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Abstract

The crossing number of a graph G is the minimum number of edge cross-
ings over all drawings of G in the plane. Recently, the crossing numbers
of join products of two graphs have been studied. In the paper, we extend
know results concerning crossing numbers of join products of small graphs
with discrete graphs. The crossing number of the join product G∗ + Dn

for the disconnected graph G∗ consisting of five vertices and of three edges
incident with the same vertex is given. Up to now, the crossing numbers
of G + Dn were done only for connected graphs G. In the paper also the
crossing numbers of G∗ + Pn and G∗ + Cn are given. The paper concludes
by giving the crossing numbers of the graphs H +Dn, H +Pn, and H +Cn

for four different graphs H with |E(H)| ≤ |V (H)|. The methods used in
the paper are new. They are based on combinatorial properties of cyclic
permutations.

Keywords: graph, drawing, crossing number, join product, cyclic permu-
tation.
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1. Introduction

The crossing number of a simple graph G, denoted cr(G), with vertex set V (G)
and edge set E(G) is defined as the minimum possible number of edge crossings
in a drawing of G in the plane. A drawing with the minimum number of crossings
(an optimal drawing) must be a good drawing; that is, each two edges have at
most one point in common, which is either a common end-vertex or a crossing.
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Moreover, no three edges cross in a point. The investigation on the crossing
number of graphs is a classical and very difficult problem. Garey and Johnson
[1] proved that determining cr(G) is NP-complete.

Over the past decade, some results concerning crossing numbers of join prod-
ucts of two graphs have been obtained. The purpose of this article is to extend
the known results concerning this topic. The join product of two graphs Gi and
Gj , denoted Gi + Gj , is obtained from vertex-disjoint copies of Gi and Gj by
adding all edges between V (Gi) and V (Gj). For |V (Gi)| = m and |V (Gj)| = n,
the edge set of Gi+Gj is the union of disjoint edge sets of the graphs Gi, Gj , and
the complete bipartite graph Km,n. Let Pn and Cn be the path and the cycle of
n vertices, respectively, and let Dn denote the discrete graph (sometimes called
empty graph) on n vertices. Using Kleitman’s result [9], the crossing numbers for
join of two paths, join of two cycles, and for join of path and cycle were studied
in [3]. Moreover, the exact values for crossing numbers of G + Dn and G + Pn

for all graphs G of order at most four are given in [5]. The crossing numbers of
the graphs G + Pn and G + Cn are also known for very few graphs G of order
five and six; see [4, 6], and [7]. In all these cases, the graph G is connected and
contains at least one cycle.

The aim of the paper is to give the crossing number of the join product
G∗ + Dn for the disconnected graph G∗ consisting of five vertices and of three
edges incident with the same vertex. The methods used in the paper are new.
They are based on combinatorial properties of cyclic permutations. The similar
methods were partially used earlier in the papers [2, 10]. We were unable to
determine the crossing number of the join product G∗ + Dn using the methods
used in [4, 6], and [7]. In Section 6 we refer the graph H on five vertices and
six edges for which the crossing number of H +Dn was obtained using previous
methods; see also [6]. Nevertheless, cr(H +Dn) = cr(G∗ +Dn).

Let D be a good drawing of the graph G. We denote the number of crossings
in D by crD(G). For a subgraph Gi of the graph G, let D(Gi) be the subdrawing
of Gi induced by D. For edge-disjoint subgraphs Gi and Gj of G, we denote
by crD(Gi, Gj) the number of crossings of edges in Gi and edges in Gj , and by
crD(Gi) the number of crossings among edges of Gi in D. It is easy to see that for
any three edge-disjoint subgraphs Gi, Gj , and Gk of the graph G the following
equations hold

crD(Gi ∪Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj),

crD(Gi ∪Gj , Gk) = crD(Gi, Gk) + crD(Gj , Gk).

In the paper, some proofs are based on Kleitman’s result on crossing numbers of
complete bipartite graphs. More precisely, he proved that

(1) cr(Km,n) =
⌊m

2

⌋ ⌊m− 1

2

⌋ ⌊n
2

⌋⌊n− 1

2

⌋
, if m ≤ 6 .
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The paper is organized as follows. In section 2 we discuss all possible good
drawings of the graph G∗ +Dn in which, for some vertices ti ∈ V (Dn) of degree
five, no edge incident with ti crosses G∗. For such vertices, all possible rotations
of incident edges are summarized and the corresponding cyclic permutations of
five elements are characterized. In Section 3 we determine the smallest necessary
number of crossings among edges of a subgraph isomorphic with K5,2 in a drawing
of G∗+Dn in which no edge of K5,2 crosses G∗. Table 2 summarizes the minimal
values of necessary crossings among the edges in such K5,2 depending on the
vertex rotations of both vertices of degree five. In the next section we prove
several lemmas that are used in the proof of the main result. This result, namely
the crossing number of the graph G∗ +Dn, is presented in Section 5. In Section
6, based on the main result, the crossing numbers of G∗ + Pn and G∗ + Cn are
given. The paper concludes by giving the crossing numbers of Hi +Dn, Hi +Pn,
and Hi + Cn for four different graphs Hi with |E(Hi)| ≤ |V (Hi)|.

2. The Graph G∗ +Dn and Its Drawings

Consider the graph G∗ of order five with one isolated vertex and one vertex of
degree three. Of course, it forces that others three vertices are of degree one. Let
us denote by v1 the vertex of degree three in the graph G∗. Let v2, v3, and v4
be the vertices of degree one, and let v5 be the isolated vertex in G∗. The graph
G∗ +Dn consists of one copy of the graph G∗ and n vertices t1, t2, . . . , tn, where
any vertex ti, i = 1, 2, . . . , n, is adjacent with every vertex of G∗. In Figure 1
there are two drawings of the graph G∗ + Dn with 4

⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
crossings.

The subgraph K5,n is drawn in the same way as in [12] with 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
crossings

and the edge v1v3 of G∗ not belonging to K5,n is crossed by
⌊
n
2

⌋
edges of K5,n.

Hence, cr(G∗ +Dn) ≤ 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
.

Let T i, 1 ≤ i ≤ n, denote the subgraph induced by the five edges incident
with the vertex ti. Then

G∗ +Dn = G∗ ∪K5,n = G∗ ∪

(
n⋃

i=1

T i

)
.

Two vertices ti and tj of G∗ + Dn are antipodal in a drawing of G∗ + Dn if the
subdrawing of T i ∪ T j has no crossings. A drawing is antipode-free if it has no
antipodal vertices.

In a good drawing D of G∗ + Dn, the rotation rotD(ti) of a vertex ti is the
cyclic permutation that records the (cyclic) counter-clockwise order in which the
edges leave ti. We use the notation (12345) if the counter-clockwise order the
edges incident with the vertex ti is tiv1, tiv2, tiv3, tiv4, and tiv5. We emphasize
that a rotation is a cyclic permutation; that is, (12345), (23451), (34512), (45123),
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Figure 1. Two drawings of the graph G∗ +Dn.

and (51234) denote the same rotation. Thus, 5!/5 = 24 different rotD(ti) can
appear in a drawing of the graph G∗ +Dn; see Table 1.

