ALTERNATING-PANCYCLISM IN 2-EDGE-COLORED GRAPHS ${ }^{1}$

Narda Cordero-Michel

AND
Hortensia Galeana-Sánchez
Instituto de Matemáticas, Universidad Nacional Autónoma de México Ciudad Universitaria, México, D.F., C.P. 04510, México
e-mail: narda@matem.unam.mx
hgaleana@matem.unam.mx

Abstract

An alternating cycle in a 2-edge-colored graph is a cycle such that any two consecutive edges have different colors. Let G_{1}, \ldots, G_{k} be a collection of pairwise vertex disjoint 2-edge-colored graphs. The colored generalized sum of G_{1}, \ldots, G_{k}, denoted by $\oplus_{i=1}^{k} G_{i}$, is the set of all 2-edge-colored graphs G such that: (i) $V(G)=\bigcup_{i=1}^{k} V\left(G_{i}\right)$, (ii) $G\left\langle V\left(G_{i}\right)\right\rangle \cong G_{i}$ for $i=1, \ldots, k$ where $G\left\langle V\left(G_{i}\right)\right\rangle$ has the same coloring as G_{i} and (iii) between each pair of vertices in different summands of G there is exactly one edge, with an arbitrary but fixed color. A graph G in $\oplus_{i=1}^{k} G_{i}$ will be called a colored generalized sum (c.g.s.) and we will say that $e \in E(G)$ is an exterior edge if and only if $e \in E(G) \backslash\left(\bigcup_{i=1}^{k} E\left(G_{i}\right)\right)$. The set of exterior edges will be denoted by E_{\oplus}. A 2-edge-colored graph G of order $2 n$ is said to be an alternating-pancyclic graph, whenever for each $l \in\{2, \ldots, n\}$, there exists an alternating cycle of length $2 l$ in G.

The topics of pancyclism and vertex-pancyclism are deeply and widely studied by several authors. The existence of alternating cycles in 2-edgecolored graphs has been studied because of its many applications. In this paper, we give sufficient conditions for a graph $G \in \oplus_{i=1}^{k} G_{i}$ to be an alternating-pancyclic graph. Keywords: 2-edge-colored graph, alternating cycle, alternating-pancyclic graph.

2010 Mathematics Subject Classification: 05C38.

[^0]
1. Introduction

Let G be an edge-colored multigraph. An alternating walk in G is a walk such that any two consecutive edges have different colors.

Several problems have been modeled by edge-colored multigraphs, the study of applications of alternating walks seems to have started in [15], according to [1], and ever since it has crossed diverse fields, such as genetics [8-10,16], transportation and connectivity problems [13,18], social sciences [4] and graph models for conflict resolutions [19-21], as pointed out in [5].

The alternating Hamiltonian path and cycle problems are $\mathcal{N} \mathcal{P}$-complete even for $c=2$, it was proved in [12], and so the problem of deciding if a given graph is alternating pancyclic is as difficult as those two problems.

Let B_{r} and B_{r}^{\prime} be 2 -edge-colored complete bipartite graphs with the same partite sets $\left\{v_{1}, v_{2}, \ldots, v_{2 r}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{2 r}\right\}$. The edge set of the red (blue) subrgraph of $B_{r}\left(B_{r}^{\prime}\right)$ consists of $\left\{v_{i} w_{j} \mid 1 \leq i, j \leq r\right\} \cup\left\{v_{i} w_{j} \mid r+1 \leq i, j \leq 2 r\right\}$. In [7], Das proved that a 2 -edge-colored complete bipartite multigraphs is vertex alternating-pancyclic if and only if it has an alternating Hamiltonian cycle and is not color-isomorphic to one of the graphs $B_{r}, B_{r^{\prime}}(r=2,3, \ldots)$.

Figure 1 shows a graph which is isomorphic neither to B_{r} nor to $B_{r^{\prime}}$ and has no spanning complete bipartite alternating Hamiltonian graph, so it does not fulfill the hypothesis asked in the theorem by Das. However, by Proposition 22 we can assert that it really is an alternating-pancyclic graph. Clearly, an infinite class of such graphs can be easily constructed.

Figure 1. A graph $G \in G_{1} \oplus G_{2}$.
In [1], Bang-Jensen and Gutin characterized 2-edge-colored complete multigraphs which are (vertex) alternating-pancyclic. Clearly, our results do not ask for completeness of the considered graphs.

In [2], Bang-Jensen and Gutin give a polynomial time algorithm to find a longest alternating cycle in a complete 2-edge-colored graph. In our results we do not ask for completeness of the graph and, under certain conditions, not only a longest cycle is found but alternating cycles of each even length.

Figure 2. (i) A graph in $G_{1} \oplus G_{2}$. (ii) A graph in $C_{1} \oplus C_{2}$.
In [3], to prove that a complete bipartite 2-edge-colored graph is (vertex) alternating-pancyclic, Bang-Jensen and Gutin consider the following construction (known as DHM-construction [3]). Given a complete bipartite 2-edge-colored graph G, with partition (X, Y), construct a complete 2-edge-colored graph H from G by adding all edges between vertices in X with red color and all edges between vertices in Y with blue color. That is, the graph induced by X in H is a complete red monochromatic graph and the graph induced by Y in H is a complete blue monochromatic graph. In this way, H is a complete 2-edgecolored graph such that every alternating cycle in H is an alternating cycle in G, as no alternating cycle in H contains edges in $H\langle X\rangle$ or $H\langle Y\rangle$; and thus, H is (vertex) alternating-pancyclic if and only if G is (vertex) alternating-pancyclic. ${ }^{2}$ We now give an example which shows that is not possible to give a DHM type construction to prove our results. A DHM type construction would add edges to this graph until a complete graph is obtained, the goal of this construction is that the complete graph and the original graph have the same set of alternating cycles.

[^1]Notice that in the graph of Figure 1, it does not matter which color is given to an added edge between y_{0} and y_{2}, we obtain alternating cycles which do not exist in the original graph.

However, the graph in Figure 1 satisfies the hypothesis of Proposition 22 and so it is indeed alternating-pancyclic.

A similar analysis can be done for the graphs in Figure 2. They have no spanning complete bipartite alternating Hamiltonian subgraph, so they do not fulfill the hypothesis of Das' theorem and it does not matter which color we give to an added edge between y_{0} and y_{2}, we obtain alternating cycles which do not exist in the original graphs, so we cannot use a DHM type construction to determine if they are alternating pancyclic graphs. However, the graph in Figure 2(i) satisfies the hypothesis of Corollary 20, so it is a vertex alternating-pancyclic graph; and the graph in Figure 2(ii) satisfies the hypothesis of Theorem 1, so it is a vertex alternating-pancyclic graph.

