
Discussiones Mathematicae
Graph Theory 41 (2021) 779–800
doi:10.7151/dmgt.2350

ALTERNATING-PANCYCLISM IN 2-EDGE-COLORED
GRAPHS1

Narda Cordero-Michel

and

Hortensia Galeana-Sánchez

Instituto de Matemáticas,
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Abstract

An alternating cycle in a 2-edge-colored graph is a cycle such that any
two consecutive edges have different colors. Let G1, . . . , Gk be a collection of
pairwise vertex disjoint 2-edge-colored graphs. The colored generalized sum
of G1, . . . , Gk, denoted by ⊕k

i=1Gi, is the set of all 2-edge-colored graphs G

such that: (i) V (G) =
⋃k

i=1 V (Gi), (ii) G〈V (Gi)〉 ∼= Gi for i = 1, . . . , k where
G〈V (Gi)〉 has the same coloring as Gi and (iii) between each pair of vertices
in different summands of G there is exactly one edge, with an arbitrary but
fixed color. A graph G in ⊕k

i=1Gi will be called a colored generalized sum
(c.g.s.) and we will say that e ∈ E(G) is an exterior edge if and only if

e ∈ E(G) \
(⋃k

i=1E(Gi)
)

. The set of exterior edges will be denoted by E⊕.

A 2-edge-colored graph G of order 2n is said to be an alternating-pancyclic
graph, whenever for each l ∈ {2, . . . , n}, there exists an alternating cycle of
length 2l in G.

The topics of pancyclism and vertex-pancyclism are deeply and widely
studied by several authors. The existence of alternating cycles in 2-edge-
colored graphs has been studied because of its many applications. In this
paper, we give sufficient conditions for a graph G ∈ ⊕k

i=1Gi to be an
alternating-pancyclic graph.
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1. Introduction

Let G be an edge-colored multigraph. An alternating walk in G is a walk such
that any two consecutive edges have different colors.

Several problems have been modeled by edge-colored multigraphs, the study
of applications of alternating walks seems to have started in [15], according to [1],
and ever since it has crossed diverse fields, such as genetics [8–10,16], transporta-
tion and connectivity problems [13, 18], social sciences [4] and graph models for
conflict resolutions [19–21], as pointed out in [5].

The alternating Hamiltonian path and cycle problems are NP-complete even
for c = 2, it was proved in [12], and so the problem of deciding if a given graph
is alternating pancyclic is as difficult as those two problems.

Let Br and B′r be 2-edge-colored complete bipartite graphs with the same
partite sets {v1, v2, . . . , v2r} and {w1, w2, . . . , w2r}. The edge set of the red (blue)
subrgraph of Br (B′r) consists of {viwj | 1 ≤ i, j ≤ r}∪ {viwj | r+ 1 ≤ i, j ≤ 2r}.
In [7], Das proved that a 2-edge-colored complete bipartite multigraphs is vertex
alternating-pancyclic if and only if it has an alternating Hamiltonian cycle and
is not color-isomorphic to one of the graphs Br, Br′ (r = 2, 3, . . .).

Figure 1 shows a graph which is isomorphic neither to Br nor to Br′ and
has no spanning complete bipartite alternating Hamiltonian graph, so it does not
fulfill the hypothesis asked in the theorem by Das. However, by Proposition 22
we can assert that it really is an alternating-pancyclic graph. Clearly, an infinite
class of such graphs can be easily constructed.

• • • •

• • • •

x0 x1 x2 x3

y0 y1 y2 y3

G1

G2

∼ red
− blue

Figure 1. A graph G ∈ G1 ⊕G2.

In [1], Bang-Jensen and Gutin characterized 2-edge-colored complete multi-
graphs which are (vertex) alternating-pancyclic. Clearly, our results do not ask
for completeness of the considered graphs.

In [2], Bang-Jensen and Gutin give a polynomial time algorithm to find a
longest alternating cycle in a complete 2-edge-colored graph. In our results we
do not ask for completeness of the graph and, under certain conditions, not only
a longest cycle is found but alternating cycles of each even length.
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• • • • • •

• • • •

x0 x1 x2 x3 x4 x5

y0 y1 y2 y3

G1

G2 ∼ red
− blue

(i)

• • • • • • • •

• • • •

x0 x1 x2 x3 x4 x5 x6 x7

y0 y1 y2 y3

C1

C2

(ii)

Figure 2. (i) A graph in G1 ⊕G2. (ii) A graph in C1 ⊕ C2.

In [3], to prove that a complete bipartite 2-edge-colored graph is (vertex)
alternating-pancyclic, Bang-Jensen and Gutin consider the following construction
(known as DHM-construction [3]). Given a complete bipartite 2-edge-colored
graph G, with partition (X,Y ), construct a complete 2-edge-colored graph H
from G by adding all edges between vertices in X with red color and all edges
between vertices in Y with blue color. That is, the graph induced by X in H
is a complete red monochromatic graph and the graph induced by Y in H is
a complete blue monochromatic graph. In this way, H is a complete 2-edge-
colored graph such that every alternating cycle in H is an alternating cycle in
G, as no alternating cycle in H contains edges in H〈X〉 or H〈Y 〉; and thus, H is
(vertex) alternating-pancyclic if and only if G is (vertex) alternating-pancyclic.2

We now give an example which shows that is not possible to give a DHM type
construction to prove our results. A DHM type construction would add edges
to this graph until a complete graph is obtained, the goal of this construction is
that the complete graph and the original graph have the same set of alternating
cycles.

2This construction is due to Das [7] and later by Häggkvist and Manoussakis [14], it was
used to study Hamiltonian alternating cycles in complete bipartite 2-edge-colored graphs.
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Notice that in the graph of Figure 1, it does not matter which color is given
to an added edge between y0 and y2, we obtain alternating cycles which do not
exist in the original graph.

However, the graph in Figure 1 satisfies the hypothesis of Proposition 22 and
so it is indeed alternating-pancyclic.

A similar analysis can be done for the graphs in Figure 2. They have no
spanning complete bipartite alternating Hamiltonian subgraph, so they do not
fulfill the hypothesis of Das’ theorem and it does not matter which color we
give to an added edge between y0 and y2, we obtain alternating cycles which do
not exist in the original graphs, so we cannot use a DHM type construction to
determine if they are alternating pancyclic graphs. However, the graph in Figure
2(i) satisfies the hypothesis of Corollary 20, so it is a vertex alternating-pancyclic
graph; and the graph in Figure 2(ii) satisfies the hypothesis of Theorem 1, so it
is a vertex alternating-pancyclic graph.

These simple examples show that our results work for different graphs than
complete bipartite and complete 2-edge-colored graphs.

In other publications, such as [11] and [17], authors studied the existence of
alternating cycles of certain lengths in terms of vertex degrees.

In [6], we proved Theorem 1 and a generalization of it for k summands,
Theorem 2.

Theorem 1. Let G1 and G2 be two vertex disjoint graphs with alternating Hamil-
tonian cycles, C1 = x0x1 · · ·x2n−1x0 and C2 = y0y1 · · · y2m−1y0, respectively, and
G ∈ G1⊕G2. If there is no good pair in G, and for each i ∈ {1, 2}, in Ci there is
a non-singular vertex with respect to C3−i, then G is vertex alternating-pancyclic.

