 ∪ A2| = r + 1. Then,
since A1∪A2 = (A1\A2)∪(A2\A1)∪(A1∩A2) and since |A1\A2| = |A2\A1| = 1,
we deduce |A1 ∩ A2| = r − 1. Finally, from A2 = (A2 \ A1) ∪ (A1 ∩ A2) we get
that |A2| = r.

Now let us prove statement (ii).

From statement (i) we have that |A1| = |A2| = r, that |A1 ∪A2| = r+ 1 and
that |A1∩A2| = r−1. Set A1 = {x1, . . . , xr} and A2 = {x2, . . . , xr+1} (recall that
r ≥ 2). Let A ⊆ A1∪A2 = {x1, x2, . . . , xr+1} with |A| = r. We must demonstrate
that if A 6= A1, A2 then A ∈ H. Without loss of generality we may assume that
A = {x1, x2, . . . , xr+1} \ {x2}. As x2 ∈ A1 ∩ A2, from the upper elimination
property it follows that there exists A′

2 ∈ H such that A = (A1∪A2)\{x2} ⊆ A′
2.

But A′
2 ∈ H and A1∩A

′
2 6= ∅. Therefore we can apply statement (i) to A′

2. In this
way we deduce that |A′

2| = r. Therefore A = A′
2 and, in particular, A = A′

2 ∈ H.

Finally, let us demonstrate statement (iii). So, from now on let us assume
that r ≥ 3.

Let A ∈ H with (A1 ∪ A2) ∩ A 6= ∅ and A 6= A1, A2. We must demonstrate
that |A| = r and that A ⊆ A1 ∪A2.

From statement (i) it follows that the subsets A1 and A2 play the same
role. Therefore, without loss of generality we may assume that A1 ∩ A 6= ∅
and hence, by applying statement (i) to A1 and A we conclude that |A| = r,
that |A1 ∪ A| = r + 1 and that |A1 ∩ A| = r − 1. To finish the proof we must
demonstrate that A ⊆ A1∪A2. Suppose, for contradiction, that A 6⊆ A1∪A2. Let
y ∈ A \ (A1 ∪A2) and, as before, set A1 = {x1, . . . , xr} and A2 = {x2, . . . , xr+1}.
Since r ≥ 3 and |A1∩A| = r−1, hence A2∩A 6= ∅ and so, by applying statement
(i) to A2 and A we get that |A2∪A| = r+1 and that |A2∩A| = r−1. Consequently,
A = {x2, . . . , xr, y}. Choose A′

1 ∈ Ur,A1∪A2
so that {x1, xr+1} ⊆ A′

1. Then,
by statement (ii), A′

1 ∈ H and now, by applying statement (i) to A′
1 and A

we get that |A′
1 ∩ A| = r − 1. Therefore, a contradiction is obtained because

A′
1 ∩A  {x2, . . . , xr}. This completes the proof of the lemma.

Theorem 10. A clutter H on Ω satisfies the upper elimination property if and

only if H = Uk1,Ω1
∪ · · · ∪ Ukq ,Ωq

where {Ω1, . . . ,Ωq} is a family of pairwise dis-

joint sets of Ω and ki ∈ {1, 2, |Ωi| − 1, |Ωi|} for every i ∈ {1, . . . , q}.
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Proof. Let H be a clutter on Ω. From Proposition 8 it follows that, if there
exists a family {Ω1, . . . ,Ωq} of pairwise disjoint subsets of Ω such that H =
Uk1,Ω1

∪ · · · ∪ Ukq ,Ωq
and ki ∈ {1, 2, |Ωi| − 1, |Ωi|} for 1 ≤ i ≤ q, then the clutter

H satisfies the upper elimination property. Therefore we only must demonstrate
the converse.

So, let H be a clutter on Ω satisfying the upper elimination property.

Suppose first that all the elements of H are pairwise disjoint. Let H =
{A1, . . . , Am}. In this case set q = m and Ωi = Ai. Then, {Ω1, . . . ,Ωq} is a family
of pairwise disjoint sets of Ω and H = {A1} ∪ · · · ∪ {Am} = Uk1,Ω1

∪ · · · ∪ Ukq ,Ωq

where ki = |Ωi|.

Now suppose that not all elements of H are pairwise disjoint.

Let A1 ∈ H be a set of maximum cardinality r ≥ 2 among all elements of H
with non-empty intersection with some element of H.

We claim that there exists Ω1 ⊆ Ω such that A1 ∈ Ur,Ω1
⊆ H and such

that for every A ∈ H, either A ∩ Ω1 = ∅ or A ∈ Ur,Ω1
. To proof our claim, we

distinguish two cases, r ≥ 3 and r = 2.

First assume that r ≥ 3. In this case, let A2 ∈ H be such that A1∩A2 6= ∅ and
set Ω1 = A1 ∪A2. By statement (ii) of Lemma 9, we know that A1 ∈ Ur,Ω1

⊆ H.
Moreover, if A ∈ H with A 6= A1 and A ∩ Ω1 6= ∅ then, from statement (iii) of
Lemma 9 we get that A ∈ Ur,Ω1

. Therefore Ω1 fulfils the required conditions.

