
Discussiones Mathematicae
Graph Theory 43 (2023) 5–16
https://doi.org/10.7151/dmgt.2353

THE EXISTENCE OF PATH-FACTOR COVERED GRAPHS

Guowei Dai

Faculty of Mathematics & Statistics
Central China Normal University

Luoyu Road 152, Wuhan, Hubei 430079, P.R. China

e-mail: daiguowei1990@163.com

Abstract

A spanning subgraph H of a graph G is called a P≥k-factor of G if every
component of H is isomorphic to a path of order at least k, where k ≥ 2. A
graph G is called a P≥k-factor covered graph if there is a P≥k-factor of G
covering e for any e ∈ E(G). In this paper, we obtain two special classes of
P≥2-factor covered graphs. We also obtain two special classes of P≥3-factor
covered graphs. Furthermore, it is shown that these results are all sharp.
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1. Introduction

We consider only finite simple graph, unless explicitly stated. We refer to [6]
for the notation and terminologies not defined here. Let G = (V (G), E(G)) be
a simple graph, where V (G) and E(G) denote the vertex set and the edge set
of G, respectively. A subgraph H of G is called a spanning subgraph of G if
V (H) = V (G) and E(H) ⊆ E(G). A subgraph H of G is called an induced
subgraph of G if every pair of vertices in H which are adjacent in G are also
adjacent in H. For v ∈ V (G), the degree of v in G is denoted by dG(v). A graph
G is said to be claw-free if there is no induced subgraph of G isomorphic to K1,3.

For a family of connected graphs F , a spanning subgraph H of a graph G
is called an F-factor of G if each component of H is isomorphic to some graph
in F . A spanning subgraph H of a graph G is called a P≥k-factor of G if every
component of H is isomorphic to a path of order at least k. For example, a P≥3-
factor means a graph factor in which every component is a path of order at least

https://doi.org/10.7151/dmgt.2353


6 G. Dai

three. A graph G is called a P≥k-factor covered graph if there is a P≥k-factor of
G covering e for any e ∈ E(G).

Since Tutte proposed the well known Tutte 1-factor theorem [15], there are
many results on graph factors [2, 3, 8, 9, 16] and P≥k-factors in claw-free graphs
and cubic graphs [4, 12, 13]. More results on graph factors can be found in the
survey papers and books in [2, 14, 18]. We use ω(G), i(G) to denote the number
of components and isolated vertices of a graph G, respectively. For a subset
X ⊆ V (G), G−X denotes the graph obtained from G by deleting all the vertices
of X. Akiyama, Avis and Era [1] proved the following theorem, which is a
criterion for a graph to have a P≥2-factor.

Theorem 1 (Akiyama et al. [2]). A graph G has a P≥2-factor if and only if
i(G−X) ≤ 2|X| for all X ⊆ V (G).

Kaneko [10] introduced the concept of a sun and gave a characterization for a
graph with a P≥3-factor. It is perhaps the first characterization of graphs which
have a path factor not including P2. Recently, Kano et al. [11] presented a simpler
proof for Kaneko’s theorem [10].

A graph H is called factor-critical if H−{v} has a 1-factor for each v ∈ V (H).
Let H be a factor-critical graph and V (H) = {v1, v2, . . . , vn}. By adding new
vertices {u1, u2, . . . , un} together with new edges {viui : 1 ≤ i ≤ n} to H, the
resulting graph is called a sun. Note that, according to Kaneko [10], we regard
K1 and K2 also as a sun, respectively. Usually, the suns other than K1 are called
big suns. It is called a sun component of G − X if the component of G − X is
isomorphic to a sun. We denote by sun(G−X) the number of sun components
in G−X.

Theorem 2 (Kaneko [10]). A graph G has a P≥3-factor if and only if sun(G−
X) ≤ 2|X| for all X ⊆ V (G).

Zhang and Zhou [19] proposed the concept of path-factor covered graph,
which is a generalization of matching cover. They also obtained a characterization
for P≥2-factor and P≥3-factor covered graphs, respectively.