Theorem 2. Let G1, G2, . . . , Gk be a collection of k ≥ 2 vertex disjoint graphs
with Hamiltonian alternating cycles, C1, C2, . . . , Ck, respectively, and G∈⊕ki=1Gi.
If there is no good cycle in G and, for each pair of different indices i, j ∈
[1, . . . , k], in Ci there is a non-singular vertex with respect to Cj, then G is vertex
alternating-pancyclic.

In this paper we analyze the cases where good pairs, singular vertices or good
cycles3 appear and we give a complete classification of graphs in G1 ⊕G2 which
are alternating-pancyclic graphs, vertex alternating-pancyclic graphs or, simply,
Hamiltonian alternating graphs (Figure 3).

Theorem 3. Let G1 and G2 be two vertex disjoint 2-edge-colored graphs with
alternating Hamiltonian cycles, C1 = x0x1 · · ·x2n−1x0 and C2 = y0y1 · · · y2m−1y0,
respectively; and G ∈ G1 ⊕G2. Then one of the following assertions hold:

3In Section 2 we define good pair, in Section 3 we define singular vertex and in Section 4 we
define good cycle.
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Let G1 and G2 be two vertex disjoint 2-edge-colored graphs
with alternating Hamiltonian cycles, C1 and C2, respectively.

Let G ∈ G1 ⊕ G2

Ci is singular
to C3−i for

some i ∈ {1, 2}

there is no edge
uv ∈ E(Gi) \E(Ci)

with s(u) =
s(v) 6= c(uv)

G has no
alternating cycle
containing vertices
in both G1 and G2

there is an edge
uv ∈ E(Gi) \E(Ci)

with s(u) =
s(v) 6= c(uv)

G is alternating-
pancyclic

Ci is non-singular
to C3−i for

each i ∈ {1, 2}

there is a good pair

G is alternating-
Hamiltonian

there is no
good pair

G is vertex
alternating-
pancyclic

if

and and

thenthen

then
then

Figure 3. Theorem 3.

(i) Ci is singular with respect to C3−i for some i ∈ {1, 2} and, either,

(a) G has no alternating cycle containing vertices in both G1 and G2; or

(b) G is alternating-pancyclic;

(ii) Ci is non-singular with respect to C3−i for each i ∈ {1, 2} and, either,

(a) there is a good pair and G contains an alternating Hamiltonian cycle; or

(b) there is no good pair and G is vertex alternating-pancyclic.

We also prove an extension of this result, which provides sufficient conditions
for a graph in the c.g.s. of k alternating Hamiltonian graphs to be an alternating
Hamiltonian graph or an alternating-pancyclic graph.

Theorem 4. Let G1, G2, . . . , Gk be a collection of k vertex disjoint 2-edge-colored
graphs with alternating Hamiltonian cycles, C1, C2, . . . , Ck, respectively, and G ∈
⊕ki=1Gi.

(i) If G contains no good cycle and G contains an alternating cycle γ such that
V (γ) ∩ V (Gi) 6= ∅ for each i ∈ [1, . . . , k], then G is an alternating-pancyclic
graph.
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(ii) G contains an alternating cycle γ such that V (γ) ∩ V (Gi) 6= ∅ for each
i ∈ [1, . . . , k] if and only if G is an alternating Hamiltonian graph.

It should be noted that the proofs in this paper carry on an implicit algorithm
to construct the alternating cycles.

2. Definitions

In this paper G = (V (G), E(G)) will denote a simple graph. A k-edge-coloring
of G is a function c from the edge set, E(G), to a set of k colors, {1, 2, . . . , k}. A
graph G provided with a k-edge-coloring is a k-edge-colored-graph.

A path or a cycle in G will be called an alternating path or an alternating
cycle whenever two consecutive edges have different colors. An alternating cycle
containing each vertex of the graph is an alternating Hamiltonian cycle and a
graph containing an alternating Hamiltonian cycle will be called an alternating
Hamiltonian graph. A 2-edge-colored graph G of order 2n is alternating-pancyclic
whenever G contains an alternating cycle of length 2k for each k ∈ {2, . . . , n};
and G is vertex alternating-pancyclic if and only if, for each vertex v ∈ V (G)
and each k ∈ {2, . . . , n}, G contains an alternating cycle of length 2k passing
through v.

For further details we refer the reader to [3] pages 608–610.

Remark 5. Clearly the c.g.s. of two vertex disjoint graphs is well defined and
commutative. Let G1, G2, G3 be three vertex disjoint 2-edge-colored graphs.
It is easy to see that the sets (G1 ⊕ G2) ⊕ G3 defined as

⋃
G∈G1⊕G2

G ⊕ G3

and G1 ⊕ (G2 ⊕ G3) defined as
⋃
G′∈G2⊕G3

G1 ⊕ G′ are equal, thus ⊕3
i=1Gi =

(G1 ⊕ G2) ⊕ G3 = G1 ⊕ (G2 ⊕ G3) is well defined. By means of an inductive
process it is easy to see that the c.g.s. of k vertex disjoint 2-edge-colored graphs
is well defined, commutative and associative.

Notation 6. Let k1 and k2 be two positive integers, such that k1 ≤ k2. We will
denote by [k1, k2] the set of integers {k1, k1 + 1, . . . , k2}.

Remark 7. Let G1, G2, . . . , Gk be a collection of pairwise vertex disjoint 2-edge-
colored graphs; G ∈ ⊕ki=1Gi; and J ⊂ [1, k]. The induced subgraph of G by⋃
j∈J V (Gj), H = G〈⋃j∈J V (Gj)〉, belongs to the c.g.s. of {Gj}j∈J .

Notation 8. Let C = x0x1 · · ·x2n−1x0 be an alternating cycle. For each v ∈
V (C), we will denote by vr (respectively, vb) the vertex in C such that vvr ∈
E(C) is red (respectively, vvb ∈ E(C) is blue). Notice that if v = xi then
{xi−1, xi+1} = {vr, vb}.

If more than one alternating cycle contains v, we will write vrC (respectively,
vbC).
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Definition. Let G be a 2-edge-colored graph and let C1 = x0x1 · · ·x2n−1x0 and
C2 = y0y1 · · · y2m−1y0 be two vertex disjoint alternating cycles. Let vw be an
edge with v ∈ V (C1) and w ∈ V (C2). If c(vw) = red (respectively, c(vw) = blue)
we will say that vw, vrwr (respectively, vw, vbwb) is a good pair of edges whenever
c(vrwr) = red (respectively, c(vbwb) = blue).

Whenever there is a good pair of edges between two vertex disjoint alternating
cycles C1 and C2, we simply say that there is a good pair.

Remark 9. Notice that vvrwrwv (respectively, vvbwbwv) is a monochromatic
4-cycle whenever vw, vrwr (respectively, vw, vbwb) is a good pair.

Remark 10. Let G be a 2-edge-colored graph and let C1 = x0x1 · · ·x2n−1x0 and
C2 = y0y1 · · · y2m−1y0 be two vertex disjoint alternating cycles. A pair of edges
xsyt, xs′yt′ with s ∈ [0, 2n−1], s′ ∈ {s−1, s+1}, t ∈ [0, 2m−1], t′ ∈ {t−1, t+1}
where all the subscripts are taken modulo 2n and 2m, respectively, is a good
pair whenever xsxs′yt′ytxs is a monochromatic 4-cycle (Figure 4). This is a
consequence of the definition of a good pair and Notation 8.