These simple examples show that our results work for different graphs than complete bipartite and complete 2-edge-colored graphs.

In other publications, such as [11] and [17], authors studied the existence of alternating cycles of certain lengths in terms of vertex degrees.

In [6], we proved Theorem 1 and a generalization of it for k summands, Theorem 2.

Theorem 1. Let G_{1} and G_{2} be two vertex disjoint graphs with alternating Hamiltonian cycles, $C_{1}=x_{0} x_{1} \cdots x_{2 n-1} x_{0}$ and $C_{2}=y_{0} y_{1} \cdots y_{2 m-1} y_{0}$, respectively, and $G \in G_{1} \oplus G_{2}$. If there is no good pair in G, and for each $i \in\{1,2\}$, in C_{i} there is a non-singular vertex with respect to C_{3-i}, then G is vertex alternating-pancyclic.

Theorem 2. Let $G_{1}, G_{2}, \ldots, G_{k}$ be a collection of $k \geq 2$ vertex disjoint graphs with Hamiltonian alternating cycles, $C_{1}, C_{2}, \ldots, C_{k}$, respectively, and $G \in \oplus_{i=1}^{k} G_{i}$. If there is no good cycle in G and, for each pair of different indices $i, j \in$ $[1, \ldots, k]$, in C_{i} there is a non-singular vertex with respect to C_{j}, then G is vertex alternating-pancyclic.

In this paper we analyze the cases where good pairs, singular vertices or good cycles ${ }^{3}$ appear and we give a complete classification of graphs in $G_{1} \oplus G_{2}$ which are alternating-pancyclic graphs, vertex alternating-pancyclic graphs or, simply, Hamiltonian alternating graphs (Figure 3).

Theorem 3. Let G_{1} and G_{2} be two vertex disjoint 2-edge-colored graphs with alternating Hamiltonian cycles, $C_{1}=x_{0} x_{1} \cdots x_{2 n-1} x_{0}$ and $C_{2}=y_{0} y_{1} \cdots y_{2 m-1} y_{0}$, respectively; and $G \in G_{1} \oplus G_{2}$. Then one of the following assertions hold:

[^2]

Figure 3. Theorem 3.
(i) C_{i} is singular with respect to C_{3-i} for some $i \in\{1,2\}$ and, either, (a) G has no alternating cycle containing vertices in both G_{1} and G_{2}; or
(b) G is alternating-pancyclic;
(ii) C_{i} is non-singular with respect to C_{3-i} for each $i \in\{1,2\}$ and, either,
(a) there is a good pair and G contains an alternating Hamiltonian cycle; or
(b) there is no good pair and G is vertex alternating-pancyclic.

We also prove an extension of this result, which provides sufficient conditions for a graph in the c.g.s. of k alternating Hamiltonian graphs to be an alternating Hamiltonian graph or an alternating-pancyclic graph.

Theorem 4. Let $G_{1}, G_{2}, \ldots, G_{k}$ be a collection of k vertex disjoint 2 -edge-colored graphs with alternating Hamiltonian cycles, $C_{1}, C_{2}, \ldots, C_{k}$, respectively, and $G \in$ $\oplus_{i=1}^{k} G_{i}$.
(i) If G contains no good cycle and G contains an alternating cycle γ such that $V(\gamma) \cap V\left(G_{i}\right) \neq \emptyset$ for each $i \in[1, \ldots, k]$, then G is an alternating-pancyclic graph.
(ii) G contains an alternating cycle γ such that $V(\gamma) \cap V\left(G_{i}\right) \neq \emptyset$ for each $i \in[1, \ldots, k]$ if and only if G is an alternating Hamiltonian graph.

It should be noted that the proofs in this paper carry on an implicit algorithm to construct the alternating cycles.

2. Definitions

In this paper $G=(V(G), E(G))$ will denote a simple graph. A k-edge-coloring of G is a function c from the edge set, $E(G)$, to a set of k colors, $\{1,2, \ldots, k\}$. A graph G provided with a k-edge-coloring is a k-edge-colored-graph.

A path or a cycle in G will be called an alternating path or an alternating cycle whenever two consecutive edges have different colors. An alternating cycle containing each vertex of the graph is an alternating Hamiltonian cycle and a graph containing an alternating Hamiltonian cycle will be called an alternating Hamiltonian graph. A 2-edge-colored graph G of order $2 n$ is alternating-pancyclic whenever G contains an alternating cycle of length $2 k$ for each $k \in\{2, \ldots, n\}$; and G is vertex alternating-pancyclic if and only if, for each vertex $v \in V(G)$ and each $k \in\{2, \ldots, n\}, G$ contains an alternating cycle of length $2 k$ passing through v.

For further details we refer the reader to [3] pages 608-610.
Remark 5. Clearly the c.g.s. of two vertex disjoint graphs is well defined and commutative. Let G_{1}, G_{2}, G_{3} be three vertex disjoint 2-edge-colored graphs. It is easy to see that the sets $\left(G_{1} \oplus G_{2}\right) \oplus G_{3}$ defined as $\bigcup_{G \in G_{1} \oplus G_{2}} G \oplus G_{3}$ and $G_{1} \oplus\left(G_{2} \oplus G_{3}\right)$ defined as $\bigcup_{G^{\prime} \in G_{2} \oplus G_{3}} G_{1} \oplus G^{\prime}$ are equal, thus $\oplus_{i=1}^{3} G_{i}=$ $\left(G_{1} \oplus G_{2}\right) \oplus G_{3}=G_{1} \oplus\left(G_{2} \oplus G_{3}\right)$ is well defined. By means of an inductive process it is easy to see that the c.g.s. of k vertex disjoint 2-edge-colored graphs is well defined, commutative and associative.

Notation 6. Let k_{1} and k_{2} be two positive integers, such that $k_{1} \leq k_{2}$. We will denote by $\left[k_{1}, k_{2}\right]$ the set of integers $\left\{k_{1}, k_{1}+1, \ldots, k_{2}\right\}$.

Remark 7. Let $G_{1}, G_{2}, \ldots, G_{k}$ be a collection of pairwise vertex disjoint 2-edgecolored graphs; $G \in \oplus_{i=1}^{k} G_{i}$; and $J \subset[1, k]$. The induced subgraph of G by $\bigcup_{j \in J} V\left(G_{j}\right), H=G\left\langle\bigcup_{j \in J} V\left(G_{j}\right)\right\rangle$, belongs to the c.g.s. of $\left\{G_{j}\right\}_{j \in J}$.
Notation 8. Let $C=x_{0} x_{1} \cdots x_{2 n-1} x_{0}$ be an alternating cycle. For each $v \in$ $V(C)$, we will denote by v^{r} (respectively, v^{b}) the vertex in C such that $v v^{r} \in$ $E(C)$ is red (respectively, $v v^{b} \in E(C)$ is blue). Notice that if $v=x_{i}$ then $\left\{x_{i-1}, x_{i+1}\right\}=\left\{v^{r}, v^{b}\right\}$.