In the subdrawing of G∗ induced by D, the rotation rotD(v1) of the vertex
v1 is defined analogously. Since v1 is adjacent with only three vertices of G∗,
there are only two possible rotations of the vertex v1 represented by the cyclic
permutations (234) and (243).

As the complete bipartite graph K5,n is a subgraph of G∗ + Dn, let us dis-
cuss some properties of crossings among edges of its subgraph K5,2. Assume, in
general, D is a good drawing of the graph Km,n with the vertices t1, t2, . . . , tn of
degree m. The rotation rotD(ti), i = 1, 2, . . . , n, is defined in the same way as
above, i.e., as the cyclic permutation of m elements. Let Km,2 be the subgraph of
Km,n with the vertices ti and tj of degree m. Similarly as in the graph G∗ +Dn,
we can use the symbol crD(T i, T j) for the number of crossings between the edges
incident with ti and the edges incident with tj . Woodall [11] proved that if both
vertices ti and tj have the same rotation in D, then crD(T i, T j) ≥

⌊
m
2

⌋ ⌊
m−1
2

⌋
.

It is easy to see that crD(T i, T j) = 0 only if rotD(tj) is inverse to rotD(ti).
Let Q(rotD(ti), rotD(tj)) denote the minimum number of interchanges of ad-

jacent elements of rotD(ti) required to produce the inverse cyclic permutation of
rotD(tj) or, equivalently, from rotD(tj) to the inverse of rotD(ti). Woodall proved
that

(2) crD(T i, T j) ≥ Q(rotD(ti), rotD(tj))

and that

(3) crD(T i, T j) ≡ Q(rotD(ti), rotD(tj))(mod 2) if m is odd.

This implies that, in a good drawing D of the graph G∗ + Dn, crD(T i, T j) = 0
only if rotD(ti) is inverse to rotD(tj) and crD(T i, T j) ≥ 4 if rotD(ti) = rotD(tj).
Moreover, crD(T i, T j) = Q(rotD(ti), rotD(tj)) + 2k for some nonnegative inte-
ger k.
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In a good drawing D of the graph G∗ + Dn, we separate the subgraphs T i,
i = 1, 2, . . . , n, of G∗ + Dn into two subsets. Let us denote by R0 the set of
subgraphs T i, i ∈ {1, 2, . . . , n}, for which crD(G∗, T i) = 0. Every other subgraph
T i crosses G∗ at least once in D.

it it

(a) (b)

2v 2v

1v 1v

3v 3v4v 4v

Figure 2. Two subdrawings of F i.

For T i ∈ R0, let F i denote the subgraph G∗∪T i, i ∈ {1, 2, . . . , n}, of G∗+Dn

and let D(F i) be its subdrawing induced by D. Our aim is to list all possible
rotations rotD(ti) which can appear in D if the edges of T i do not cross the edges
of G∗. Let us start with the subdrawing of F i induced by the edges incident with
the vertices v2, v3, and v4 shown in Figure 2(a). By symmetry, we may assume
that the rotation rotD(v1) is represented by the cyclic permutation (234) in this
drawing as identical considerations may be applied if rotD(v1) is represented by
(243). The rotation rotD(ti) of the vertex ti is (243) in this subdrawing, which
is inverse to rotD(v1). In D(F i), the edge tiv1 divides one of three quadrangular
regions of the subdrawing in Figure 2(a). In Figure 2(b) there is the subdrawing
of F i in which the edge tiv1 divides the region with the vertices v2 and v4 on
its boundary. Hence, rotD(ti) = (1432) in this case. If the edge tiv1 divides the
region with the vertices v2 and v3 or the region with the vertices v3 and v4 on
the boundary, rotD(ti) = (1243) and rotD(ti) = (1324), respectively. Every of
these three subdrawings of F i \ v5 produces four drawings of F i depending on
in which region the vertex v5 is placed. Thus, to obtain all allowed rotations
rotD(ti) of D(F i), in each of the cyclic permutations (1432), (1243), and (1324)
we simply add the number 5 into all four positions between the numbers 1, 2, 3,
and 4. Hence, there are twelve possible cyclic permutations representing rotD(ti)
for which crD(G∗, T i) = 0.

In the rest of the paper, each cyclic permutation will be represented by the
permutation with 1 in the first position. These twelve permutations under our
consideration are denoted byAr andBr, r = 1, 2, . . . , 6; see the left side of Table 1.
The permutation is of type A or B if the vertex v5 is placed in the triangular
or in the quadrangular region in the subdrawing D(F i \ v5), respectively. For
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example, from the drawing in Figure 2(b) one can obtain the configurations A1,
A2, B1, and B6. Let us divide the permutations Ar and Br, r = 1, 2, . . . , 6, into
subsets

MA
1 = {A1, A3, A5}, MB

1 = {B1, B3, B5},

MA
2 = {A2, A4, A6}, MB

2 = {B2, B4, B6},

and let

M = M1 ∪M2, where M1 = MA
1 ∪MB

1 and M2 = MA
2 ∪MB

2 .

In a fixed drawing of the graph G∗ + Dn, some permutations from M may
not occur. For a drawing D of the graph G∗ +Dn, we denote by MD the subset
of M containing only permutations which represent rotations of the vertices ti for
which crD(G∗, T i) = 0. We denote by MA

1D
and MA

2D
the set of all permutations of

type A that exist in the drawing D belonging to the sets M1 and M2, respectively.
Similarly are used notations MB

1D
and MB

2D
for the sets of permutations of type

B. For a subgraph F i = G∗ ∪ T i, we say that F i has configuration Xr, denoted
conf(F i) = Xr, if rotD(ti) = Xr for X ∈ {A,B} and r ∈ {1, 2, . . . , 6}.

M1 M2 M1 M2

A1 : (15432) A2 : (14325) A1 : (12345) A2 : (15234)

A3 : (15324) A4 : (13245) A3 : (14235) A4 : (15423)

A5 : (15243) A6 : (12435) A5 : (13425) A6 : (15342)

B1 : (14532) B2 : (13254) B1 : (12354) B2 : (14523)

B3 : (13524) B4 : (12453) B3 : (14253) B4 : (13542)

B5 : (12543) B6 : (14352) B5 : (13452) B6 : (12534)

Table 1. All cyclic permutations of 5 elements.

For each X ∈ {A,B} and r ∈ {1, 2, . . . , 6}, let Xr denote the inverse per-
mutation to the permutation Xr. In the right side of Table 1, all twelve inverse
permutations Xr are divided into two sets

M1 = {A1, A3, A5, B1, B3, B5} and M2 = {A2, A4, A6, B2, B4, B6},

and let M = M1 ∪M2. In a similar way as above, we use the notations M
A
1 ,

M
B
1 , M

A
2 , and M

B
2 such that M1 = M

A
1 ∪M

B
1 and M2 = M

A
2 ∪M

B
2 .