. . . •

. . . •

•

•

•

•

• . . .

• . . .

yt−1 yt yt+1 yt+2

xs−2 xs−1 xs xs+1

C1

C2

∼ red
− blue

Figure 4. A good pair of edges.

In the study of alternating cycles, the more general case is the one with
two colors and so we will work with 2-edge-colored graphs. In what follows,
any graph G will denote a 2-edge-colored graph and c : E(G)→ {red,blue} will
denote its edge coloring and we will simply say a graph instead of a 2-edge-colored
graph; a 2-edge-colored cycle C which is properly colored will simply be called an
alternating cycle. In our figures curly lines will represent red edges while straight
lines will represent blue edges, sometimes we will use dotted lines to represent
edges that we ignore to construct a cycle, we will use double-dotted lines for red
edges and dotted lines for blue edges.

From now on the subscripts for vertices in C1 = x0x1 · · ·x2n−1x0 will be
taken modulo 2n and for vertices in C2 = y0y1 · · · y2m−1y0 will be taken modulo
2m.

3. Preliminary Results

In this section we will, first, state two results from [6], Proposition 11 and Lemma
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14, and then we will see a series of results that describe the behavior of exterior
edges in a c.g.s. of two 2-edge-colored graphs.

Proposition 11. Let C1 and C2 be two disjoint alternating cycles in a graph G.
If there is a good pair of edges between them, then there is an alternating cycle
with the vertex set V (C1) ∪ V (C2) (Figure 5).

. . . •

. . . •

•

•

•

•

• . . .

• . . .

yt−1 yt yt+1 yt+2

xs−2 xs−1 xs xs+1

C1

C2

::: red

∼ red
− blue

Figure 5. A cycle using a good pair of edges.

Notation 12. Let C be an alternating cycle, given an arbitrary but fixed de-
scription of its vertices as C = x0x1 · · ·x2n−1x0, we will say that two vertices
x, y ∈ V (C) are congruent modulo 2, whenever their subscripts in C are congru-
ent modulo 2, and we will write x ≡ y (mod 2) (or x ≡C y (mod 2), when x and
y belong to more than one cycle).

Notation 13. Let G1, G2, . . . , Gk be a collection of pairwise vertex disjoint 2-
edge-colored graphs and take G in ⊕ki=1Gi. For each v ∈ V (G), we will denote by
dr(v) (respectively, db(v)) the number of red (respectively, blue) exterior edges of
G incident with v.

Lemma 14. Let C1 = x0x1 · · ·x2n−1x0 and C2 = y0y1 · · · y2m−1y0 be two vertex
disjoint alternating cycles and G be a graph in C1 ⊕ C2 such that G has no good
pair. For each vertex w ∈ V (Ci), if dr(w) = t and db(w) = |V (C3−i)| − t, then
dr(x) = |V (C3−i)| − t = db(w) and db(x) = t = dr(w) for each x ∈ {wr, wb}.
Furthermore, if w, x ∈ V (Ci), then

dr(x) =

{
dr(w) if and only if w ≡ x (mod 2),

|V (C3−i)| − dr(w) if and only if w 6≡ x (mod 2).

In what follows we will write w.r.t. instead of “with respect to”.

Definition. Let F ′ = {C,H} be a factor in a graph G, where C is an alternating
cycle and H is a subgraph. A vertex v ∈ V (C) is red-singular (blue-singular)
w.r.t. H, if {vu ∈ E(G) | u ∈ V (H)} is not empty and all the edges in {vu ∈
E(G) | u ∈ V (H)} are red (blue); v is singular w.r.t. H if it is either red-singular
or blue-singular w.r.t. H.
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The color of the exterior edges incident with a singular vertex v w.r.t. H,
will be called the singularity of v and it will be denoted by sH(v).

Definition. Let F ′ = {C,H} be a factor in a graph G, where C is an alternating
cycle andH is a subgraph. The cycle C is singular w.r.t. H, whenever the vertices
in C are alternatively red-singular and blue-singular w.r.t. H.

Remark 15. Let G1 and G2 be two vertex disjoint graphs with alternating
Hamiltonian cycles, C1 and C2, respectively. Let G be a graph in G1 ⊕G2 such
that Ci is singular w.r.t. G3−i. Then for each x ∈ V (G3−i), x is non-singular
w.r.t. Gi. In particular C3−i is non-singular w.r.t. Gi.

Lemma 16. Let C1 = x0x1 · · ·x2n−1x0 and C2 = y0y1 · · · y2m−1y0 be two vertex
disjoint alternating cycles, and G ∈ C1 ⊕ C2. Then Ci is singular w.r.t. G3−i,
for some i ∈ {1, 2}, if and only if Ci has at least one singular vertex w.r.t. G3−i
and G has no good pair.

Proof. Assume w.l.o.g. that C1 is singular w.r.t. G2. Suppose by contradiction
that there is a good pair xsyr, xs′yr′ with s ∈ [0, 2n − 1], s′ ∈ {s − 1, s + 1},
r ∈ [0, 2m − 1], r′ ∈ {r − 1, r + 1}, as in Remark 10, and C = xsxs′yr′yrxs is a
monochromatic cycle (w.l.o.g., red). So dr(xs) ≥ 1 and dr(xs′) ≥ 1, contradicting
the singularity of C1.

The converse follows directly from Lemma 14.

Given two disjoint alternating-pancyclic graphs G1 and G2, a graph G ∈ G1⊕
G2 is not necessarily an alternating-pancyclic graph. In fact, we may construct a
large family of alternating-pancyclic 2-edge-colored graphs and c.g.s.’ members
of this family that are not alternating-pancyclic graphs. To prove this assertion,
we will use the next proposition.

Proposition 17. Let G1 be a graph with an alternating Hamiltonian cycle, C1 =
x0x1 · · ·x2n−1x0, G2 a graph and G ∈ G1 ⊕ G2 with edge-coloring c. If C1 is
singular w.r.t. G2 in G and for each edge xixl ∈ E(G1) \ E(C1) satisfying i ≡ l
(mod 2) we have that c(xixl) = sG2(xi), then G has no alternating cycle con-
taining vertices in both G1 and G2.

Proof. Suppose by contradiction that there is an alternating cycle γ in G such
that V (γ) ∩ V (C1) 6= ∅ and V (γ) ∩ V (G2) 6= ∅.

Observe that γ contains an alternating subpath of length at least 1 which is
contained in G1. Take u ∈ V (γ) ∩ V (C1). Since u is singular w.r.t. G2, at least
one in {urγ , ubγ} belongs to G1 and thus there is a path of length one contained
in G1.

Let P = u0u1 · · ·ur be a longest alternating subpath of γ contained in G1.
Let v0 be the predecessor of u0 in γ and vr be the successor of ur in γ belonging
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to G2. Observe that P ′ = v0u0u1 · · ·ur and P ′′ = u0u1 · · ·urvr are both subpaths
of γ and they are alternating.