If more than one alternating cycle contains v, we will write v_{C}^{r} (respectively, $\left.v_{C}^{b}\right)$.

Definition. Let G be a 2-edge-colored graph and let $C_{1}=x_{0} x_{1} \cdots x_{2 n-1} x_{0}$ and $C_{2}=y_{0} y_{1} \cdots y_{2 m-1} y_{0}$ be two vertex disjoint alternating cycles. Let $v w$ be an edge with $v \in V\left(C_{1}\right)$ and $w \in V\left(C_{2}\right)$. If $c(v w)=$ red (respectively, $c(v w)=$ blue) we will say that $v w, v^{r} w^{r}$ (respectively, $v w, v^{b} w^{b}$) is a good pair of edges whenever $c\left(v^{r} w^{r}\right)=\operatorname{red}\left(\right.$ respectively, $c\left(v^{b} w^{b}\right)=$ blue $)$.

Whenever there is a good pair of edges between two vertex disjoint alternating cycles C_{1} and C_{2}, we simply say that there is a good pair.

Remark 9. Notice that $v v^{r} w^{r} w v$ (respectively, $v v^{b} w^{b} w v$) is a monochromatic 4 -cycle whenever $v w, v^{r} w^{r}$ (respectively, $v w, v^{b} w^{b}$) is a good pair.
Remark 10. Let G be a 2 -edge-colored graph and let $C_{1}=x_{0} x_{1} \cdots x_{2 n-1} x_{0}$ and $C_{2}=y_{0} y_{1} \cdots y_{2 m-1} y_{0}$ be two vertex disjoint alternating cycles. A pair of edges $x_{s} y_{t}, x_{s^{\prime}} y_{t^{\prime}}$ with $s \in[0,2 n-1], s^{\prime} \in\{s-1, s+1\}, t \in[0,2 m-1], t^{\prime} \in\{t-1, t+1\}$ where all the subscripts are taken modulo $2 n$ and $2 m$, respectively, is a good pair whenever $x_{s} x_{s^{\prime}} y_{t^{\prime}} y_{t} x_{s}$ is a monochromatic 4 -cycle (Figure 4). This is a consequence of the definition of a good pair and Notation 8.

Figure 4. A good pair of edges.
In the study of alternating cycles, the more general case is the one with two colors and so we will work with 2 -edge-colored graphs. In what follows, any graph G will denote a 2-edge-colored graph and $c: E(G) \rightarrow\{$ red, blue $\}$ will denote its edge coloring and we will simply say a graph instead of a 2 -edge-colored graph; a 2-edge-colored cycle C which is properly colored will simply be called an alternating cycle. In our figures curly lines will represent red edges while straight lines will represent blue edges, sometimes we will use dotted lines to represent edges that we ignore to construct a cycle, we will use double-dotted lines for red edges and dotted lines for blue edges.

From now on the subscripts for vertices in $C_{1}=x_{0} x_{1} \cdots x_{2 n-1} x_{0}$ will be taken modulo $2 n$ and for vertices in $C_{2}=y_{0} y_{1} \cdots y_{2 m-1} y_{0}$ will be taken modulo $2 m$.

3. Preliminary Results

In this section we will, first, state two results from [6], Proposition 11 and Lemma

14 , and then we will see a series of results that describe the behavior of exterior edges in a c.g.s. of two 2-edge-colored graphs.

Proposition 11. Let C_{1} and C_{2} be two disjoint alternating cycles in a graph G. If there is a good pair of edges between them, then there is an alternating cycle with the vertex set $V\left(C_{1}\right) \cup V\left(C_{2}\right)$ (Figure 5).

Figure 5. A cycle using a good pair of edges.

Notation 12. Let C be an alternating cycle, given an arbitrary but fixed description of its vertices as $C=x_{0} x_{1} \cdots x_{2 n-1} x_{0}$, we will say that two vertices $x, y \in V(C)$ are congruent modulo 2 , whenever their subscripts in C are congruent modulo 2 , and we will write $x \equiv y(\bmod 2)\left(\right.$ or $x \equiv_{C} y(\bmod 2)$, when x and y belong to more than one cycle).

Notation 13. Let $G_{1}, G_{2}, \ldots, G_{k}$ be a collection of pairwise vertex disjoint 2-edge-colored graphs and take G in $\oplus_{i=1}^{k} G_{i}$. For each $v \in V(G)$, we will denote by $d_{r}(v)$ (respectively, $d_{b}(v)$) the number of red (respectively, blue) exterior edges of G incident with v.

Lemma 14. Let $C_{1}=x_{0} x_{1} \cdots x_{2 n-1} x_{0}$ and $C_{2}=y_{0} y_{1} \cdots y_{2 m-1} y_{0}$ be two vertex disjoint alternating cycles and G be a graph in $C_{1} \oplus C_{2}$ such that G has no good pair. For each vertex $w \in V\left(C_{i}\right)$, if $d_{r}(w)=t$ and $d_{b}(w)=\left|V\left(C_{3-i}\right)\right|-t$, then $d_{r}(x)=\left|V\left(C_{3-i}\right)\right|-t=d_{b}(w)$ and $d_{b}(x)=t=d_{r}(w)$ for each $x \in\left\{w^{r}, w^{b}\right\}$. Furthermore, if $w, x \in V\left(C_{i}\right)$, then

$$
d_{r}(x)= \begin{cases}d_{r}(w) & \text { if and only if } w \equiv x(\bmod 2) \\ \left|V\left(C_{3-i}\right)\right|-d_{r}(w) & \text { if and only if } w \not \equiv x(\bmod 2)\end{cases}
$$

In what follows we will write w.r.t. instead of "with respect to".
Definition. Let $\mathcal{F}^{\prime}=\{C, H\}$ be a factor in a graph G, where C is an alternating cycle and H is a subgraph. A vertex $v \in V(C)$ is red-singular (blue-singular) w.r.t. H, if $\{v u \in E(G) \mid u \in V(H)\}$ is not empty and all the edges in $\{v u \in$ $E(G) \mid u \in V(H)\}$ are red (blue); v is singular w.r.t. H if it is either red-singular or blue-singular w.r.t. H.

The color of the exterior edges incident with a singular vertex v w.r.t. H, will be called the singularity of v and it will be denoted by $s_{H}(v)$.

Definition. Let $\mathcal{F}^{\prime}=\{C, H\}$ be a factor in a graph G, where C is an alternating cycle and H is a subgraph. The cycle C is singular w.r.t. H, whenever the vertices in C are alternatively red-singular and blue-singular w.r.t. H.