Theorem 3 (Zhang et al. [19]). Let G be a connected graph. Then G is a P≥2-
factor covered graph if and only if i(G − S) ≤ 2|S| − ε(S) for all S ⊆ V (G),
where ε(S) is defined by

ε(S) =


2 if S 6= ∅ and S is not an independent set,

1 if S 6= ∅, S is an independent set and there exists

a component of G− S with at least two vertices,

0 otherwise.
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Theorem 4 (Zhang et al. [19]). Let G be a connected graph. Then G is a P≥3-
factor covered graph if and only if sun(G − S) ≤ 2|S| − ε(S) for all S ⊆ V (G),
where ε(S) is defined by

ε(S) =


2 if S 6= ∅ and S is not an independent set,

1 if S 6= ∅, S is an independent set and there exists a

non-sun component of G− S,

0 otherwise.

For a connected graph G, its toughness, denoted by t(G), was first introduced
by Chvátal [7] as follows. If G is complete, then t(G) = +∞; otherwise,

t(G) = min

{
|S|

ω(G− S)
: S ⊆ V (G), ω(G− S) ≥ 2

}
.

Bazgan, Benhamdine, Li and Woźniak [5] showed a toughness condition for the
existence of a P≥3-factor in a graph.

Theorem 5 (Bazgan, Benhamdine, Li and Woźniak [5]). Let G be a graph with
at least three vertices. If t(G) ≥ 1, then G includes a P≥3-factor.

For a connected graph G, its isolated toughness, denoted by I(G), was first
introduced by Yang, Ma and Liu [17] as follows. If G is complete, then I(G) =
+∞; otherwise,

I(G) = min

{
|S|

i(G− S)
: S ⊆ V (G), i(G− S) ≥ 2

}
.

Recently, Zhou and Wu [20] obtained three classes of P≥3-factor covered graphs.

Theorem 6 (Zhou and Wu [20]). A graph G is a P≥3-factor covered graph if one
the following holds.

(i) G is a connected graph with at least three vertices and t(G) > 2/3;

(ii) G is a connected graph with at least three vertices and I(G) > 5/3;

(iii) G is a k-regular graph with k ≥ 2.

In this paper, we proceed to investigate P≥k-factor covered graphs. We re-
spectively obtain two special classes of P≥2-factor covered graphs and P≥3-factor
covered graphs. Our main results will be shown in Sections 2 and 3, respectively.
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2. P≥2-Factor Covered Graphs

In this section, we mainly obtain two special classes of P≥2-factor covered graphs.
First, we will give a sufficient condition for a connected claw-free graph to be a
P≥2-factor covered graph as following. Note that the result in Theorem 7 is sharp
in the sense that there exists a connected claw-free graph of minimum degree 1,
which is not a P≥2-factor covered graph. An example can be seen in Figure 1.

Figure 1. A connected claw-free graph of minimum degree 1 that does not contain any
P≥2-factor covering e = x2x3.

Theorem 7. Let G be a connected claw-free graph of minimum degree at least 2.
Then G is a P≥2-factor covered graph.

Proof. Suppose G is not a P≥2-factor covered graph. Then by Theorem 3, there
exists a subset S ⊆ V (G) such that i(G − S) > 2|S| − ε(S). In terms of the
integrality of i(G − S), we obtain that i(G − S) ≥ 2|S| − ε(S) + 1. We will
distinguish two cases below to show that G is a P≥2-factor covered graph.

Case 1. |S| ≤ 1. If S = ∅, then ε(S) = |S| = 0 by the definition of ε(S). It
follows easily that

i(G) = i(G− S) ≥ 2|S| − ε(S) + 1 = 1.

On the other hand, i(G) ≤ ω(G) = 1 since G is a connected graph. Combining
the results above, we obtain i(G) = 1, which contradicts the connectivity of G.