We may assume w.l.o.g. that u0 is red-singular and thus v0u0 is red and u0u1
is blue. Since P is alternating, uiui+1 is blue if and only if i is even and it is
red if and only if i is odd, for each i ∈ [0, r − 1]. Moreover, as u0 is red-singular
and C1 is singular w.r.t. G2 we have that ui is red-singular if and only if i ≡ 0
(mod 2) and it is blue singular otherwise. Hence, for each i ∈ [0, r − 1]: ui+1 is
blue-singular and uiui+1 is blue if and only if i is even; and ui+1 is red-singular
and uiui+1 is red if and only if i is odd.

Case 1. r is even. Then r − 1 is odd and thus ur is red-singular and ur−1ur
is red. As ur is red-singular, urvr is red, contradicting that P ′′ is alternating.

Case 2. r is odd. Then r− 1 is even and thus ur is blue-singular and ur−1ur
is blue. As ur is blue-singular, urvr is blue, contradicting P ′′ is alternating.

Hence, G has no cycle containing vertices in both G1 and G2.

In order to construct the example of a c.g.s. of two alternating-pancyclic
graphs which is not an alternating-pancyclic graph, we define the following family
of complete graphs. First, let n ≥ 2 and C2n = x0x1 · · ·x2n−1x0 be an alternating
cycle such that xixi+1 is red whenever i is even and it is blue whenever i is odd.

Second, let AP2n be the family of 2-edge-colored complete graphs G, such
that V (G) = V2n = {x0, x1, . . . , x2n−1} and E(G) satisfies: (i) E(C2n) ⊂ E(G);
(ii) G〈{xi | i ≡ 0 (mod 2)}〉 is a complete red graph and G〈{xi | i ≡ 1 (mod 2)}〉
is a complete blue graph, this is, an edge xixj ∈ E(G) is red whenever i ≡ j ≡ 0
(mod 2) and it is blue whenever i ≡ j ≡ 1 (mod 2); (iii) x0x2i+1 is blue for each
i ∈ [1, n− 1]; (iv) the remaining edges can be colored in any way.

The set AP2n is not empty and it consists of alternating-pancyclic graphs,
as x0x1 · · ·x2i+1x0 is an alternating cycle of length 2i+ 2 for each i ∈ [1, n− 1].
Set AP =

⋃
n≥2AP2n, AP is a countable family of alternating-pancyclic graphs

with at least one graph of order 2n for each n ≥ 2 (Figure 6).

Remark 18. Let G1 ∈ AP of order 2n, G2 be an alternating-pancyclic graph,
and G ∈ G1 ⊕G2. If C2n is singular w.r.t.G2 in G with x0 being a red-singular
vertex w.r.t.G2, then G is not alternating-pancyclic. Moreover, G has no alter-
nating cycle with vertices in both G1 and G2.

Proof. Notice that G satisfies the hypothesis of Proposition 17. C2n is an al-
ternating Hamiltonian cycle in G1 which is singular w.r.t. G2, and so, C2n is
singular w.r.t. an alternating Hamiltonian cycle of G2; since x0 is red-singular,
xi is red-singular whenever i is even and it is blue-singular whenever i is odd,
i ∈ [0, 2n − 1]; each edge xixl ∈ E(G1) \ E(C2n) satisfying i ≡ l (mod 2) is red
whenever i is even and it is blue whenever i is odd, by definition of AP2n, this
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is c(xixl) = sG2(xi). Therefore, G has no alternating cycle containing vertices in
both G1 and G2.

• •
•

•

•
••

•

•

•

x0 x1

x2

x3

x4

x5x6

x7

x8

x9

• •

•

•

••

•

•

x0 x1

x2

x3

x4x5

x6

x7

H1 H2

∼ red
− blue

Figure 6. Examples of alternating-pancyclic graphs in AP: H1 ∈ AP10 and H2 ∈ AP8.

As a consequence of Proposition 17, we have the following: Let C1 and C2

be two vertex disjoint alternating cycles and G ∈ C1⊕C2. If Ci is singular w.r.t.
C3−i in G, then G has no alternating cycle with vertices in both C1 and C2, in
particular, G has no alternating Hamiltonian cycle. In the next result, we will
see that if we add a particular kind of edge between certain vertices in Ci, then
G will become an alternating-pancyclic graph.

Proposition 19. Let G1 and G2 be two graphs with alternating Hamiltonian
cycles, C1 = x0x1 · · ·x2n−1x0 and C2 = y0y1 · · · y2m−1y0, respectively, and G ∈
G1 ⊕ G2 with edge-coloring c. If C1 is singular w.r.t. G2 and there exists an
edge xsxt ∈ E(G1) such that s ≡ t (mod 2) and c(xsxt) 6= sG2(xs), then G is an
alternating-pancyclic graph. Moreover, for each even length in [4, 2n + 2m] and
each j ∈ [0, 2m− 1], there is an alternating cycle passing through xsxt and yj.

Proof. Suppose w.l.o.g. that xsxt is red.
Since C1 is singular w.r.t. G2 and s ≡ t (mod 2), we have that xs and xt

have the same singularity, this is sG2(xs) = sG2(xt). As red = c(xsxt) 6= sG2(xs),
we obtain that xs and xt are both blue-singular vertices w.r.t. G2.

Assume w.l.o.g. that y0y1 is red, then y2jy2j+1 is red and y2j+1y2j+2 is blue
for each j ∈ [0,m − 1], as C2 is alternating. Therefore, the alternating paths
ρjh = y2jy2j+1 · · · y2j+2h+1 have odd length 2h + 1 starting and ending at red
edges, for each h ∈ [0,m−1] and each j ∈ [0,m−1]. Then, for each h ∈ [0,m−1]
and each j ∈ [0,m − 1], the cycle αjh = ρjh ∪ y2j+2h+1xsxty2j is alternating with

length l(αjh) = 2h+4, xsxt ∈ E(αh) and y2j , y2j+1 ∈ V (αh) for each j ∈ [0,m−1].
So, for each even length l in [4, 2m + 2] and each j ∈ [0, 2m − 1], G contains an
alternating cycle of length l passing through xsxt and yj .
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Suppose w.l.o.g. that s < t. Let P1 and P2 be the two alternating subpaths
of C1 determined by xs and xt, namely P1 = xsxs+1 · · ·xt and P2 = xtxt+1 · · ·xs.
Since s ≡ t (mod 2), we have that P1 and P2 have even length and they start at
edges of the same color; assume w.l.o.g. that c(xsxs+1) = c(xtxt+1) = blue, then
we have

• xs+2ixs+2i+1 is blue for each i ∈
[
0, t−s2 − 1

]
,

• xs+2i−1xs+2i is red for each i ∈
[
1, t−s2

]
,

• xt+2ixt+2i+1 is blue for each i ∈
[
0, n− t−s

2 − 1
]
,

• xt+2i−1xt+2i is red for each i ∈
[
1, n− t−s

2

]
,

• xs+2i−1 is red-singular for each i ∈
[
1, t−s2

]
,

• xt+2i−1 is red-singular for each i ∈
[
1, n− t−s

2

]
.

Let ρ = y1y2 · · · y2m−1y0 be the alternating path of length 2m − 1 obtained
from C2 by removing the red edge y0y1, and consider the alternating paths
σi = xs+2i−1xs+2i−2 · · ·xs+1xs, for each i ∈

[
1, t−s2

]
, and τj = xtxt+1 · · ·xt+2j−1,

for each j ∈
[
1, n− t−s

2

]
. Each of these paths has odd length and its end edges

are both blue; the σi’s start at a red-singular vertex and end at a blue-singular
vertex and the τj ’s start at a blue-singular vertex and end at a red-singular vertex
(Figure 7).