Remark 15. Let G_{1} and G_{2} be two vertex disjoint graphs with alternating Hamiltonian cycles, C_{1} and C_{2}, respectively. Let G be a graph in $G_{1} \oplus G_{2}$ such that C_{i} is singular w.r.t. G_{3-i}. Then for each $x \in V\left(G_{3-i}\right), x$ is non-singular w.r.t. G_{i}. In particular C_{3-i} is non-singular w.r.t. G_{i}.

Lemma 16. Let $C_{1}=x_{0} x_{1} \cdots x_{2 n-1} x_{0}$ and $C_{2}=y_{0} y_{1} \cdots y_{2 m-1} y_{0}$ be two vertex disjoint alternating cycles, and $G \in C_{1} \oplus C_{2}$. Then C_{i} is singular w.r.t. G_{3-i}, for some $i \in\{1,2\}$, if and only if C_{i} has at least one singular vertex w.r.t. G_{3-i} and G has no good pair.

Proof. Assume w.l.o.g. that C_{1} is singular w.r.t. G_{2}. Suppose by contradiction that there is a good pair $x_{s} y_{r}, x_{s^{\prime}} y_{r^{\prime}}$ with $s \in[0,2 n-1], s^{\prime} \in\{s-1, s+1\}$, $r \in[0,2 m-1], r^{\prime} \in\{r-1, r+1\}$, as in Remark 10, and $C=x_{s} x_{s^{\prime}} y_{r^{\prime}} y_{r} x_{s}$ is a monochromatic cycle (w.l.o.g., red). So $d_{r}\left(x_{s}\right) \geq 1$ and $d_{r}\left(x_{s^{\prime}}\right) \geq 1$, contradicting the singularity of C_{1}.

The converse follows directly from Lemma 14.
Given two disjoint alternating-pancyclic graphs G_{1} and G_{2}, a graph $G \in G_{1} \oplus$ G_{2} is not necessarily an alternating-pancyclic graph. In fact, we may construct a large family of alternating-pancyclic 2 -edge-colored graphs and c.g.s.' members of this family that are not alternating-pancyclic graphs. To prove this assertion, we will use the next proposition.

Proposition 17. Let G_{1} be a graph with an alternating Hamiltonian cycle, $C_{1}=$ $x_{0} x_{1} \cdots x_{2 n-1} x_{0}, G_{2}$ a graph and $G \in G_{1} \oplus G_{2}$ with edge-coloring c. If C_{1} is singular w.r.t. G_{2} in G and for each edge $x_{i} x_{l} \in E\left(G_{1}\right) \backslash E\left(C_{1}\right)$ satisfying $i \equiv l$ $(\bmod 2)$ we have that $c\left(x_{i} x_{l}\right)=s_{G_{2}}\left(x_{i}\right)$, then G has no alternating cycle containing vertices in both G_{1} and G_{2}.

Proof. Suppose by contradiction that there is an alternating cycle γ in G such that $V(\gamma) \cap V\left(C_{1}\right) \neq \emptyset$ and $V(\gamma) \cap V\left(G_{2}\right) \neq \emptyset$.

Observe that γ contains an alternating subpath of length at least 1 which is contained in G_{1}. Take $u \in V(\gamma) \cap V\left(C_{1}\right)$. Since u is singular w.r.t. G_{2}, at least one in $\left\{u_{\gamma}^{r}, u_{\gamma}^{b}\right\}$ belongs to G_{1} and thus there is a path of length one contained in G_{1}.

Let $P=u_{0} u_{1} \cdots u_{r}$ be a longest alternating subpath of γ contained in G_{1}. Let v_{0} be the predecessor of u_{0} in γ and v_{r} be the successor of u_{r} in γ belonging
to G_{2}. Observe that $P^{\prime}=v_{0} u_{0} u_{1} \cdots u_{r}$ and $P^{\prime \prime}=u_{0} u_{1} \cdots u_{r} v_{r}$ are both subpaths of γ and they are alternating.

We may assume w.l.o.g. that u_{0} is red-singular and thus $v_{0} u_{0}$ is red and $u_{0} u_{1}$ is blue. Since P is alternating, $u_{i} u_{i+1}$ is blue if and only if i is even and it is red if and only if i is odd, for each $i \in[0, r-1]$. Moreover, as u_{0} is red-singular and C_{1} is singular w.r.t. G_{2} we have that u_{i} is red-singular if and only if $i \equiv 0$ $(\bmod 2)$ and it is blue singular otherwise. Hence, for each $i \in[0, r-1]: u_{i+1}$ is blue-singular and $u_{i} u_{i+1}$ is blue if and only if i is even; and u_{i+1} is red-singular and $u_{i} u_{i+1}$ is red if and only if i is odd.

Case 1. r is even. Then $r-1$ is odd and thus u_{r} is red-singular and $u_{r-1} u_{r}$ is red. As u_{r} is red-singular, $u_{r} v_{r}$ is red, contradicting that $P^{\prime \prime}$ is alternating.

Case 2. r is odd. Then $r-1$ is even and thus u_{r} is blue-singular and $u_{r-1} u_{r}$ is blue. As u_{r} is blue-singular, $u_{r} v_{r}$ is blue, contradicting $P^{\prime \prime}$ is alternating.

Hence, G has no cycle containing vertices in both G_{1} and G_{2}.
In order to construct the example of a c.g.s. of two alternating-pancyclic graphs which is not an alternating-pancyclic graph, we define the following family of complete graphs. First, let $n \geq 2$ and $C_{2 n}=x_{0} x_{1} \cdots x_{2 n-1} x_{0}$ be an alternating cycle such that $x_{i} x_{i+1}$ is red whenever i is even and it is blue whenever i is odd.

Second, let $\mathcal{A} \mathcal{P}_{2 n}$ be the family of 2-edge-colored complete graphs G, such that $V(G)=V_{2 n}=\left\{x_{0}, x_{1}, \ldots, x_{2 n-1}\right\}$ and $E(G)$ satisfies: (i) $E\left(C_{2 n}\right) \subset E(G)$; (ii) $G\left\langle\left\{x_{i} \mid i \equiv 0(\bmod 2)\right\}\right\rangle$ is a complete red graph and $G\left\langle\left\{x_{i} \mid i \equiv 1(\bmod 2)\right\}\right\rangle$ is a complete blue graph, this is, an edge $x_{i} x_{j} \in E(G)$ is red whenever $i \equiv j \equiv 0$ $(\bmod 2)$ and it is blue whenever $i \equiv j \equiv 1(\bmod 2)$; (iii) $x_{0} x_{2 i+1}$ is blue for each $i \in[1, n-1]$; (iv) the remaining edges can be colored in any way.