We remark that if T i does not cross the edges of G∗, then rotD(ti) must
contain the elements 2, 3, and 4 in such a way that the omission of the elements
1 and 5 induces the cyclic sub-permutation (243). Let us define the functions

π1 : {2, 3, 4} → {2, 3, 4}, with π1(2) = 4, π1(3) = 2, and π1(4) = 3,
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and
π2 : {2, 4} → {2, 4}, with π2(2) = 4, and π2(4) = 2.

Let Π1 : M ∪M → M ∪M , be the function obtained by applying π1 on the
corresponding elements of the permutations in M∪M . Let Π2 : M∪M →M∪M ,
be the function obtained by applying π2. Thus, for X ∈ {A,B,A,B},

Π1(X1) = X3, Π1(X3) = X5, Π1(X5) = X1,

Π1(X2) = X4, Π1(X4) = X6, Π1(X6) = X2,

and
Π2(A1) = A2, Π2(A2) = A1, Π2(A1) = A2, Π2(A2) = A1,

Π2(A3) = A6, Π2(A6) = A3, Π2(A3) = A6, Π2(A6) = A3,

Π2(A5) = A4, Π2(A4) = A5, Π2(A5) = A4, Π2(A4) = A5,

Π2(B1) = B6, Π2(B6) = B1, Π2(B1) = B6, Π2(B6) = B1,

Π2(B3) = B4, Π2(B4) = B3, Π2(B3) = B4, Π2(B4) = B3,

Π2(B5) = B2, Π2(B2) = B5, Π2(B5) = B2, Π2(B2) = B5.

3. Necessary Crossings Between T i and T j

If two different subgraphs F i and F j with configurations from M cross in a draw-
ing of G∗ + Dn, then only the edges of T i cross the edges of T j . We will
deal with the minimum numbers of crossings between two different subgraphs
F i and F j depending on their configurations. Let D be a good drawing of the
graph G∗ + Dn, and let X, Y be configurations from MD. We shortly denote
by crD(X,Y ) the number of crossings in D between T i and T j for different
T i, T j ∈ R0 such that F i, F j have configurations X, Y , respectively. Finally,
let cr(X,Y ) = min{crD(X,Y )} over all pairs X and Y from M among all good
drawings of the graph G∗ + Dn. Our aim is to establish cr(X,Y ) for all pairs
X,Y ∈ M , i.e., the minimum number of crossings between two different sub-
graphs F i and F j with configurations X and Y over all good drawing of the
graph G∗ +Dn.

Let D be any good drawing of the graph G∗+Dn. For some i ∈ {1, 2, . . . , n},
assume that the subdrawing of F i induced by D has configuration A1. This
unique drawing of F i contains four regions. Let us denote these four regions
by ω2, ω2,3, ω3,4, and ω4, depending on which of v2, v3, and v4 are located on
the boundary of the corresponding region. Without loss of generality we may
assume that the unbounded region is ω3,4 since our considerations do not rely on
which vertices are on the bounded region; see Figure 3(a). Now, let us count the
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Figure 3. The discussed subdrawings of F i and F i ∪ T j .

minimum necessary number of crossings between F i and F j , i 6= j, depending
on the configuration of F j . For each region, at most three vertices of G∗ can be
adjacent with the vertex tj of F j without crossings. Thus, the edges of T j must
cross the edges of T i at least twice.

Let us first list the configurations of F j which can cross F i only twice. As
rotD(ti) = (15432), by (2), the permutation which represents conf(F j) must be
obtained from A1 = (12345) by at most two interchanges of adjacent elements.
Since conf(F j) ∈M and rotD(tj) contains the cyclic sub-permutation (243), the
adjacent elements 2 and 3 or the adjacent elements 3 and 4 must be changed.
Thus, after this step the permutations A4 = (13245) and A6 = (12435) can
be obtained. Hence, Q(rotD(ti), rotD(tj)) = 1 if conf(F j) ∈ {A4, A6}. But,
crD(T i, T j) 6= 1 and by (3), cr(A1, X) ≥ 3 for X ∈ {A4, A6}. In the second step,
the possible changes are 1–3, 1–5, and 4–5 in the permutation (13245) and 1–2,
1–5, and 3–5 in (12435). It is easy to verify that Q(rotD(ti), rotD(tj)) = 2 only
if conf(F j) ∈ {A3, A5, B2, B4, B6}.

Now we show that cr(A1, X) = 2 only for X = B2 and X = B6. The
vertex tj must be placed in one of the regions ω3,4 and ω4 with three vertices of
G∗ adjacent with tj without crossings. Assume that tj is placed in the region
ω3,4, i.e., tj ∈ ω3,4. If T j crosses T i only twice, the unique possibility is that
the edge tjv2 crosses the edge tiv3 and the edge tjv5 crosses the edge tiv4; see
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Figure 3(b). So, rotD(tj) = (13254) and conf(F j) = B2. If tj ∈ ω4, the edge tjv2
must cross the edge tiv1 and the edge tjv3 must cross the edge tiv4. In this case,
rotD(tj) = (14352) and conf(F j) = B6. We remark that tj cannot be placed
in the region ω2,3, because the edge tjv5 must cross at least two edges of T i in
this case. Thus, cr(A1, B2) = cr(A1, B6) = 2 and all other subgraphs F j with
configurations in M different from B2 and B6 cross F i at least three times. But,
it implies from (2) and (3) that if Q(rotD(ti), rotD(tj)) = 2 and crD(T i, T j) 6= 2,
then crD(T i, T j) ≥ 4. Thus, cr(A1, A3) ≥ 4, cr(A1, A5) ≥ 4, and cr(A1, B4) ≥ 4.
Clearly, also cr(A1, A1) ≥ 4 and all subgraphs F j with configurations A2, A4, A6,
B1, B3, and B5 cross F i at least three times; see the first row in Table 2. We
remark that it is possible to show that also cr(A1, A4) > 3 and cr(A1, A6) > 3,
but we do not need higher values in our proofs.

Assume that conf(F i) = A3. The subdrawing of F i induced by D can be
obtained from the drawing in Figure 3(a) in such a way that the vertices v2, v3,
and v4 are replaced by the vertices v4, v2, and v3, respectively. Hence, rotD(ti) =
A3 = (15324) is obtained from A1 = (15432) using transformation π1. But, in
this case, π1 must be applied on all rotD(tj) with T j ∈ R0. Thus, the function Π1

transforms the previous configurations B2 and B6 with cr(A1, B2) = cr(A1, B6) =
2 to B4 and B2, respectively. Hence, we have cr(A3, B4) = cr(A3, B2) = 2.
Similarly, Π1 transforms A1, A3, A5, and B4 to A3, A5, A1, and B6, respectively.
This implies that the number 4 appears four times in the corresponding columns
of the third row in Table 2. In the remaining columns there is the number 3. In
the same way, by transformation π1, the configuration A5 of F i is obtained from
the drawing which represent the configuration A3. Now, using transformation
Π1, cr(A5, B4) = cr(A5, B6) = 2 and cr(A5, Aj) ≥ 4 for j = 1, 3, 5, as well as
cr(A5, B2) ≥ 4; see the fifth row in Table 2.