• • . . . • • • • . . . • •xt−1 xt−2 xs+1 xs xt xt+1 xs−2 xs−1

• • • • • . . . • •y1 y2 y3 y4 y5 y2m−1 y0
ρ

G1

::: red∼ red
− blue

Figure 7. G in the proof of Proposition 19.

Hence, for each i ∈
[
1, t−s2

]
and each j ∈

[
1, n− t−s

2

]
, the cycle β(σi, τj) =

ρ∪ y0xs+2i−1 ∪ σi ∪ xsxt ∪ τj ∪ xt+2j−1y1 is alternating, has length l (β(σi, τj)) =
(2m− 1) + 1 + (2i− 1) + 1 + (2j− 1) + 1 = 2m+ 2i+ 2j and passes through xsxt
and yj for each j ∈ [0, 2m− 1].

Corollary 20. Let G1 and G2 be two graphs with alternating Hamiltonian cycles,
C1 = x0x1 · · ·x2n−1x0 and C2 = y0y1 · · · y2m−1y0, respectively, and G ∈ G1 ⊕G2

with edge-coloring c. If C1 is singular w.r.t. C2 and, for each xs ∈ V (C1), there
exists an edge xsxt ∈ E(G1) such that s ≡ t (mod 2) and c(xsxt) 6= sC2(xs), then
G is a vertex alternating-pancyclic graph.
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As a consequence of Propositions 17 and 19 we have the next nice result.

Corollary 21. Let G1 and G2 be two vertex disjoint graphs with alternating
Hamiltonian cycles, C1 = x0x1 · · ·x2n−1x0 and C2 = y0y1 · · · y2m−1y0, respec-
tively, and G ∈ G1 ⊕ G2 with edge-coloring c. If C1 is singular w.r.t. G2, then
either, G has no alternating cycle containing vertices in both G1 and G2, or G is
an alternating-pancyclic graph.

Proof. If there is an edge xsxt ∈ E(G1) \ E(C1) such that s ≡ t (mod 2) and
c(xsxt) 6= sG2(xs) then, by Proposition 19, G is alternating-pancyclic.

If there is no such an edge then, by Proposition 17, G has no alternating
cycle containing vertices in both C1 and C2.

If G1 and G2 are alternating Hamiltonian graphs and G ∈ G1⊕G2 has a good
pair, then we know G contains an alternating Hamiltonian cycle, by Proposition
11. However, we can say more when |V (G1)| = 2sp, where s is a positive integer
and p is a prime number, and there are two special vertices in G1.

Proposition 22. Let G1 and G2 be two vertex disjoint graphs with alternat-
ing Hamiltonian cycles, C1 = x0x1 · · ·x2n−1x0 and C2 = y0y1 · · · y2m−1y0, re-
spectively, where 2n = 2sp with s a positive integer and p a prime number,
and G ∈ G1 ⊕ G2 with edge-coloring c. If C1 is non-singular w.r.t. C2 and
there exist two singular vertices x,w ∈ V (C1) such that xw ∈ E(G1) \ E(C1),
sC2(x) = sC2(w) and c(xw) 6= sC2(x), then G contains alternating cycles of every
even length in [4, 2n+ 2m] \ {2m+ jp+ 1 | j ∈ [1, 2s] and j ≡ 1 (mod 2)}, when
p 6= 2. And G is an alternating-pancyclic graph, whenever p = 2.

Proof. First, notice that there is a good pair. Otherwise, Lemma 16 and the fact
that x is a singular vertex w.r.t. C2 imply C1 is singular w.r.t. C2, a contradiction.
So, Proposition 11 implies that there is an alternating cycle of length 2n + 2m
in G.

Now we proceed to prove the existence of the other alternating cycles which
are not Hamiltonian.

Assume w.o.l.g. that x and w are both red-singular vertices w.r.t. C2, and
y0y1 is blue.

As y0y1 is blue, then for each i ∈ [1,m], the path Pi = y0y1 · · · y2i−1, is
alternating of odd length 2i − 1 and so it starts and ends at blue edges. Hence,
the cycle γi = xy0 ∪ Pi ∪ x2i−1wx is alternating of length 2i+ 2.

Let L = 2[2, n − 1], this is, L is the set of all even numbers between 4 and
2n − 2 and let Lp = {jp + 1 | j ∈ [1, 2s] and j ≡ 1 (mod 2)}. Observe that,
whenever p = 2 the set Lp is a set of odd integers, so L \ Lp = L, and whenever
p is odd Lp is a set of even integers with 2s−1 elements.

We will prove that for each h ∈ L \ Lp, G contains an alternating cycle of
length 2m+ h.
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Proceeding by contradiction, suppose that there is an h ∈ L \ Lp such that
G has no alternating cycle of length 2m+ h.

Assume w.l.o.g. that x = x0 and x0x1 is blue. Since h is even and C1 is
alternating, then the path Q1 = x0x1 · · ·xh−1 is also alternating, has odd length
h − 1 and so it starts and ends at blue edges. We will prove that xh−1 is blue-
singular w.r.t. C2.

If there is a vertex y ∈ V (C2) such that xh−1y is red, then taking R1 to be
the yyr-subpath of C2 obtained from C2 by removing the red edge yyr, we may
construct the cycle α1 = Q1 ∪ xh−1y ∪ R1 ∪ yrx0 which is alternating and has
length l(α1) = h− 1 + 1 + 2m− 1 + 1 = 2m+ h, a contradiction. Hence, xh−1 is
a blue-singular vertex w.r.t. C2.

Now, xh−1xh is red. Then the alternating path Q2 = xh−1xh · · ·x2(h−1) which
has odd length h− 1 starts and ends at red edges. We will prove that x2(h−1) is
red-singular w.r.t. C2.

If there is a vertex y ∈ C2 such that x2(h−1)y is blue, then taking R2 to be

the yyb-subpath of C2 obtained from C2 by removing the blue edge yyb, we may
construct the cycle α2 = Q2∪x2(h−1)y∪R2∪ybxh−1 which is alternating and has
length l(α2) = h− 1 + 1 + 2m− 1 + 1 = 2m+ h, a contradiction. Hence, x2(h−1)
is a red-singular vertex w.r.t. C2.

Arguing this way we obtain the sequence, {xt(h−1)}t≥1, of singular vertices
in C1, such that xt(h−1) is red-singular if t is even and blue-singular if t is odd.

Observe that, if lh = lcm(2sp,h−1)
h−1 , then x0, xh−1, . . . , x(lh−1)(h−1) are all dif-

ferent vertices. Recall that h ∈ L \ Lp and thus h is even and h 6≡ 1 (mod p),
which means h− 1 is odd and p - h− 1. Hence, lcm(2sp, h− 1) = 2sp(h− 1) and
thus lh = 2sp. Therefore, x0, xh−1, . . . , x(lh−1)(h−1) are lh = 2sp different singular
vertices in C1, such that xt(h−1) is red-singular if t is even and blue-singular if t
is odd. As h−1 is odd, xt(h−1) is red-singular if t(h−1) is even and blue-singular
if t(h− 1) is odd. This is, C1 is singular w.r.t. C2, a contradiction.