The set $\mathcal{A} \mathcal{P}_{2 n}$ is not empty and it consists of alternating-pancyclic graphs, as $x_{0} x_{1} \cdots x_{2 i+1} x_{0}$ is an alternating cycle of length $2 i+2$ for each $i \in[1, n-1]$. Set $\mathcal{A P}=\bigcup_{n \geq 2} \mathcal{A} \mathcal{P}_{2 n}, \mathcal{A P}$ is a countable family of alternating-pancyclic graphs with at least one graph of order $2 n$ for each $n \geq 2$ (Figure 6).

Remark 18. Let $G_{1} \in \mathcal{A P}$ of order $2 n, G_{2}$ be an alternating-pancyclic graph, and $G \in G_{1} \oplus G_{2}$. If $C_{2 n}$ is singular w.r.t. G_{2} in G with x_{0} being a red-singular vertex w.r.t. G_{2}, then G is not alternating-pancyclic. Moreover, G has no alternating cycle with vertices in both G_{1} and G_{2}.

Proof. Notice that G satisfies the hypothesis of Proposition 17. $C_{2 n}$ is an alternating Hamiltonian cycle in G_{1} which is singular w.r.t. G_{2}, and so, $C_{2 n}$ is singular w.r.t. an alternating Hamiltonian cycle of G_{2}; since x_{0} is red-singular, x_{i} is red-singular whenever i is even and it is blue-singular whenever i is odd, $i \in[0,2 n-1]$; each edge $x_{i} x_{l} \in E\left(G_{1}\right) \backslash E\left(C_{2 n}\right)$ satisfying $i \equiv l(\bmod 2)$ is red whenever i is even and it is blue whenever i is odd, by definition of $\mathcal{A} \mathcal{P}_{2 n}$, this
is $c\left(x_{i} x_{l}\right)=s_{G_{2}}\left(x_{i}\right)$. Therefore, G has no alternating cycle containing vertices in both G_{1} and G_{2}.

Figure 6. Examples of alternating-pancyclic graphs in $\mathcal{A P}: H_{1} \in \mathcal{A P}_{10}$ and $H_{2} \in \mathcal{A P}_{8}$.
As a consequence of Proposition 17, we have the following: Let C_{1} and C_{2} be two vertex disjoint alternating cycles and $G \in C_{1} \oplus C_{2}$. If C_{i} is singular w.r.t. C_{3-i} in G, then G has no alternating cycle with vertices in both C_{1} and C_{2}, in particular, G has no alternating Hamiltonian cycle. In the next result, we will see that if we add a particular kind of edge between certain vertices in C_{i}, then G will become an alternating-pancyclic graph.
Proposition 19. Let G_{1} and G_{2} be two graphs with alternating Hamiltonian cycles, $C_{1}=x_{0} x_{1} \cdots x_{2 n-1} x_{0}$ and $C_{2}=y_{0} y_{1} \cdots y_{2 m-1} y_{0}$, respectively, and $G \in$ $G_{1} \oplus G_{2}$ with edge-coloring c. If C_{1} is singular w.r.t. G_{2} and there exists an edge $x_{s} x_{t} \in E\left(G_{1}\right)$ such that $s \equiv t(\bmod 2)$ and $c\left(x_{s} x_{t}\right) \neq s_{G_{2}}\left(x_{s}\right)$, then G is an alternating-pancyclic graph. Moreover, for each even length in $[4,2 n+2 m]$ and each $j \in[0,2 m-1]$, there is an alternating cycle passing through $x_{s} x_{t}$ and y_{j}.
Proof. Suppose w.l.o.g. that $x_{s} x_{t}$ is red.
Since C_{1} is singular w.r.t. G_{2} and $s \equiv t(\bmod 2)$, we have that x_{s} and x_{t} have the same singularity, this is $s_{G_{2}}\left(x_{s}\right)=s_{G_{2}}\left(x_{t}\right)$. As red $=c\left(x_{s} x_{t}\right) \neq s_{G_{2}}\left(x_{s}\right)$, we obtain that x_{s} and x_{t} are both blue-singular vertices w.r.t. G_{2}.

Assume w.l.o.g. that $y_{0} y_{1}$ is red, then $y_{2 j} y_{2 j+1}$ is red and $y_{2 j+1} y_{2 j+2}$ is blue for each $j \in[0, m-1]$, as C_{2} is alternating. Therefore, the alternating paths $\rho_{h}^{j}=y_{2 j} y_{2 j+1} \cdots y_{2 j+2 h+1}$ have odd length $2 h+1$ starting and ending at red edges, for each $h \in[0, m-1]$ and each $j \in[0, m-1]$. Then, for each $h \in[0, m-1]$ and each $j \in[0, m-1]$, the cycle $\alpha_{h}^{j}=\rho_{h}^{j} \cup y_{2 j+2 h+1} x_{s} x_{t} y_{2 j}$ is alternating with length $l\left(\alpha_{h}^{j}\right)=2 h+4, x_{s} x_{t} \in E\left(\alpha_{h}\right)$ and $y_{2 j}, y_{2 j+1} \in V\left(\alpha_{h}\right)$ for each $j \in[0, m-1]$. So, for each even length l in $[4,2 m+2]$ and each $j \in[0,2 m-1]$, G contains an alternating cycle of length l passing through $x_{s} x_{t}$ and y_{j}.

Suppose w.l.o.g. that $s<t$. Let P_{1} and P_{2} be the two alternating subpaths of C_{1} determined by x_{s} and x_{t}, namely $P_{1}=x_{s} x_{s+1} \cdots x_{t}$ and $P_{2}=x_{t} x_{t+1} \cdots x_{s}$. Since $s \equiv t(\bmod 2)$, we have that P_{1} and P_{2} have even length and they start at edges of the same color; assume w.l.o.g. that $c\left(x_{s} x_{s+1}\right)=c\left(x_{t} x_{t+1}\right)=$ blue, then we have

- $x_{s+2 i} x_{s+2 i+1}$ is blue for each $i \in\left[0, \frac{t-s}{2}-1\right]$,
- $x_{s+2 i-1} x_{s+2 i}$ is red for each $i \in\left[1, \frac{t-s}{2}\right]$,
- $x_{t+2 i} x_{t+2 i+1}$ is blue for each $i \in\left[0, n-\frac{t-s}{2}-1\right]$,
- $x_{t+2 i-1} x_{t+2 i}$ is red for each $i \in\left[1, n-\frac{t-s}{2}\right]$,
- $x_{s+2 i-1}$ is red-singular for each $i \in\left[1, \frac{t-s}{2}\right]$,
- $x_{t+2 i-1}$ is red-singular for each $i \in\left[1, n-\frac{t-s}{2}\right]$.