Let us focus on the configuration A2 of F i. If the positions of the vertices
v2 and v4 in the drawing of A2 in Figure 3(c) are exchanged, the drawing of
A1 is obtained. Hence, A1 = (12345) is obtained from A2 = (14325) using
transformation π2. It is obvious that cr(X,Y ) = cr(X,Y ) for all X,Y ∈ M .
This implies that the lower bounds of cr(A1, X) are known for all X ∈ M . As
Π2(A1) = A2, applying the function Π2 on the elements of M the lower bounds
of cr(A2, X) for all X ∈M can be obtained. Concretely, the results cr(A2, B5) =
2 and cr(A2, B1) = 2 are obtained from cr(A1, B2) = 2 and cr(A1, B6) = 2,
respectively, using Π2(B2) = B5 and Π2(B6) = B1. Similarly, as Π2 transforms
A3, A5, and B4 to A6, A4, and B3, respectively, cr(A2, A6) ≥ 4, cr(A2, A4) ≥ 4,
and cr(A2, B3) ≥ 4. Of course, cr(A2, A2) ≥ 4 also applies. For the rest six
configurations in M , the number 3 is obtained; see the second row in Table 2.
Similarly as above, using Π1, the second row can be transformed to the fourth row
and the fourth row to the sixth. As cr(X,Y ) = cr(Y,X) for X,Y ∈ M , also the
values in the first six columns in Table 2 are known. It is easy to see that, for the
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completeness of Table 2, only the values of cr(Bi, Bj) for some i ∈ {1, 2, 3, 4, 5, 6}
and j = 1, 2, 3, 4, 5, 6 are needed.

− A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6

A1 4 3 4 3 4 3 3 2 3 4 3 2

A2 3 4 3 4 3 4 2 3 4 3 2 3

A3 4 3 4 3 4 3 3 2 3 2 3 4

A4 3 4 3 4 3 4 2 3 2 3 4 3

A5 4 3 4 3 4 3 3 4 3 2 3 2

A6 3 4 3 4 3 4 4 3 2 3 2 3

B1 3 2 3 2 3 4 4 1 2 3 2 3

B2 2 3 2 3 4 3 1 4 3 2 3 2

B3 3 4 3 2 3 2 2 3 4 1 2 3

B4 4 3 2 3 2 3 3 2 1 4 3 2

B5 3 2 3 4 3 2 2 3 2 3 4 1

B6 2 3 4 3 2 3 3 2 3 2 1 4

Table 2. The necessary numbers of crossings between T i and T j for the configurations of
F i and F j .

Assume that a subdrawing of F i induced by D has configuration B1 =
(14532). This unique subdrawing contains four regions ω2, ω4, ω2,3, and ω3,4.
Without loss of generality, let ω3,4 be the unbounded region; see Figure 3(d). If
T j ∈ R0 crosses the edges of T i once, then, by (2), Q(rotD(ti), rotD(tj)) = 1 and
rotD(tj) must be obtained from B1 = (12354) by only one exchange of adjacent
elements. As rotD(tj) must contain the cyclic sub-permutation (243), only the
adjacent elements 2 and 3 are exchanged in B1 = (12354) and the configuration
B2 = (13254) with cr(B1, B2) = 1 is obtained. Figure 3(e) shows such subdraw-
ing of G∗∪T i∪T j with only one crossing between T i and T j . Since all four other
interchanges of adjacent elements in B1 = (12354) produce the cyclic permuta-
tions not containing the cyclic sub-permutation (243), all configurations X ∈M
with cr(B1, X) = 2 are these which we can obtain from B2 = (13254) by only
one exchange of adjacent elements, concretely 1-3, 2-5, 1-4, and 4-5. This forces
that only the configurations B5 = (12543), B3 = (13524), A2 = (14325), and
A4 = (13245) are these for which the corresponding T j can cross the edges of T i

twice. Hence, we add the result cr(B1, B3) = cr(B1, B5) = 2 to the row corre-
sponding to B1 in Table 2. Since cr(B1, B1) = 4, only the results for cr(B1, B4)
and cr(B1, B6) are unknown. But we know that these values are at least 3 and
that is enough for our proofs. Now, in the same way as above, the values in the
rows B3 and B5 are obtained by successive applying of the transformation Π1

on the rows B1 and B3, respectively. Hence, due to symmetry, in the row B2

only the values cr(B2, B4) and cr(B2, B6) are unknown. But, since B2 cannot be
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obtained from B4 = (12453) or from B6 = (14352) by one exchange of adjacent
elements, it holds that cr(B2, B4) ≥ 2 and cr(B2, B6) ≥ 2. This completes the
row B2. Now, the rows B4 and B6 can be obtain by successive applying of the
transformation Π1 on the rows B2 and B4, respectively.

4. Some Useful Lemmas

In the proof of Theorem 7, the following lemmas related to some restricted draw-
ings of the graph G∗ +Dn are needed.

Lemma 1. Let D be a good drawing of the graph G∗+D3. If crD
(
G∗, T 1 ∪ T 2 ∪

T 3
)

= 0, i.e., T 1, T 2, T 3 ∈ R0, then crD
(
T 1 ∪ T 2 ∪ T 3

)
≥ 6.

Proof. Table 2 shows that cr(T i, T j) ≥ 2 for all i, j ∈ {1, 2, 3}, i 6= j, except
of the three cases when {conf(F i), conf(F j)} = {Br, Br+1} for r = 1, 3, 5. This
implies that if for each i, j ∈ {1, 2, 3}, i 6= j, {conf(F i), conf(F j)} 6= {Br, Br+1},
r = 1, 3, 5, then cr(T 1, T 2) ≥ 2, cr(T 1, T 3) ≥ 2, and cr(T 2, T 3) ≥ 2. So, crD(T 1 ∪
T 2 ∪ T 3) ≥ 6 in this case.

Otherwise, assume that some pair F i, F j , say F 1 and F 2, have different con-
figurations from the set {B1, B2}. The subgraphs T 1 and T 2 cross at least once.
If conf(F 3) is one of A1, . . . , A6, B1, . . . , B6 then, by Table 2, cr(T 1∪T 2, T 3) ≥ 5.
Thus, crD(T 1 ∪ T 2 ∪ T 3) ≥ 6. If F 1 and F 2 have different configurations from
the set {B3, B4} or {B5, B6}, the same argument is applied. This completes the
proof.

Lemma 2. Let D be a good, antipode-free drawing of G∗ +Dn, n ≥ 3, and X ∈
{A,B}. Let MX

1D
and MX

2D
be non-empty sets of configurations. If T i, T j ∈ R0

such that conf(F i) ∈ MX
1D

and conf(F j) ∈ MX
2D

, then crD(T i ∪ T j , T k) ≥ 3 for

any T k, k 6= i, j.

Proof. By the assumption, crD(T i, T k) ≥ 1 and crD(T j , T k) ≥ 1. Hence, we
need to show that there is no T k with crD(T i, T k) = crD(T j , T k) = 1.