Then, G contains alternating cycles of length 2m + h, for each h ∈ L \ Lp,
which concludes the proof.

Next we will prove a proposition that simplifies the proof of Theorem 4,
which is one of our two main theorems.

Proposition 23. Let G1, G2, . . . , Gk be a collection of pairwise vertex disjoint
graphs with Hamiltonian alternating cycles C1, C2, . . . , Ck, respectively, and G ∈
⊕ki=1Gi. If there is a sequence {ij}kj=1 such that Cij has a red-singular vertex
w.r.t. Cij+1 for all j ∈ [1, k] and where Cik+1

= Ci1, then G has a Hamiltonian
alternating cycle.

Proof. Suppose w.l.o.g. that, for each i ∈ [1, k], Ci has a red-singular vertex
w.r.t. Ci+1, where Ck+1 = C1.
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For each i ∈ [1, k], let vi ∈ V (Ci) be a red-singular vertex w.r.t. Ci+1. Recall
that we denoted by vri the vertex in Ci such that viv

r
i ∈ E(Ci) is red.

Consider the paths that result by removing the edges viv
r
i from the cycles

Ci, namely Pi = vriCvi, which are k alternating paths that start and end with
blue edges.

Since vi ∈ V (Ci) is red-singular w.r.t. Ci+1, we have ei = viv
r
i+1 is red for

each i ∈ [1, k], where vrk+1 = vr1. Therefore, γ = P1 ∪ e1 ∪ P2 ∪ e2 ∪ · · · ∪ ek−1∪
Pk ∪ ek is a Hamiltonian alternating cycle (Figure 8).

•

•

•
...
•

•

•

v1

vr1

•

•

•
...
•

•

•

v2

vr2

•

•

•
...
•

•

•

v3

vr3

•

•

•
...
•

•

•

vk−1

vrk−1

•

•

•
...
•

•

•

vk

vrk

· · ·

· · ·

· · ·

C1 C2 C3 Ck−1 Ck

:::,∼ red

− blue

Figure 8. The cycle γ in the proof of Proposition 23.

Notice that the assertion in Proposition 23 holds if we change the hypothesis
for red-singular vertices to blue-singular vertices.

4. Main Results-Conclusions

In this section we will see which graphs in the c.g.s. of two alternating Hamilto-
nian 2-edge-colored graphs are vertex alternating-pancyclic graphs, alternating-
pancyclic graphs or, simply, alternating Hamiltonian graphs.

Our main result is Theorem 3, which is consequence of Propositions 17 and
19, and Theorem 1. Next we prove Theorem 3 (Figure 3).

Proof of Theorem 3. (i) Suppose Ci is singular w.r.t. C3−i for some i ∈ {1, 2}.
Hence, by Corollary 21, G is either alternating-pancyclic or it has no alternating
cycle containing vertices in both G1 and G2.
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(ii) Suppose Ci is non-singular w.r.t. C3−i for each i ∈ {1, 2}. If there is a
good pair of edges then, by Proposition 11, G contains an alternating Hamiltonian
cycle. And if there is no good pair then, for each i ∈ {1, 2}, Ci contains a non-
singular vertex w.r.t. C3−i. Otherwise, each vertex v ∈ V (Ci) is singular w.r.t.
C3−i, for some i ∈ {1, 2}. By Lemma 14, the exterior edges incident with v have
different color from the exterior edges incident with vr and vb, for each v ∈ V (Ci).
Hence, Ci must be singular w.r.t. C3−i, a contradiction.

Therefore, G satisfies the hypothesis of Theorem 1 and thus G is a vertex
alternating-pancyclic graph.

Observe that in Theorem 3 three out of four possibilities imply that G is an
alternating Hamiltonian graph and two possibilities in the same theorem assert
that the graph is alternating-pancyclic, so we have Corollary 24. We will extend
the results of Corollary 24 for k summands.

Corollary 24. Let G1 and G2 be two vertex disjoint graphs with alternating
Hamiltonian cycles, C1 and C2, and G ∈ G1 ⊕G2.

(i) If G contains no good pair and G contains an alternating cycle γ such that
V (γ) ∩ V (Gi) 6= ∅ for each i ∈ {1, 2}, then G is an alternating-pancyclic
graph.

(ii) G contains an alternating cycle γ such that V (γ) ∩ V (Gi) 6= ∅ for each
i ∈ {1, 2} if and only if G is an alternating Hamiltonian graph.

Next we prove a result that will be a useful tool in the next part, it is a
consequence of Theorem 1, Propositions 11 and 17, and Lemma 16.

Corollary 25. Let G1 and G2 be two vertex disjoint graphs with alternating
Hamiltonian cycles, C1 and C2, respectively; and G ∈ G1 ⊕ G2. If G has no
alternating Hamiltonian cycle, then Ci is singular w.r.t. C3−i for some i ∈ {1, 2}.

Proof. Suppose that Ci is non-singular w.r.t. C3−i for each i ∈ {1, 2}.
If there is a good pair in G, then Proposition 11 asserts that G is an alter-

nating Hamiltonian graph.
So, we may assume that G has no good pair. Observe that, for each i ∈ {1, 2},

Ci cannot have singular vertices by Lemma 16. Hence, Ci contains at least
one non-singular vertex for each i ∈ {1, 2}. It follows from Theorem 1 that G
is vertex alternating-pancyclic, in particular G contains an alternating cycle of
length 2n+ 2m = |V (G)|.

From the definition of good pair and Remarks 9 and 10 we obtain the fol-
lowing remark which allow us to define a generalization of a good pair [6].

Remark 26. Let G1 and G2 be two vertex disjoint graphs, α1 = x0x1 · · ·x2n−1x0
and α2 = y0y1 · · · y2m−1y0 be two alternating cycles in G1 and G2, respectively,
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and G ∈ G1⊕G2. If xsyt and yt′xs′ is a good pair of edges, then C = xsxs′yt′ytxs is
a monochromatic 4-cycle such that its edges are alternatively in E⊕ and E(α1)∪
E(α2), namely xs′yt′ , ytxs ∈ E⊕, xsxs′ ∈ E(α1) and yt′yt ∈ E(α2).

Definition. Let G1, G2, . . . , Gk be a collection of pairwise vertex disjoint 2-edge-
colored graphs, G ∈ ⊕ki=1Gi. A monochromatic 4-cycle C = v0v1v2v3v0 in G will
be called a good cycle when either v0v1, v2v3 ⊂ E⊕ or v1v2, v3v0 ⊂ E⊕, or both.
This is, when two opposite edges in C are exterior.

Now we prove Theorem 4.

Proof of Theorem 4. (i) We will prove the assertion by induction on k. We
will first prove the assertion for k = 2, 3.

Suppose k = 2. If Ci is singular w.r.t. C3−i, for some i ∈ {1, 2}. Then,
by Theorem 3, we have either G has no alternating cycle containing vertices in
both G1 and G2, or G is alternating-pancyclic. As G contains an alternating
cycle γ such that V (γ) ∩ V (Gi) 6= ∅ for each i ∈ {1, 2}, it follows that G is an
alternating-pancyclic graph.