Now we must demonstrate our claim in the case r = 2. To do this, let
us consider the binary relation ∼ on Ω defined as follows. If a, b ∈ Ω, then
a ∼ b if and only if a = b or {a, b} ∈ H. Clearly, the binary relation ∼ is
reflexive and symmetric. Moreover, if a, b, c are distinct elements of Ω with a ∼ b
and b ∼ c, then by the upper elimination property and the fact that r = 2,
we have {a, c} ∈ H. Therefore the binary relation ∼ is transitive and so ∼ is an
equivalence relation. Since r = 2, we can consider the equivalence class containing
A1. Let Ω1 be this equivalence class. Then, by applying statements (ii) and (iii)
of Lemma 9 we get that Ω1 satisfies the required conditions.

From our claim we get that there exists a subset Ω1 ⊆ Ω and an integer k1 ≥ 2
such that A1 ∈ Uk1,Ω1

⊆ H and such that the following property is fulfilled: every
element of H intersecting Ω1 is in Uk1,Ω1

. At this point let us consider the clutter
H1 = H\Uk1,Ω1

. Clearly H1 is a clutter on Ω\Ω1 satisfying the upper elimination
property. Therefore we can repeat the reasoning for H1 and so on. By means
of this recursive procedure we get that there exists a family {Ω1,Ω2, . . . ,Ωq}
of pairwise disjoint subsets of Ω such that H = Uk1,Ω1

∪ · · · ∪ Ukq ,Ωq
. Finally,

notice that since the clutter H satisfies the upper elimination property, hence the
uniform clutters Uki,Ωi

also satisfy the upper elimination property and, therefore,
by Proposition 8, ki ∈ {1, 2, |Ωi| − 1, |Ωi|}. This completes the proof of the
theorem.



Elimination Properties for Minimal Dominating Sets of Graphs 147

Corollary 11. If a clutter H satisfies the upper elimination property, then H
satisfies the lower elimination property.

Proof. By Theorem 10, if a clutter H satisfies the upper elimination property,
then H = Uk1,Ω1

∪ · · · ∪ Ukq ,Ωq
where {Ω1, . . . ,Ωq} is a family of pairwise disjoint

sets of Ω and ki ∈ {1, 2, |Ωi| − 1, |Ωi|} for every i ∈ {1, . . . , q}. Let A1 and A2 be
two different elements of H, and let x ∈ A1 ∩ A2. In such a case, A1 ∩ A2 6= ∅
and, therefore, A1, A2 ∈ Uki,Ωi

for some i ∈ {1, . . . , q}. By Proposition 8, the
uniform clutter Uki,Ωi

satisfies the lower elimination property. So, there exists
A ∈ Uki,Ωi

⊆ H such that A ⊆ (A1 ∪A2) \ {x}.

Observe that we can apply this corollary whenever H is a domination clutter,
that is, whenever H = D(G) for some graph G. So, by combining the above
corollary and Proposition 6 we conclude that even though for general clutters
both elimination properties are not equivalent, these conditions are the same for
domination clutters. This result is stated in the following corollary.

Corollary 12. A graph G satisfies the upper elimination property if and only if

G satisfies the lower elimination property.

5. Conclusion and Open Problems

In this paper we have studied the lower and the upper elimination properties in
general clutters and in domination clutters. For a general clutter, having the
lower elimination property is equivalent to being the set of circuits of a matroid.
One of the main goals of this paper is to present a complete characterization and
description of the domination clutters satisfying this property. In addition, in
regard to the upper elimination property, we provide a complete characterization
and description of those clutters satisfying the upper elimination property both
for general clutters and for domination clutters. Finally, we demonstrate that,
while for a general clutter the upper elimination property and the lower one are
not equivalent, in the particular case of the domination clutter of a graph both
properties are the same.

The problems we have addressed suggest two future research lines. On one
hand, to relate matroids with different families of vertex subsets of graphs and,
on the other hand, to generalize the elimination properties from pairs of subsets
to a large number of them.

Concretely, given a graph G and a family Λ(G) of vertex subsets of G, the
question is to decide when Λ(G) defines a matroid M. In this paper we answer
this question in the case Λ(G) = D(G). Other interesting families could be the
independent vertex sets or the vertex cover sets.
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Regarding the second research line we could define the r-upper and the r-
lower elimination properties as follows. We say that a graph G satisfies the
r-lower elimination property if for every r different minimal dominating sets
D1, . . . , Dr of G and for every vertex x ∈ D1 ∩ · · · ∩ Dr, there is a minimal
dominating set contained in (D1 ∪ · · · ∪ Dr) \ {x}. Analogously, we say that G
satisfies the r-upper elimination property if for every r different minimal dom-
inating sets D1, . . . , Dr of G and for every vertex x ∈ D1 ∩ · · · ∩ Dr, there is
a minimal dominating set that contains (D1 ∪ · · · ∪ Dr) \ {x}. Therefore, now
it could be interesting to provide a complete characterization and description of
graphs satisfying either the r-upper or the r-lower elimination properties (this
paper deals with this issue whenever r = 2). Observe that, for r = 1, the 1-lower
elimination property has no sense while the 1-upper elimination property would
yield exchange type properties (as far as we know, the exchange type properties
have not been studied in the context of dominating sets of graphs). Finally we
stress that, in general, if r ≥ 2, different values of r will provide different prop-
erties. For instance, consider the graph G with vertex set V (G) = {1, 2, 3, 4, 5}
and edge set E(G) = {12, 13, 14, 15, 34, 45}. Then D(G) = {{1}, {2, 4}, {2, 3, 5}}.
Clearly G satisfies the 3-upper and the 3-lower elimination properties, however
it does not satisfy neither the 2-upper nor the 2-lower ones.
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