Assume that crD(T i, T k) = crD(T j , T k) = 1. Then, for conf(F i) ∈ MA
1D

and conf(F j) ∈ MA
2D

, the rotation of the vertex tk must be obtained by one

interchange of two adjacent elements from some cyclic permutation in M
A
1 as

well as by one interchange of two adjacent elements from some cyclic permu-

tation in M
A
2 . The cyclic permutations in M

A
1 are of type (1xyz5), where

the ordered triple (xyz) is one of (234), (423), and (342). Thus, by one in-
terchange of two adjacent elements only the permutations (15xyz), (1yz5x),
(1yxz5), (1xzy5), and (1xy5z) can be obtained. In Table 1 it is easy to ver-

ify that these permutations are elements of MA
2 ∪M

A
2 ∪M

B
1 . Similarly, the cyclic



1174 M. Klešč and M. Staš

permutations in M
A
2 are of type (15xyz) and by one interchange of adjacent el-

ements only the permutations (1xyz5), (1x5yz), (15yxz), (15xzy), and (1z5xy)

can be obtained. These permutations are elements of MA
1 ∪M

A
1 ∪M

B
2 . Since(

MA
2 ∪M

A
2 ∪M

B
1

)
∩
(
MA

1 ∪M
A
1 ∪M

B
2

)
= ∅, there is no T k with crD(T i, T k) =

crD(T j , T k) = 1.
If conf(F i) ∈ MB

1D
and conf(F j) ∈ MB

2D
, the proof proceeds in the same

way.

Corollary 3. Let D be a good, antipode-free drawing of G∗+Dn, n ≥ 3, and X ∈
{A,B}. Let MX

1D
and MX

2D
be non-empty sets of configurations. If T i, T j ∈ R0

such that conf(F i) ∈MX
1D

and conf(F j) ∈MX
2D

, then crD(G∗ ∪ T i ∪ T j , T k) ≥ 4

for any T k /∈ R0.

Lemma 4. Let D be a good and antipode-free drawing of G∗ + Dn for n > 3.
If T i, T j , T k ∈ R0 such that F i, F j, and F k have different configurations from
{A1, B2, B6}, then crD(G∗ ∪ T i ∪ T j ∪ T k, T l) ≥ 5 for any T l /∈ R0. The same
holds if F i, F j, and F k have different configurations from any of the sets {A3, B4,
B2}, {A5, B6, B4}, {A2, B5, B1}, {A4, B1, B3}, {A6, B3, B5}, {B1, B3, B5}, and
{B2, B4, B6}.

Proof. As the drawing D is antipode-free, crD(T i, T l) ≥ 1, crD(T j , T l) ≥ 1,
crD(T k, T l) ≥ 1, and crD(G∗, T l) ≥ 1. Thus, if crD(G∗, T l) ≥ 2, we are done.
Otherwise we need to show that there is no T l /∈ R0 with crD(T i, T l) = crD(T j , T l)
= crD(T k, T l) = 1.

Let us solve the first case when three different configurations of F i, F j , and
F k are elements of the set {A1, B2, B6}. If, in D, the subgraph T l crosses each of
T i, T j , and T k exactly once, then the permutation which represents the rotation
of the vertex tl must be obtained by one interchange of adjacent elements from
each of A1 = (12345), B2 = (14523), and B6 = (12534). It is easy to find out
that there is only one such permutation, namely A2 = (15234). The drawing of
F i with conf(F i) = A1 in Figure 3(a) shows that the restrictions crD(G∗, T l) = 1
and crD(T i, T l) = 1 force that the vertex tl must be placed in one of the regions
ω3,4 and ω4. If tl ∈ ω4, then the edge tlv2 must cross the edge tiv1 and the edge
tlv3 crosses the edge v1v4. Thus, rotD(tl) = (13452) = B5. For the case when
tl ∈ ω3,4, depending on which of the edges tiv4 and v1v4 is crossed by the edge
tlv5, rotD(tl) = (12354) = B1 or rotD(tl) = (13245) = A4. This implies that
the edges of T l cross G∗ ∪ T i at least three times if rotD(tl) = A2 = (15234).
Hence, the proof is done if F i, F j , and F k have different configurations from
{A1, B2, B6}.

For the case F i, F j , F k ∈ {A3, B4, B2}, only the permutation A4 = (15423)
can be obtained by one interchange of adjacent elements from each of A3 =
(14235), B4 = (13542), and B2 = (14523). As A3 = Π1(A1), the corresponding
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drawing of F i with conf(F i) = A3 is possible to obtain from the previous drawing
of F i with conf(F i) = A1 shown in Figure 3(a) such that the vertices v2, v3, and
v4 are replaced by the vertices v4, v2, and v3, respectively. This implies that
all rotations for which crD(G∗, T l) = crD(T i, T l) = 1 can be obtained from
the permutations B1, B5, and A4 using the function Π1. Thus, crD(G∗, T l) =
crD(T i, T l) = 1 only if rotD(tl) ∈ {B3, B1, A6}. As A4 = (15423) /∈ {B3, B1, A6},
the proof is done for F i, F j , F k ∈ {A3, B4, B2}.

1. A1, B2, B6 A2 B1, B5, A4

2. A3, B4, B2 A4 B3, B1, A6

3. A5, B6, B4 A6 B5, B3, A2

4. A2, B5, B1 A1 B6, B2, A5

5. A4, B1, B3 A3 B2, B4, A1

6. A6, B3, B5 A5 B4, B6, A3

Table 3. The discussed configurations of F i, F j , and F k, respectively, in the first column;
the unique rotD(tl) with Q(rotD(tl), rotD(ts)) = 1, s = i, j, k, in the second column;
all rotD(tl) with crD(T i, T l) = crD(G∗, T l) = 1 in the third column.

We remark that also Π1(B2) = B4, Π1(B6) = B2, and Π1(A2) = A4, which
confirms that the second row of Table 3 is obtained from the first using transfor-
mation Π1. Now, applying Π1 on the second row, the permutations in the third
row are obtained, which proves the case for F i, F j , F k ∈ {A5, B6, B4}.

If F i, F j , F k ∈ {A2, B5, B1}, only the permutation A1 = (12345) can be
obtained by one interchange of adjacent elements from each of A2 = (15234),
B5 = (13452), and B1 = (12354). As A2 = Π2(A1), in a similar way as in the
second paragraph of the proof it can be shown that cr(G∗, T l) = cr(T i, T l) = 1
only if rotD(tl) ∈ {Π2(B1),Π2(B5),Π2(A4)} = {B6, B2, A5}. Thus, the fourth
row of the Table 3 is obtained by applying the function Π2 on the inverse con-
figurations from the first row. Of course, the function Π1 also transforms the
fourth row to the fifth and the fifth row to the sixth. Thus, all these cases are
equivalent, and the proof is done for the first six cases.

The last two cases are much easier. If F i, F j , F k ∈ {B1, B3, B5}, no per-
mutation can be obtained by one interchange of adjacent elements from each
of B1 = (12354), B3 = (14253), and B5 = (13452). The same holds when
F i, F j , F k ∈ {B2, B4, B6}.