If Ci is non-singular w.r.t. C3−i, for each i ∈ {1, 2}. Then, by Theorem 3, we
have either G contains a good pair and it is an alternating Hamiltonian graph,
or G has no good pair and it is a vertex alternating-pancyclic graph. As G has
no good cycle, G has no good pair w.r.t. C1 and C2. Otherwise G would contain
a good cycle by Remark 26. Hence, G is a vertex alternating-pancyclic graph.

Suppose k = 3. If there exist i, j ∈ [1, 3] with i 6= j such that the induced
graph Hij = G〈V (Gi)∪V (Gj)〉 contains an alternating cycle α such that V (α)∩
V (Gi) 6= ∅ and V (α) ∩ V (Gj) 6= ∅. Then, by the base case k = 2, Hij is an
alternating-pancyclic graph, since Hij contains no good cycle (as it is a subgraph
of G) and contains α. In particular, Hij contains an alternating Hamiltonian
cycle. Notice that G ∈ Gh ⊕ Hij , where h ∈ [1, 3] \ {i, j}, each summand is an
alternating Hamiltonian graph and G has no good cycle, then G is an alternating-
pancyclic graph, by the base case k = 2.

If, for each pair of different indices i, j ∈ [1, 3], the induced graph Hij =
G〈V (Gi)∪V (Gj)〉 contains no alternating cycle containing vertices in both Gi and
Gj , and thus it has no alternating Hamiltonian cycle. Then, by the contrapositive
of Corollary 25, either Ci is singular w.r.t. Cj or Cj is singular w.r.t. Ci. There
are two cases (w.l.o.g.).

Let C1 = x0x1 · · ·x2n−1x0, C2 = y0y1 · · · y2m−1y0 and C3 = w0w1 · · ·w2l−1w0

be the alternating Hamiltonian cycles of G1, G2 and G3, respectively, and assume
w.l.o.g. that x0x1, y0y1 and w0w1 are blue; then xixi+1, yiyi+1 and wiwi+1 are
blue whenever i ≡ 0 (mod 2) and they are red whenever i ≡ 1 (mod 2).

Case 1. Ci is singular w.r.t. Ci+1 for each i ∈ [1, 3], where C4 = C1. Suppose
w.l.o.g. that x0, y0 and w0 are red-singular vertices w.r.t. C2, C3 and C1,
respectively.
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Then xi, yi and wi are red-singular vertices w.r.t. C2, C3 and C1, respectively,
whenever i ≡ 0 (mod 2) and blue-singular otherwise.

Case 2. Ci is singular w.r.t. Cj whenever 1 ≤ i < j ≤ 3. Take v1 ∈ V (C1).
By the definition of singular cycle, we have that v1 is singular w.r.t. Ci for each
i ∈ {2, 3}. If sC2(v1) = sC3(v1), then v1 is singular w.r.t. G0 = G〈V (G2)∪V (G3)〉,
and thus C1 is singular w.r.t. G0, as the color of the singularities of vertices in
C1 alternate and C1 is singular w.r.t. Ci for each i ∈ {2, 3}.

As G ∈ G1 ⊕ G0 and G contains a cycle γ such that V (γ) ∩ V (Gi) 6= ∅ for
each i ∈ [1, 3], we have by contrapositive of Proposition 17 that it must exist an
edge xy ∈ E(G1) \ E(C1) such that x ≡ y (mod 2) in C1 and c(xy) 6= sG0(x).
Observe that G1 is singular w.r.t. G2, sG0(v) = sG2(v) for each v ∈ V (G1)
and thus the edge xy ∈ E(G1) \ E(C1) is such that x ≡ y (mod 2) in C1 and
c(xy) 6= sG2(x). Then if we consider the induced subgraph by V (G1) ∪ V (G2) in
G, namely H12 = G〈V (G1)∪V (G2)〉, it satisfies the hypothesis of Proposition 19.
Hence, H12 is an alternating-pancyclic graph and thus it contains an alternating
Hamiltonian cycle, contradicting our assumption.

Then, sC2(v1) 6= sC3(v1). Assume w.l.o.g. that x0 and y0 are red-singular
vertices w.r.t. C2 and C3, respectively. Then x0 is blue-singular w.r.t. C3; xi
and yi are red-singular vertices w.r.t. C2 and C3, respectively, whenever i ≡ 0
(mod 2) and blue-singular otherwise; xi is blue-singular w.r.t. C3 whenever i ≡ 0
(mod 2) and red-singular otherwise.

Hence, in both cases, x2n−2py2t is red for each p ∈ [1, n] and each t ∈
[0,m − 1], y0w2l−1 is red, w2l−2sx2n−1 is red for each s ∈ [1, l]; the paths
w2l−1w2l−2 · · ·w2l−2s and x2n−1x2n−2 · · ·x2n−2p are alternating which start and
end at blue edges and the paths y2ty2t−1 · · · y0 are alternating which start at a
red edge and end at a blue edge.

Therefore, the cycle βs = x2n−1y0w2l−1w2l−2 · · ·w2l−2sx2n−1 is alternat-
ing of length 1 + 1 + (2s − 1) + 1 = 2 + 2s for each s ∈ [1, l]; the cy-
cle δt = x2n−1y2ty2t−1 · · · y0w2l−1w2l−2 · · ·w0x2n−1 is alternating of length 1 +
2t + 1 + (2l − 1) + 1 = 2 + 2l + 2t for each t ∈ [1,m − 1]; and the cycle ηp
= x2n−1x2n−2 · · ·x2n−2py2m−1y2m−2 · · · y0w2l−1w2l−2 · · ·w0x2n−1 is alternating of
length (2p− 1) + 1 + (2m− 1) + 1 + (2l− 1) + 1 = 2l+ 2m+ 2p for each p ∈ [1, n].

From the above, G is alternating-pancyclic.

Now, assume that the assertion of this theorem holds for each k′ ≤ k − 1.
We will prove it for k ≥ 4.

Let G1, G2, . . . , Gk be a collection of k ≥ 4 vertex disjoint graphs with alter-
nating Hamiltonian cycles, C1, C2, . . . , Ck, respectively, and take G ∈ ⊕ki=1Gi as
in the hypothesis.

Claim 27. There exists an alternating cycle β in G such that V (β) ⊂ ⋃j∈J V (Gj)
for some J ⊂ [1, k], with 2 ≤ |J | ≤ k − 1, and V (β) ∩ V (Gj) 6= ∅ for each j ∈ J .
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Proof. Suppose by contradiction that there is no such a cycle. Then each al-
ternating cycle β in G satisfies either V (β) ⊂ V (Gi) for some i ∈ [1, k] or
V (β) ∩ V (Gi) 6= ∅ for each i ∈ [1, k].

Then for each pair of different indices i, j ∈ [1, k] the graph Hij = G〈V (Gi)∪
V (Gj)〉 has no alternating Hamiltonian cycle and thus, by the contrapositive of
Corollary 25, either Ci is singular w.r.t. Cj or Cj is singular w.r.t. Ci.

Define a digraph T of order k with vertex set V (T ) = {Gi | i ∈ [1, k]} and
(Gi, Gj) is an arc of T if and only if Ci is singular w.r.t. Cj in Hij (and thus,
in G).