Let $\rho=y_{1} y_{2} \cdots y_{2 m-1} y_{0}$ be the alternating path of length $2 m-1$ obtained from C_{2} by removing the red edge $y_{0} y_{1}$, and consider the alternating paths $\sigma_{i}=x_{s+2 i-1} x_{s+2 i-2} \cdots x_{s+1} x_{s}$, for each $i \in\left[1, \frac{t-s}{2}\right]$, and $\tau_{j}=x_{t} x_{t+1} \cdots x_{t+2 j-1}$, for each $j \in\left[1, n-\frac{t-s}{2}\right]$. Each of these paths has odd length and its end edges are both blue; the σ_{i} 's start at a red-singular vertex and end at a blue-singular vertex and the τ_{j} 's start at a blue-singular vertex and end at a red-singular vertex (Figure 7).

Figure 7. G in the proof of Proposition 19.
Hence, for each $i \in\left[1, \frac{t-s}{2}\right]$ and each $j \in\left[1, n-\frac{t-s}{2}\right]$, the cycle $\beta\left(\sigma_{i}, \tau_{j}\right)=$ $\rho \cup y_{0} x_{s+2 i-1} \cup \sigma_{i} \cup x_{s} x_{t} \cup \tau_{j} \cup x_{t+2 j-1} y_{1}$ is alternating, has length $l\left(\beta\left(\sigma_{i}, \tau_{j}\right)\right)=$ $(2 m-1)+1+(2 i-1)+1+(2 j-1)+1=2 m+2 i+2 j$ and passes through $x_{s} x_{t}$ and y_{j} for each $j \in[0,2 m-1]$.

Corollary 20. Let G_{1} and G_{2} be two graphs with alternating Hamiltonian cycles, $C_{1}=x_{0} x_{1} \cdots x_{2 n-1} x_{0}$ and $C_{2}=y_{0} y_{1} \cdots y_{2 m-1} y_{0}$, respectively, and $G \in G_{1} \oplus G_{2}$ with edge-coloring c. If C_{1} is singular w.r.t. C_{2} and, for each $x_{s} \in V\left(C_{1}\right)$, there exists an edge $x_{s} x_{t} \in E\left(G_{1}\right)$ such that $s \equiv t(\bmod 2)$ and $c\left(x_{s} x_{t}\right) \neq s_{C_{2}}\left(x_{s}\right)$, then G is a vertex alternating-pancyclic graph.

As a consequence of Propositions 17 and 19 we have the next nice result.
Corollary 21. Let G_{1} and G_{2} be two vertex disjoint graphs with alternating Hamiltonian cycles, $C_{1}=x_{0} x_{1} \cdots x_{2 n-1} x_{0}$ and $C_{2}=y_{0} y_{1} \cdots y_{2 m-1} y_{0}$, respectively, and $G \in G_{1} \oplus G_{2}$ with edge-coloring c. If C_{1} is singular w.r.t. G_{2}, then either, G has no alternating cycle containing vertices in both G_{1} and G_{2}, or G is an alternating-pancyclic graph.

Proof. If there is an edge $x_{s} x_{t} \in E\left(G_{1}\right) \backslash E\left(C_{1}\right)$ such that $s \equiv t(\bmod 2)$ and $c\left(x_{s} x_{t}\right) \neq s_{G_{2}}\left(x_{s}\right)$ then, by Proposition $19, G$ is alternating-pancyclic.

If there is no such an edge then, by Proposition $17, G$ has no alternating cycle containing vertices in both C_{1} and C_{2}.

If G_{1} and G_{2} are alternating Hamiltonian graphs and $G \in G_{1} \oplus G_{2}$ has a good pair, then we know G contains an alternating Hamiltonian cycle, by Proposition 11. However, we can say more when $\left|V\left(G_{1}\right)\right|=2^{s} p$, where s is a positive integer and p is a prime number, and there are two special vertices in G_{1}.

Proposition 22. Let G_{1} and G_{2} be two vertex disjoint graphs with alternating Hamiltonian cycles, $C_{1}=x_{0} x_{1} \cdots x_{2 n-1} x_{0}$ and $C_{2}=y_{0} y_{1} \cdots y_{2 m-1} y_{0}$, respectively, where $2 n=2^{s} p$ with s a positive integer and p a prime number, and $G \in G_{1} \oplus G_{2}$ with edge-coloring c. If C_{1} is non-singular w.r.t. C_{2} and there exist two singular vertices $x, w \in V\left(C_{1}\right)$ such that $x w \in E\left(G_{1}\right) \backslash E\left(C_{1}\right)$, $s_{C_{2}}(x)=s_{C_{2}}(w)$ and $c(x w) \neq s_{C_{2}}(x)$, then G contains alternating cycles of every even length in $[4,2 n+2 m] \backslash\left\{2 m+j p+1 \mid j \in\left[1,2^{s}\right]\right.$ and $\left.j \equiv 1(\bmod 2)\right\}$, when $p \neq 2$. And G is an alternating-pancyclic graph, whenever $p=2$.
Proof. First, notice that there is a good pair. Otherwise, Lemma 16 and the fact that x is a singular vertex w.r.t. C_{2} imply C_{1} is singular w.r.t. C_{2}, a contradiction. So, Proposition 11 implies that there is an alternating cycle of length $2 n+2 m$ in G.

Now we proceed to prove the existence of the other alternating cycles which are not Hamiltonian.

Assume w.o.l.g. that x and w are both red-singular vertices w.r.t. C_{2}, and $y_{0} y_{1}$ is blue.

As $y_{0} y_{1}$ is blue, then for each $i \in[1, m]$, the path $P_{i}=y_{0} y_{1} \cdots y_{2 i-1}$, is alternating of odd length $2 i-1$ and so it starts and ends at blue edges. Hence, the cycle $\gamma_{i}=x y_{0} \cup P_{i} \cup x_{2 i-1} w x$ is alternating of length $2 i+2$.

Let $L=2[2, n-1]$, this is, L is the set of all even numbers between 4 and $2 n-2$ and let $L_{p}=\left\{j p+1 \mid j \in\left[1,2^{s}\right]\right.$ and $\left.j \equiv 1(\bmod 2)\right\}$. Observe that, whenever $p=2$ the set L_{p} is a set of odd integers, so $L \backslash L_{p}=L$, and whenever p is odd L_{p} is a set of even integers with 2^{s-1} elements.

We will prove that for each $h \in L \backslash L_{p}, G$ contains an alternating cycle of length $2 m+h$.

Proceeding by contradiction, suppose that there is an $h \in L \backslash L_{p}$ such that G has no alternating cycle of length $2 m+h$.

Assume w.l.o.g. that $x=x_{0}$ and $x_{0} x_{1}$ is blue. Since h is even and C_{1} is alternating, then the path $Q_{1}=x_{0} x_{1} \cdots x_{h-1}$ is also alternating, has odd length $h-1$ and so it starts and ends at blue edges. We will prove that x_{h-1} is bluesingular w.r.t. C_{2}.