If |S| = 1, let S = {s}. We obtain ε(S) ≤ 1 by the definition of ε(S). If
ε(S) = 0, then

ω(G− S) ≥ i(G− S) ≥ 2|S| − ε(S) + 1 = 3.

Therefore, if either ε(S) is 0 or 1, then there are at least three components of
G − {s}. It follows easily that there exists a claw with center vertex s in G, a
contradiction.
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Case 2. |S| ≥ 2. Let |S| = k ≥ 2 and S = {s1, s2, . . . , sk}. By the definition
of ε(S), we have ε(S) ≤ 2. It follows easily that

i(G− S) ≥ 2|S| − ε(S) + 1 = 2|S| − 1.

Let i(G − S) = m ≥ 2k − 1 and {x1, x2, . . . , xm} be the set of isolated vertices
of G− S. Since the minimum degree of G is at least two, we immediately obtain
the number of edges incident with the vertices in {x1, x2, . . . , xm} is at least 2m.
Because G does not have multiple edges and

2m

|S|
=

2m

k
≥ 2(2k − 1)

k
= 4− 2

k
≥ 3,

there must exist a vertex si ∈ S adjacent to at least three vertices in {x1, x2, . . . ,
xm} by pigeonhole principle. It follows easily that there exists a claw with center
vertex si in G, a contradiction.

Combining Case 1 and Case 2, Theorem 7 is proved.

Next, we study the relationship between isolated toughness and P≥2-factor
covered graphs, and obtain an isolated toughness condition for the existence of
P≥2-factor covered graphs. The example in Figure 2 shows the sharpness of
the results in Theorem 8 in the sense that there exists a connected graph with
I(G) = 2/3, which is not a P≥2-factor covered graph.

Figure 2. A connected graph with I(G) = 2/3 that does not contain any P≥2-factor
covering e = x1x5.

Theorem 8. Let G be a connected graph with at least two vertices. If I(G) > 2/3,
then G is a P≥2-factor covered graph.
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Proof. If G is a complete graph with at least two vertices, obviously G is a
P≥2-factor covered graph. Thus we may assume that G is a connected graph
with at least two vertices and not complete. Suppose G is not a P≥2-factor
covered graph. Then by Theorem 3, there exists a subset S ⊆ V (G) such that
i(G − S) > 2|S| − ε(S). Then, by the integrality of i(G − S), we obtain that
i(G− S) ≥ 2|S| − ε(S) + 1.

Case 1. |S| ≤ 1. If |S| = 0, by the definition of ε(S), we have S = ∅ and
ε(S) = 0. It follows immediately that

i(G) = i(G− S) ≥ 2|S| − ε(S) + 1 = 1,

which contradicts the connectivity of G.
Thus we may assume |S| = 1, we have ε(S) ≤ 1 by the definition of ε(S). It

follows easily that
i(G− S) ≥ 2|S| − ε(S) + 1 ≥ 2|S|.

By the definition of I(G), we have that

I(G) ≤ |S|
i(G− S)

≤ 1

2
,

which contradicts I(G) > 2/3.

Case 2. |S| ≥ 2. In this case, it follows from the definition of ε(S) that
ε(S) ≤ 2, which implies that

i(G− S) ≥ 2|S| − ε(S) + 1 ≥ 2|S| − 1 ≥ 3.

Thus we immediately obtain

|S| ≤ i(G− S) + 1

2
.

By the definition of I(G), we have

I(G) ≤ |S|
i(G− S)

≤ i(G− S) + 1

2i(G− S)
≤ 1

2
+

1

2i(G− S)
≤ 1

2
+

1

6
=

2

3
,

which contradicts I(G) > 2/3.
This completes the proof of Theorem 8.