So, crD(T i∪T j ∪T k, T l) ≥ 4 in all cases and, as T l /∈ R0, crD(G∗∪T i∪T j ∪
T k, T l) ≥ 5. This completes the proof.

Lemma 5. Let D be a good and antipode-free drawing of G∗ + Dn, n > 3. Let
|R0| ≥

⌈
n
2

⌉
+ 1 and let T i, T j , T k ∈ R0 be three different subgraphs of G∗+Dn. If
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(4) crD

(
G∗ ∪ T i ∪ T j ∪ T k, T l

)
≥ 8 for any T l ∈ R0 \

{
T i, T i, T k

}
and

(5) crD

(
G∗ ∪ T i ∪ T j ∪ T k, T l

)
≥ 5 for any T l /∈ R0,

then there are at least 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
crossings in D.

Proof. For easier reading, let r = |R0|. By the assumption of Lemma 5, r ≥⌈
n
2

⌉
+ 1. As the graph G∗ + Dn is the union of two edge disjoint graphs K5,n−3

and G∗ ∪ T i ∪ T j ∪ T k, the number of crossings in D satisfies

crD(G∗ +Dn) = crD(K5,n−3) + crD
(
G∗ ∪ T i ∪ T j ∪ T k

)
+ crD

(
K5,n−3, G

∗ ∪ T i ∪ T j ∪ T k
)
.

By Lemma 1, crD(T i ∪ T j ∪ T k) ≥ 6 and, by the assumption, the subgraph
K5,n−3 contains r − 3 ≥ 0 subgraphs T l which are elements of R0. By (1),
cr(K5,n−3) = 4

⌊
n−3
2

⌋ ⌊
n−4
2

⌋
. Thus, using the conditions (4), (5) and the fact

crD(G∗ ∪ T i ∪ T j ∪ T k) = crD(T i ∪ T j ∪ T k) ≥ 6, we have

crD(G∗ +Dn) ≥ 4

⌊
n− 3

2

⌋⌊
n− 4

2

⌋
+ 6 + 8(r − 3) + 5(n− r)

= 4

⌊
n−3

2

⌋⌊
n−4

2

⌋
+ 5n+ 3r − 18 ≥ 4

⌊
n−3

2

⌋⌊
n−4

2

⌋
+ 5n+ 3

(⌈n
2

⌉
+1
)
−18

= 4

⌊
n−3

2

⌋⌊
n−4

2

⌋
+ 5n+ 3

⌈n
2

⌉
− 15 > 4

⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n

2

⌋
.

This completes the proof.

Lemma 6. Let D be a good and antipode-free drawing of G∗ + Dn, n > 3. Let
|R0| ≥

⌈
n
2

⌉
+ 1 and let T i, T j ∈ R0 be different subgraphs of G∗ + Dn. If both

conditions

(6) crD

(
G∗ ∪ T i ∪ T j , T k

)
≥ 5 for any T k ∈ R0 \

{
T i, T j

}
and

(7) crD

(
G∗ ∪ T i ∪ T j , T k

)
≥ 4 for any T k /∈ R0

hold, or the condition

(8) crD

(
G∗ ∪ T i ∪ T j , T k

)
≥ 6 for any T k ∈ R0 \

{
T i, T j

}
holds, then there are at least 4

⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
crossings in D.
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Proof. We use the notation r = |R0| again. By the assumption, r ≥
⌈
n
2

⌉
+1. The

graph G∗+Dn is the union of two edge disjoint subgraphs K5,n−2 and G∗∪T i∪T j

such that K5,n−2 contains r − 2 ≥ 1 subgraphs T k with crD(G∗, T k) = 0. As
the graph G∗ + D2 contains K3,3 as a subgraph, cr(G∗ + D2) ≥ 1. Hence,
crD(G∗ ∪ T i ∪ T j) ≥ cr(G∗ +D2) ≥ 1. By (1), cr(K5,n−2) = 4

⌊
n−2
2

⌋ ⌊
n−3
2

⌋
. This

fact and the conditions (6) and (7) imply that

crD(G∗ +Dn) = crD(K5,n−2) + crD(G∗ ∪ T i ∪ T j) + cr(K5,n−2, G
∗ ∪ T i ∪ T j)

≥ 4

⌊
n−2

2

⌋⌊
n−3

2

⌋
+ 1+ 5(r − 2) + 4(n− r) = 4

⌊
n− 2

2

⌋⌊
n− 3

2

⌋
+ r + 4n−9

≥ 4

⌊
n−2

2

⌋⌊
n−3

2

⌋
+
(⌈n

2

⌉
+ 1
)

+ 4n− 9 ≥ 4
⌊n

2

⌋⌊n− 1

2

⌋
+
⌊n

2

⌋
.

Moreover, the condition (8) and the fact that crD(G∗ ∪ T i ∪ T j , T k) ≥ 3 for
any T k /∈ R0 imply that

crD(G∗ +Dn) ≥ 4

⌊
n− 2

2

⌋⌊
n− 3

2

⌋
+ 1 + 6(r − 2) + 3(n− r)

= 4

⌊
n−2

2

⌋⌊
n−3

2

⌋
+ 3r+ 3n−11 ≥ 4

⌊
n− 2

2

⌋⌊
n− 3

2

⌋
+ 3

(⌈n
2

⌉
+1
)

+ 3n−11

≥ 4
⌊n

2

⌋ ⌊n− 1

2

⌋
+
⌊n

2

⌋
.

This completes the proof.

5. The Crossing Number of G∗ +Dn

Now we are prepared to prove the main result of the paper.

Theorem 7. For n ≥ 1, cr(G∗ +Dn) = 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
.

Proof. In Figure 1 there are two drawings of the graphG∗+Dn with 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+⌊

n
2

⌋
crossings. Thus, cr(G∗ +Dn) ≤ 4

⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
. We prove the reverse in-

equality by induction on n. The graph G∗ + D1 is planar. The graph G∗ + D2

contains a subgraph isomorphic to K3,3. So, Theorem 7 is true for n = 1
and n = 2. Assume that for n ≥ 3 there is a good drawing D of the graph
G∗ +Dn with fewer than 4

⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
crossings and that cr(G∗ + Dm) ≥

4
⌊
m
2

⌋ ⌊
m−1
2

⌋
+
⌊
m
2

⌋
for every integer m < n. Our assumption on D, together

with cr(K5,n) = 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
, implies that

crD(G∗) + crD(G∗,K5,n) <
⌊n

2

⌋
.



1178 M. Klešč and M. Staš

Hence, |R0| ≥
⌈
n
2

⌉
+ 1 because at most

⌊
n
2

⌋
− 1 subgraphs T i can cross G∗. If

n = 3, this forces that none of T 1, T 2, and T 3 crosses G∗ in D. But, in such
a case, Lemma 1 implies that D has at least six crossings and Theorem 7 is true.
For n ≥ 4, the drawing D contains at least three subgraphs T i which are elements
of R0.