If there is a vertex $y \in V\left(C_{2}\right)$ such that $x_{h-1} y$ is red, then taking R_{1} to be the $y y^{r}$-subpath of C_{2} obtained from C_{2} by removing the red edge $y y^{r}$, we may construct the cycle $\alpha_{1}=Q_{1} \cup x_{h-1} y \cup R_{1} \cup y^{r} x_{0}$ which is alternating and has length $l\left(\alpha_{1}\right)=h-1+1+2 m-1+1=2 m+h$, a contradiction. Hence, x_{h-1} is a blue-singular vertex w.r.t. C_{2}.

Now, $x_{h-1} x_{h}$ is red. Then the alternating path $Q_{2}=x_{h-1} x_{h} \cdots x_{2(h-1)}$ which has odd length $h-1$ starts and ends at red edges. We will prove that $x_{2(h-1)}$ is red-singular w.r.t. C_{2}.

If there is a vertex $y \in C_{2}$ such that $x_{2(h-1)} y$ is blue, then taking R_{2} to be the $y y^{b}$-subpath of C_{2} obtained from C_{2} by removing the blue edge $y y^{b}$, we may construct the cycle $\alpha_{2}=Q_{2} \cup x_{2(h-1)} y \cup R_{2} \cup y^{b} x_{h-1}$ which is alternating and has length $l\left(\alpha_{2}\right)=h-1+1+2 m-1+1=2 m+h$, a contradiction. Hence, $x_{2(h-1)}$ is a red-singular vertex w.r.t. C_{2}.

Arguing this way we obtain the sequence, $\left\{x_{t(h-1)}\right\}_{t \geq 1}$, of singular vertices in C_{1}, such that $x_{t(h-1)}$ is red-singular if t is even and blue-singular if t is odd.

Observe that, if $l_{h}=\frac{\operatorname{lcm}\left(2^{s} p, h-1\right)}{h-1}$, then $x_{0}, x_{h-1}, \ldots, x_{\left(l_{h}-1\right)(h-1)}$ are all different vertices. Recall that $h \in L \backslash L_{p}$ and thus h is even and $h \not \equiv 1(\bmod p)$, which means $h-1$ is odd and $p \nmid h-1$. Hence, $\operatorname{lcm}\left(2^{s} p, h-1\right)=2^{s} p(h-1)$ and thus $l_{h}=2^{s} p$. Therefore, $x_{0}, x_{h-1}, \ldots, x_{\left(l_{h}-1\right)(h-1)}$ are $l_{h}=2^{s} p$ different singular vertices in C_{1}, such that $x_{t(h-1)}$ is red-singular if t is even and blue-singular if t is odd. As $h-1$ is odd, $x_{t(h-1)}$ is red-singular if $t(h-1)$ is even and blue-singular if $t(h-1)$ is odd. This is, C_{1} is singular w.r.t. C_{2}, a contradiction.

Then, G contains alternating cycles of length $2 m+h$, for each $h \in L \backslash L_{p}$, which concludes the proof.

Next we will prove a proposition that simplifies the proof of Theorem 4, which is one of our two main theorems.

Proposition 23. Let $G_{1}, G_{2}, \ldots, G_{k}$ be a collection of pairwise vertex disjoint graphs with Hamiltonian alternating cycles $C_{1}, C_{2}, \ldots, C_{k}$, respectively, and $G \in$ $\oplus_{i=1}^{k} G_{i}$. If there is a sequence $\left\{i_{j}\right\}_{j=1}^{k}$ such that $C_{i_{j}}$ has a red-singular vertex w.r.t. $C_{i_{j+1}}$ for all $j \in[1, k]$ and where $C_{i_{k+1}}=C_{i_{1}}$, then G has a Hamiltonian alternating cycle.

Proof. Suppose w.l.o.g. that, for each $i \in[1, k], C_{i}$ has a red-singular vertex w.r.t. C_{i+1}, where $C_{k+1}=C_{1}$.

For each $i \in[1, k]$, let $v_{i} \in V\left(C_{i}\right)$ be a red-singular vertex w.r.t. C_{i+1}. Recall that we denoted by v_{i}^{r} the vertex in C_{i} such that $v_{i} v_{i}^{r} \in E\left(C_{i}\right)$ is red.

Consider the paths that result by removing the edges $v_{i} v_{i}^{r}$ from the cycles C_{i}, namely $P_{i}=v_{i}^{r} C v_{i}$, which are k alternating paths that start and end with blue edges.

Since $v_{i} \in V\left(C_{i}\right)$ is red-singular w.r.t. C_{i+1}, we have $e_{i}=v_{i} v_{i+1}^{r}$ is red for each $i \in[1, k]$, where $v_{k+1}^{r}=v_{1}^{r}$. Therefore, $\gamma=P_{1} \cup e_{1} \cup P_{2} \cup e_{2} \cup \cdots \cup e_{k-1} \cup$ $P_{k} \cup e_{k}$ is a Hamiltonian alternating cycle (Figure 8).

Figure 8. The cycle γ in the proof of Proposition 23.
Notice that the assertion in Proposition 23 holds if we change the hypothesis for red-singular vertices to blue-singular vertices.

4. Main Results-Conclusions

In this section we will see which graphs in the c.g.s. of two alternating Hamiltonian 2-edge-colored graphs are vertex alternating-pancyclic graphs, alternatingpancyclic graphs or, simply, alternating Hamiltonian graphs.

Our main result is Theorem 3, which is consequence of Propositions 17 and 19, and Theorem 1. Next we prove Theorem 3 (Figure 3).

Proof of Theorem 3. (i) Suppose C_{i} is singular w.r.t. C_{3-i} for some $i \in\{1,2\}$. Hence, by Corollary 21, G is either alternating-pancyclic or it has no alternating cycle containing vertices in both G_{1} and G_{2}.
(ii) Suppose C_{i} is non-singular w.r.t. C_{3-i} for each $i \in\{1,2\}$. If there is a good pair of edges then, by Proposition 11, G contains an alternating Hamiltonian cycle. And if there is no good pair then, for each $i \in\{1,2\}, C_{i}$ contains a nonsingular vertex w.r.t. C_{3-i}. Otherwise, each vertex $v \in V\left(C_{i}\right)$ is singular w.r.t. C_{3-i}, for some $i \in\{1,2\}$. By Lemma 14, the exterior edges incident with v have different color from the exterior edges incident with v^{r} and v^{b}, for each $v \in V\left(C_{i}\right)$. Hence, C_{i} must be singular w.r.t. C_{3-i}, a contradiction.

Therefore, G satisfies the hypothesis of Theorem 1 and thus G is a vertex alternating-pancyclic graph.