3. P≥3-Factor Covered Graphs

In this section, we mainly obtain two special classes of P≥3-factor covered graphs.
First, we give a minimum degree condition for a connected claw-free graph to be
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Figure 3. A connected claw-free graph of minimum degree 2 that does not contain any
P≥3-factor covering e = x2x3.

a P≥3-factor covered graph as following. Note that the results in Theorem 9 is
also sharp in the sense that there exists a connected claw-free graph of minimum
degree 2, which is not a P≥3-factor covered graph. It is shown by the example in
Figure 3.

Theorem 9. Let G be a connected claw-free graph of minimum degree at least 3.
Then G is a P≥3-factor covered graph.

Proof. Suppose G is not a P≥3-factor covered graph. Then by Theorem 4, there
exists a subset S ⊆ V (G) such that sun(G − S) > 2|S| − ε(S). In terms of the
integrality of sun(G− S), we obtain that sun(G− S) ≥ 2|S| − ε(S) + 1. We will
distinguish two cases below to show that G is a P≥3-factor covered graph.

Case 1. |S| ≤ 1. If S = ∅, then ε(S) = |S| = 0 by the definition of ε(S). It
follows easily that

sun(G) = sun(G− S) ≥ 2|S| − ε(S) + 1 = 1.

On the other hand, sun(G) ≤ ω(G) = 1 since G is a connected graph. Combining
the results above, we obtain that G is a big sun, which contradicts the minimum
degree of G.

If |S| = 1, let S = {s}. We obtain ε(S) ≤ 1 by the definition of ε(S). If
ε(S) = 0, then

ω(G− S) ≥ sun(G− S) ≥ 2|S| − ε(S) + 1 = 3.

Otherwise ε(S) = 1, then there exists a non-sun component of G− S and thus

ω(G− S) ≥ sun(G− S) + 1 ≥ 2|S| − ε(S) + 1 + 1 = 3.

Therefore, if either ε(S) is 0 or 1, then there are at least three components of
G − {s}. It follows easily that there exists a claw with center vertex s in G, a
contradiction.
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This completes the proof of Case 1.

Case 2. |S| ≥ 2. Let |S| = k ≥ 2 and S = {s1, s2, . . . , sk}. By the definition
of ε(S), we have ε(S) ≤ 2. It follows easily that

sun(G− S) ≥ 2|S| − ε(S) + 1 ≥ 2|S| − 1.

Let sun(G−S) = m ≥ 2k−1 and {C1, C2, . . . , Cm} be the set of sun components
of G − S. For any sun component Ci of G − S, let L(Ci) ⊆ V (Ci) be the set of
vertices with exactly one neighbour vertex in Ci, and L(Ci) = V (Ci) if Ci

∼= K1,
where 1 ≤ i ≤ m. Let E(S, V (Ci) \L(Ci)) be the set of edges in graph G between
vertex a and b for any a ∈ S, b ∈ V (Ci) \L(Ci) for 1 ≤ i ≤ m. Then we construct
a bipartite multigraph H from G by deleting all edges of

E(G[S]) ∪

(
m⋃
i=1

E(S, V (Ci) \L(Ci))

)
and all vertices of

V (G) \S ∪

(
m⋃
i=1

V (Ci)

)
and contracting each Ci to a vertex ci for 1 ≤ i ≤ m.

Claim 1. For any vertex u, v ∈ V (H), there are at most two edges between u
and v in H.

Proof. Without loss of generality, we assume u = s1 and v = c1. Suppose there
are three edges between u and v in H. Then there are three vertices in L(C1)
corresponding to the vertex c1, denoted by

{
c11, c

2
1, c

3
1

}
. By the definition of big

sun, ci1c
j
1 /∈ E(G) for any 1 ≤ i < j ≤ 3, which implies a claw with center vertex

u in G. This is a contradiction.

Since the minimum degree of G is at least three, it is clear that dH(ci) ≥ 3
for 1 ≤ i ≤ m. Trivially,

|E(H)| ≥ 3m ≥ 3(2k − 1) = 6k − 3.