Let us show that the considered drawing D must be antipode-free. For
a contradiction suppose that, without loss of generality, crD

(
Tn−1, Tn

)
= 0. As

cr(G∗+D2) = 1 and the edges ofG∗ cannot cross each other, crD(G∗, Tn−1∪Tn) ≥
1. By (1), cr(K5,3) = 4. This implies that any T i, i = 1, 2, . . . , n − 2, crosses
Tn−1 ∪Tn at least four times. So, using the equations G∗+Dn = (G∗+Dn−2)∪(
Tn−1 ∪ Tn

)
and G∗ + Dn−2 = G∗ ∪

(⋃n−2
i=1 T i

)
, the number of crossings in D

satisfies

crD(G∗ +Dn) = crD

(
G∗ ∪

n−2⋃
i=1

T i

)
+ crD

(
Tn−1 ∪ Tn

)
+ crD

(
G∗, Tn−1 ∪ Tn

)
+ crD

(⋃n−2
i=1 T

i, Tn−1 ∪ Tn
)

≥ 4

⌊
n− 2

2

⌋⌊
n− 3

2

⌋
+

⌊
n− 2

2

⌋
+ 0 + 1 + 4(n− 2) ≥ 4

⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n

2

⌋
.

This contradiction confirms that the drawing D is antipode-free.

We know that, in D, at least three subgraphs T i do not cross G∗. For these
T i ∈ R0, we will discuss the existence of possible configurations of F i = G∗∪T i in
the drawing D. Using the values in Table 2 we show that, in D, both conditions
(4) and (5) of Lemma 5 hold, or both conditions (6) and (7) of Lemma 6 hold,
or the condition (8) of Lemma 6 holds.

Case 1. MA
1D
6= ∅ and MA

2D
6= ∅. If we fix any two T i, T j ∈ R0 such that

F i, F j have configurations from MA
1D

, MA
2D

, respectively, then the condition (6)
holds. This can be easily verified by summing the values in the considered rows
for each column of Table 2. Corollary 3 implies that also the condition (7) is
fulfilled and therefore, by Lemma 6, in D there are at least 4

⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
crossings. This contradicts the assumption of D.

Case 2. MA
1D

= ∅ or MA
2D

= ∅.

(a) MB
1D
6= ∅ and MB

2D
6= ∅.

We will consider two subcases.

(1) Br ∈ MB
1D
∪MB

2D
and Br+1 ∈ MB

1D
∪MB

2D
for some r ∈ {1, 3, 5}. If we fix

any two T i, T j ∈ R0 such that F i, F j have the configurations Br and Br+1,
respectively, then Table 2 confirms that the condition (6) holds.
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(2) Br /∈ MB
1D
∪MB

2D
or Br+1 /∈ MB

1D
∪MB

2D
for any r = 1, 3, 5. Hence, we have∣∣MB

1D

∣∣ = 1 or
∣∣MB

2D

∣∣ = 1. If we fix any two T i, T j ∈ R0 such that F i, F j have

configurations from MB
1D

and MB
2D

, respectively, then the condition (6) holds.

This can be verified in the following way. If MB
1D

= {B1}, then MB
2D

cannot

contain B2. This forces that, for T k in the condition (6), the configuration of F k

can be only one of A1, A2, . . . , A6, B1, B4, and B6. For these columns in Table 2,
the sum of the values in the rows B1 and B4 as well as in the rows B1 and B6 is at
least five, which implies that the condition (6) holds. The verification for all five
other possibilities, i.e., MB

1D
= {B3}, MB

1D
= {B5}, MB

2D
= {B2}, MB

2D
= {B4},

and MB
2D

= {B6}, proceeds in the same way.

The condition (7) follows from Corollary 3 in both cases. Hence, by Lemma 6,
the discussed drawing contradicts the assumption of D again.

(b) MB
1D

= ∅ and MB
2D

= ∅. Assume that MA
1D
6= ∅. Since MA

2D
= ∅, we can

fix any two different T i, T j ∈ R0 such that F i, F j have the configurations from
MA

1D
. It is easy to verify in Table 2 that the condition (8) of Lemma 6 holds.

The same holds also for the case when MA
2D
6= ∅. Hence, in D there are at least

4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
crossings again.

(c1) MB
1D

= ∅ and MB
2D
6= ∅.

We will discuss three possibilities.

(1)
∣∣MB

2D

∣∣ = 1. If MA
1D
∪MA

2D
= ∅, then we fix any two different T i, T j ∈ R0

such that F i and F j have the same configuration from MB
2D

. For T k ∈ R0, the

subgraph F k must have the same configuration as both F i and F j . Thus, the
condition (8) holds.

If either MA
1D
6= ∅, or MA

2D
6= ∅, then we fix any two T i, T j ∈ R0 such that F i

and F j have configurations from MB
2D

and MA
1D
∪MA

2D
, respectively. For example

if MA
1D
6= ∅ and MB

2D
= {B2}, then the pair of conf(F i) and conf(F j) can be only

one of B2 and Ar, for r ∈ {1, 3, 5}. For T k ∈ R0, the configuration of F k is one of
A1, A3, A5, and B2. In Table 2 it is easy to verify that the condition (8) holds in
this case. The condition (8) holds also when MB

2D
= {B4} or MB

2D
= {B6}. The

verification proceeds in a similar way also for the case when MA
2D
6= ∅. Hence, by

Lemma 6, a contradiction with the assumption of the drawing D is obtained in
all these cases.

(2)
∣∣MB

2D

∣∣ = 2. Assume first that MA
1D

= ∅. Let us fix any two T i, T j ∈ R0 such

that F i, F j have different configurations from MB
2D

, for example B2 and B4. In

this case, for T k ∈ R0, also conf(F k) can be only element of {A2, A4, A6, B2, B4}
and the condition (8) holds. The same result is obtained when MB

2D
= {B2, B6}

or MB
2D

= {B4, B6}.



1180 M. Klešč and M. Staš

If MA
1D
6= ∅, then MA

2D
= ∅. Assume first that MB

2D
= {B2, B6}.

If A1 6∈ MA
1D

, let us fix any two T i, T j ∈ R0 such that F i and F j have the

configurations B2 and B6, respectively. Then, for T k ∈ R0, conf(F k) ∈ {A3, A5,
B2, B6} and the condition (8) holds.

If A1 ∈ MA
1D

, then we fix any three T i, T j , T k ∈ R0 such that F i, F j , F k

have configurations A1, B2, B6, respectively. Then for any T l with conf(F l) ∈
{A1, A3, A5, B2, B6} the condition (4) of Lemma 5 holds. Moreover, Lemma 4
implies that also the condition (5) of Lemma 5 holds for any T l /∈ R0.

For the cases when MB
2D

= {B2, B4} or MB
2D

= {B4, B6}, the similar dis-
cussion for A3 and A5, respectively, confirms that holds the condition (8) of
Lemma 6, or hold both conditions (4) and (5) of Lemma 5. This also contradicts
the assumption of D.

(3) |MB
2D
| = 3. If we fix any three T i, T j , T k ∈ R0 such that F i, F j , F k have

the configurations B2, B4, B6, respectively, then the condition (4) of Lemma 5
holds. Lemma 4 confirms that also the condition (5) holds.