From the above, between each pair of different summands in G, Gi and Gj ,
for some r ∈ {i, j} the alternating Hamiltonian cycle Cr of Gr is singular w.r.t.
Gr′ in G, where r′ ∈ {i, j} \ {r}. In this way, any two vertices in T are adjacent
and, by Remark 15, Ci and Cj cannot be simultaneously singular with respect
each other. Hence, there is exactly one arc between Gi and Gj in T and thus T
is a tournament.

Claim 28. T is an acyclic tournament.

Proof. Suppose by contradiction that T has a cycle, namely α = (Gi1 , Gi2 , . . . ,
Gis , Gi1) where 3 ≤ s ≤ k − 1. This cycle in T produces a sequence {ij}sj=1

such that Cij is singular w.r.t. Cij+1 in G (and so Cij contains a red-singular
vertex w.r.t. Cij+1 in G) for each j ∈ [1, s], where Cis+1 = Ci1 . Therefore, by
Proposition 23, G0 = G

〈⋃s
j=1 V (Gij )

〉
contains an alternating Hamiltonian cycle

C0. Then V (C0) ∩ V (Gij ) 6= ∅ for each j ∈ [1, s], contradicting our assumption.

Now, suppose by contradiction that T has a Hamiltonian cycle, namely α =
(Gi1 , Gi2 , . . . , Gik , Gi1). Then, as Gi1 and Gi3 are adjacent, either (Gi1 , Gi3) ∈
A(T ) or (Gi3 , Gi1) ∈ A(T ). If (Gi1 , Gi3) ∈ A(T ), then (Gi1 , Gi3 , . . . , Gik , Gi1)
is a cycle of length k − 1 in T , a contradiction. If (Gi3 , Gi1) ∈ A(T ), then
(Gi1 , Gi2 , Gi3 , Gi1) is a cycle of length 3 in T , a contradiction.

As T is acyclic, it follows that T is transitive and it contains a Hamiltonian
path τ = (Gi1 , Gi2 , . . . , Gik) such that (Gij , Gij′ ) is an arc in T if and only if
1 ≤ j < j′ ≤ k.

If each vertex v ∈ V (Gi1) is singular w.r.t. H = G
〈⋃k

j=2 V (Gij )
〉
, that is, all

exterior arcs incident with v are colored alike. Then, as Ci1 is singular w.r.t. Cij
for each j ∈ [2, k], it follows that Ci1 is singular w.r.t. H. Notice thatG ∈ Gi1⊕H;
Ci1 is an alternating Hamiltonian cycle in Gi1 which is singular w.r.t. H and;
G contains the alternating cycle γ which contains vertices in both Gi1 and H.
Therefore, by Proposition 17, it must exist an edge xy ∈ E(Gi1) \ E(Ci1) such
that x ≡ y (mod 2) in Ci1 and c(xy) 6= sH(x).

Observe that Gi1 is singular w.r.t Gi2 , sH(v) = sGi2
(v) for each v ∈ V (Gi1)

and thus the edge xy ∈ E(Gi1) \ E(Ci1) is such that x ≡ y (mod 2) in Ci1
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and c(xy) 6= sGi2
(x). Then if we consider the induced subgraph by V (Gi1) ∪

V (Gi2) in G, namely Hi1i2 = G〈V (Gi1) ∪ V (Gi2)〉, it satisfies the hypothesis
of Proposition 19. Hence, Hi1i2 is an alternating-pancyclic graph and thus it
contains an alternating Hamiltonian cycle, contradicting our assumption.

Therefore, there is a vertex v1 ∈ V (Gi1) such that dr(v1) ≥ 1 and db(v1) ≥ 1,
i.e., there are blue exterior and red exterior edges incident with v1. Since Ci1 is
singular w.r.t. Cij for each j ∈ [2, k], v1 is singular w.r.t. Cij for each j ∈ [2, k]
and, as dr(v1) ≥ 1 and db(v1) ≥ 1, there are j, j′ ∈ [2, k], with j 6= j′, such that
v1 is red-singular w.r.t. Cij and it is blue-singular w.r.t. Cij′ . We may assume
w.l.o.g. that v1 is red-singular w.r.t. Ci2 and let s be the minimum index in [3, k]
such that v1 is blue-singular w.r.t. Cij . Then v1 is red-singular w.r.t. Cis−1 , it
is blue-singular w.r.t. Cis , and vr1, the red neighbor of v1 in Ci1 , is red-singular
w.r.t. Cis , by definition of singular cycle.

Consider vs−1 ∈ V (Cis−1) such that vs−1 is red-singular w.r.t. Cis and vs ∈
V (Cis).

Now, take the red exterior edges v1v
r
s−1, vs−1v

r
s and vsv

r
1 and; Pj , the vrjvj-

alternating path which is obtained from Cij by removing the red edge vjv
r
j , for

each j ∈ {1, s− 1, s}. Hence, C = P1 ∪ v1v
r
s−1 ∪ Ps−1 ∪ vs−1v

r
s ∪ Ps ∪ vsv

r
1

is an alternating cycle in H ′ = G〈V (Gi1) ∪ V (Gis−1) ∪ V (Gis)〉 with V (C) =
V (Gi1) ∪ V (Gis−1) ∪ V (Gis), contradicting our assumption (as k ≥ 4).

Let β be an alternating cycle as in the assertion of Claim 27.

Then G0 = G〈⋃j∈J V (Gj)〉 is a graph in ⊕j∈JGj which contains β and has
no good cycle (as G0 is a subgraph of G). Hence, by induction hypothesis G0

is alternating-pancyclic. In particular, it contains an alternating Hamiltonian
cycle C0.

Notice that {Gi}i∈[0,k]\J is a collection of k + 1 − |J | ≤ k − 1 alternating
Hamiltonian graphs; G ∈ ⊕i∈[0,k]\JGi as it satisfies the definition of a c.g.s. of
{Gi}i∈[0,k]\J ; G contains γ which satisfies V (γ)∩V (Gi) 6= ∅ for each i ∈ [0, k] \ J
and G has no good cycle (the set of exterior edges in G as c.g.s. in ⊕i∈[0,k]\JGi
is contained in the set of exterior edges of G as c.g.s. in ⊕ki=1Gi). Then, by
induction hypothesis, G is alternating-pancyclic.

(ii) The proof is similar to that of (i). However, in the induction basis we
can only assert that the graph G is alternating Hamiltonian, by Corollary 24,
instead of alternating pancyclic, as the hypothesis about good cycles is missing.
And thus, the induction process asserts that G ∈ ⊕ki=1Gi must be an alternating
Hamiltonian graph.

The converse is immediate.

Let G1, G2, . . . , Gk be a collection of k 2-edge-colored graphs with alternating
Hamiltonian cycles C1, C2, . . . , Ck, respectively. In Theorem 4 we characterized
graphs in ⊕ki=1Gi which are alternating Hamiltonian, we gave sufficient conditions
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for a graph in ⊕ki=1Gi to be alternating-pancyclic; and in Theorem 2 [6], we
gave sufficient conditions for a graph in that same set to be vertex alternating-
pancyclic. Those conditions are not proved to be necessary, as we used at most
one edge in E(Gi) \ E(Ci), for each i ∈ [1, k] and we do not know if there are
other edges in those sets, and if there are, we do not know how they behave.
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