By pigeonhole principle and

|E(H)|
|S|

≥ 3m

k
≥ 6k − 3

k
= 6− 3

k
> 4,

there must exist a vertex si ∈ S incident with at least five edges in E(H).
According to Claim 1 and pigeonhole principle, there exists at least three vertices,
denoted by {c1, c2, c3}, adjacent to si. Since {si, c1, c2, c3} induces a claw in H, it
follows easily that there exists a claw with center vertex si in G, a contradiction.
This completes the proof of Case 2.

Combining Case 1 and Case 2, Theorem 9 is proved.
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Next, we investigate the relationship between planar graphs and P≥3-factor
covered graphs, and obtain a connectivity condition for a planar graph to be
a P≥3-factor covered graphs as following. The example in Figure 4 shows the
sharpness of the results in Theorem 11 in the sense that there exists a 2-connected
planar graph, which is not a P≥3-factor covered graph.

Figure 4. A 2-connected planar graph that does not contain any P≥3-factor covering
e = x3x4.

Lemma 10 [6]. Let G be a connected planar graph with at least three vertices.
If G does not contain triangles, then |E(G)| ≤ 2|G| − 4.

Theorem 11. Let G be a 3-connected planar graph. Then G is a P≥3-factor
covered graph.

Proof. Suppose G is not a P≥3-factor covered graph. By Theorem 4, there
exists a subset S ⊆ V (G) such that sun(G − S) > 2|S| − ε(S). According to
the integrality of sun(G− S), we obtain that sun(G− S) ≥ 2|S| − ε(S) + 1. We
distinguish three cases below to show that G is a P≥3-factor covered graph.

Case 1. |S| = 0. In this case, by the definition of ε(S), we have S = ∅ and
ε(S) = 0. Since G is a connected graph, sun(G) ≤ ω(G) = 1. On the other hand,
we obtain that

sun(G) = sun(G− S) ≥ 2|S| − ε(S) + 1 = 1.

It follows easily that sun(G) = 1, which is to say G is a big sun. By the definition
of sun, it contradicts the fact that G is 3-connected. This completes the proof of
Case 1.

Case 2. |S| = 1. In this case, we obtain ε(S) ≤ 1 by the definition of ε(S).
It follows immediately that

sun(G− S) ≥ 2|S| − ε(S) + 1 ≥ 2.
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Let S = {x} ⊆ V (G). Since ω(G − S) ≥ sun(G − S) ≥ 2, x is a cut-vertex of
G, which contradicts the fact that G is 3-connected. This completes the proof of
Case 2.

Case 3. |S| ≥ 2. In this case, we obtain ε(S) ≤ 2 by the definition of ε(S).
It follows immediately that

sun(G− S) ≥ 2|S| − ε(S) + 1 ≥ 2|S| − 1.

Set |S| = s. We denote by Sun(G−S) the set of sun components in G−S. Since
sun(G − S) ≥ 2|S| − 1, let C1, C2, . . . , C2s−1 be 2s − 1 distinct sun components
where Ci ∈ Sun(G − S) for any 1 ≤ i ≤ 2s − 1. Then we construct a bipartite
graph H from G by contracting each Ci to a vertex ci for 1 ≤ i ≤ 2s − 1 and
deleting all edges of E(G[S]) and all vertices of

V (G) \ (S ∪

(
2s−1⋃
i=1

V (Ci))

)
.

Since G is 3-connected, it is clear that dH(ci) ≥ 3 for 1 ≤ i ≤ 2s− 1. Trivially,

|H| = s + (2s− 1) = 3s− 1 ≥ 5,

and
|E(H)| ≥ 3 (2s− 1) = 6s− 3.

As G is a 3-connected planar graph, it is easy to see that H is also a connected
planar graph. According to the fact that a bipartite graph does not contain any
odd cycles, Lemma 10 implies that

6s− 3 ≤ |E(H)| ≤ 2|H| − 4 = 2 (3s− 1)− 4 = 6s− 6,

which is a contradiction. This completes the proof of Case 3.
Combining Cases 1–3, Theorem 11 is proved.
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