Thus, in all three cases, the contradiction with the assumption of the drawing
D is obtained.

(c2) MB
2D

= ∅ and MB
1D
6= ∅. Due to symmetry of Table 2, the discussion proceeds

in the same way as in the previous case (c1).

Thus, it is shown that there is no good drawing D of the graph of G∗ +Dn

with fewer than 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
crossings. This completes the proof.

6. Some Consequences of the Main Result

Let H be the graph obtained from G∗ by adding the edges v2v3, v3v5 and v4v5
and H ′ be the graph obtained from G∗ by adding the edges v3v5 and v4v5. In
[6] it is shown that cr(H + Dn) = cr(H ′ + Dn) = 4

⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
for n ≥ 1,

cr(H+Pn) = cr(H ′+Pn) = 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+1 for n ≥ 2 and that cr(H+Cn) =

cr(H ′ + Cn) = 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 2 for n ≥ 3, where Pn and Cn are the path

and the cycle on n vertices, respectively.

Let H1 be the graph obtained from G∗ by adding the edge v3v5, i.e., H1 =
G∗ ∪ {v3v5}. Similarly, let H2 = G∗ ∪ {v2v3}, H3 = G∗ ∪ {v2v3, v3v5}, and
H4 = G∗ ∪ {v2v3, v4v5}. Clearly, each of Hi, i = 1, 2, 3, 4, is a subgraph of H and
therefore each Hi+Dn is a subgraph of H+Dn. Thus, cr(Hi+Dn) ≤ cr(H+Dn)
for all i = 1, 2, 3, 4. On the other hand, G∗ +Dn is a subgraph of each Hi +Dn

and therefore, cr(Hi +Dn) ≥ cr(G∗ +Dn) for each i = 1, 2, 3, 4. So, we have the
next result.

Corollary 8. For n ≥ 1, cr(Hi +Dn) = 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
, i = 1, 2, 3, 4.
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Into both drawings in Figure 1 we can add the edges t1t2, t2t3, . . . , tn−1tn
without additional crossings. Hence, the drawings of the graph G∗ + Pn with
4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
crossings are obtained. Moreover, by adding the necessary

edges without additional crossings, the drawings of H2 + Pn and H4 + Pn can
be obtained from Figure 1(a), and the drawings of H1 + Pn and H3 + Pn can be
obtained from Figure 1(b). So, the next result is obvious.

Corollary 9. For n ≥ 2, cr(G∗ + Pn) = cr(Hi + Pn) = 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
,

i = 1, 2, 3, 4.

Moreover, the edge t1tn can be added into both drawings of G∗+Pn in such a
way that in the drawing obtained from Figure 1(a) the edge t1tn crosses only the
edge v1v4 and in the drawing obtained from Figure 1(b) this edge crosses only the
edge v1v3. Thus, the drawings of the graph G∗ +Cn with 4

⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 1

crossings are obtained. It is easy to see that also cr(Hi + Cn) ≤ 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+⌊

n
2

⌋
+ 1 for i = 1, 2, 4 and n ≥ 3. Only in the drawing of H3 + Cn obtained

from Figure 1(b) the edge t1tn crosses the edge v2v3 of H3. This implies that
cr(H3 + Cn) ≤ 4

⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 2.

Each of the graphs G∗+Cn and Hi +Cn, i = 1, 2, 3, 4, contains the subgraph
D5 + Cn, where D5 consists only of the vertices v1, v2, v3, v4, and v5. For
x = v1, v2, . . . , v5, let T x denote the subgraph of G∗ + Cn (Hi + Cn) induced by
n edges incident with the vertex x. In the proof of the last theorem of the paper
we will need the next results published in [8].

Lemma 10 [8]. Let G be a graph of order m, m ≥ 1. In an optimal drawing of
the join product G+ Cn, n ≥ 3, the edges of Cn do not cross each other.

Lemma 11 [8]. Let D be a good drawing of the join product Dm + Cn, m ≥ 2,
n ≥ 3, in which no edge of Cn is crossed and Cn does not separate the other
vertices of the graph. Then, for all x, y ∈ {v1, v2, . . . , vm}, two different subgraphs
T x and T y cross each other at least

⌊
n
2

⌋ ⌊
n−1
2

⌋
times in D.

Theorem 12. For n ≥ 3, cr(G∗ + Cn) = cr(Hi + Cn) = 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 1

for i = 1, 2, 4, and cr(H3 + Cn) = 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 2.

Proof. It follows from the discussion above that cr(G∗ + Cn) ≤ 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+⌊

n
2

⌋
+ 1. Assume that there is a good drawing D of the graph G∗ +Cn with less

than 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 1 crossings. Then none of the edges of Cn is crossed

in D, because otherwise removing all the edges of Cn results in a good drawing
of the graph G∗ + Dn with less than 4

⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
crossings. Hence, the

subdrawing of Cn induced by D divides the plane into two regions and, in D,
the vertices v1, v2, v3, and v4 must be placed in one of them. Assume now the
subgraph D4 + Cn of G∗ + Cn, where D4 consists of the vertices v1, v2, v3, and
v4. By Lemma 11, the edges of T v1 ∪ T v2 ∪ T v3 ∪ T v4 cross each other at least
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(
4
2

) ⌊
n
2

⌋ ⌊
n−1
2

⌋
times. But, for n ≥ 3,

(
4
2

) ⌊
n
2

⌋ ⌊
n−1
2

⌋
> 4

⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
which

confirms that cr(G∗ + Cn) = 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 1.

We know that cr(Hi + Cn) ≤ 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 1 for i = 1, 2, and 4. As

each Hi + Cn contains G∗ + Cn as a subgraph, the opposite inequality applies.
We remark that this opposite inequality applies also for the graph H3 + Cn. To
prove that cr(H3 +Cn) = 4

⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+2 assume that there is a drawing of

the graph H3 +Cn with 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+1 crossings. Such a drawing must be

optimal and, by Lemma 10, the edges of Cn do not cross each other. Moreover,
at most one edge of Cn can be crossed. If no edge of Cn is crossed, then the whole
graph H3 is placed in the same region in the view of the subdrawing of Cn and,
by Lemma 11, the edges of T v1 ∪ T v2 ∪ T v3 ∪ T v4 ∪ T v5 cross each other at least(
5
2

) ⌊
n
2

⌋ ⌊
n−1
2

⌋
times. If Cn is crossed once, regardless of which edge crosses Cn,

at least four subgraphs T x, x ∈ {v1, v2, . . . , v5}, are placed in the same region
of Cn and their edges cross each other at least

(
4
2

) ⌊
n
2

⌋ ⌊
n−1
2

⌋
times and in such

a drawing there are at least
(
4
2

) ⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 1 crossings. Thus, in all considered

drawings of H3 +Cn there are more than 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 1 crossings and the

proof is done.
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[4] M. Klešč, The crossing numbers of join of the special graph on six vertices with path
and cycle, Discrete Math. 310 (2010) 1475–1481.
https://doi.org/10.1016/j.disc.2009.08.018
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