Observe that in Theorem 3 three out of four possibilities imply that G is an alternating Hamiltonian graph and two possibilities in the same theorem assert that the graph is alternating-pancyclic, so we have Corollary 24. We will extend the results of Corollary 24 for k summands.

Corollary 24. Let G_{1} and G_{2} be two vertex disjoint graphs with alternating Hamiltonian cycles, C_{1} and C_{2}, and $G \in G_{1} \oplus G_{2}$.
(i) If G contains no good pair and G contains an alternating cycle γ such that $V(\gamma) \cap V\left(G_{i}\right) \neq \emptyset$ for each $i \in\{1,2\}$, then G is an alternating-pancyclic graph.
(ii) G contains an alternating cycle γ such that $V(\gamma) \cap V\left(G_{i}\right) \neq \emptyset$ for each $i \in\{1,2\}$ if and only if G is an alternating Hamiltonian graph.

Next we prove a result that will be a useful tool in the next part, it is a consequence of Theorem 1, Propositions 11 and 17, and Lemma 16.

Corollary 25. Let G_{1} and G_{2} be two vertex disjoint graphs with alternating Hamiltonian cycles, C_{1} and C_{2}, respectively; and $G \in G_{1} \oplus G_{2}$. If G has no alternating Hamiltonian cycle, then C_{i} is singular w.r.t. C_{3-i} for some $i \in\{1,2\}$.

Proof. Suppose that C_{i} is non-singular w.r.t. C_{3-i} for each $i \in\{1,2\}$.
If there is a good pair in G, then Proposition 11 asserts that G is an alternating Hamiltonian graph.

So, we may assume that G has no good pair. Observe that, for each $i \in\{1,2\}$, C_{i} cannot have singular vertices by Lemma 16 . Hence, C_{i} contains at least one non-singular vertex for each $i \in\{1,2\}$. It follows from Theorem 1 that G is vertex alternating-pancyclic, in particular G contains an alternating cycle of length $2 n+2 m=|V(G)|$.

From the definition of good pair and Remarks 9 and 10 we obtain the following remark which allow us to define a generalization of a good pair [6].

Remark 26. Let G_{1} and G_{2} be two vertex disjoint graphs, $\alpha_{1}=x_{0} x_{1} \cdots x_{2 n-1} x_{0}$ and $\alpha_{2}=y_{0} y_{1} \cdots y_{2 m-1} y_{0}$ be two alternating cycles in G_{1} and G_{2}, respectively,
and $G \in G_{1} \oplus G_{2}$. If $x_{s} y_{t}$ and $y_{t^{\prime}} x_{s^{\prime}}$ is a good pair of edges, then $\mathcal{C}=x_{s} x_{s^{\prime}} y_{t^{\prime}} y_{t} x_{s}$ is a monochromatic 4-cycle such that its edges are alternatively in E_{\oplus} and $E\left(\alpha_{1}\right) \cup$ $E\left(\alpha_{2}\right)$, namely $x_{s^{\prime}} y_{t^{\prime}}, y_{t} x_{s} \in E_{\oplus}, x_{s} x_{s^{\prime}} \in E\left(\alpha_{1}\right)$ and $y_{t^{\prime}} y_{t} \in E\left(\alpha_{2}\right)$.
Definition. Let $G_{1}, G_{2}, \ldots, G_{k}$ be a collection of pairwise vertex disjoint 2-edgecolored graphs, $G \in \oplus_{i=1}^{k} G_{i}$. A monochromatic 4 -cycle $\mathcal{C}=v_{0} v_{1} v_{2} v_{3} v_{0}$ in G will be called a good cycle when either $v_{0} v_{1}, v_{2} v_{3} \subset E_{\oplus}$ or $v_{1} v_{2}, v_{3} v_{0} \subset E_{\oplus}$, or both. This is, when two opposite edges in \mathcal{C} are exterior.

Now we prove Theorem 4.
Proof of Theorem 4. (i) We will prove the assertion by induction on k. We will first prove the assertion for $k=2,3$.

Suppose $k=2$. If C_{i} is singular w.r.t. C_{3-i}, for some $i \in\{1,2\}$. Then, by Theorem 3, we have either G has no alternating cycle containing vertices in both G_{1} and G_{2}, or G is alternating-pancyclic. As G contains an alternating cycle γ such that $V(\gamma) \cap V\left(G_{i}\right) \neq \emptyset$ for each $i \in\{1,2\}$, it follows that G is an alternating-pancyclic graph.

If C_{i} is non-singular w.r.t. C_{3-i}, for each $i \in\{1,2\}$. Then, by Theorem 3, we have either G contains a good pair and it is an alternating Hamiltonian graph, or G has no good pair and it is a vertex alternating-pancyclic graph. As G has no good cycle, G has no good pair w.r.t. C_{1} and C_{2}. Otherwise G would contain a good cycle by Remark 26. Hence, G is a vertex alternating-pancyclic graph.

Suppose $k=3$. If there exist $i, j \in[1,3]$ with $i \neq j$ such that the induced graph $H_{i j}=G\left\langle V\left(G_{i}\right) \cup V\left(G_{j}\right)\right\rangle$ contains an alternating cycle α such that $V(\alpha) \cap$ $V\left(G_{i}\right) \neq \emptyset$ and $V(\alpha) \cap V\left(G_{j}\right) \neq \emptyset$. Then, by the base case $k=2, H_{i j}$ is an alternating-pancyclic graph, since $H_{i j}$ contains no good cycle (as it is a subgraph of G) and contains α. In particular, $H_{i j}$ contains an alternating Hamiltonian cycle. Notice that $G \in G_{h} \oplus H_{i j}$, where $h \in[1,3] \backslash\{i, j\}$, each summand is an alternating Hamiltonian graph and G has no good cycle, then G is an alternatingpancyclic graph, by the base case $k=2$.

If, for each pair of different indices $i, j \in[1,3]$, the induced graph $H_{i j}=$ $G\left\langle V\left(G_{i}\right) \cup V\left(G_{j}\right)\right\rangle$ contains no alternating cycle containing vertices in both G_{i} and G_{j}, and thus it has no alternating Hamiltonian cycle. Then, by the contrapositive of Corollary 25 , either C_{i} is singular w.r.t. C_{j} or C_{j} is singular w.r.t. C_{i}. There are two cases (w.l.o.g.).

Let $C_{1}=x_{0} x_{1} \cdots x_{2 n-1} x_{0}, C_{2}=y_{0} y_{1} \cdots y_{2 m-1} y_{0}$ and $C_{3}=w_{0} w_{1} \cdots w_{2 l-1} w_{0}$ be the alternating Hamiltonian cycles of G_{1}, G_{2} and G_{3}, respectively, and assume w.l.o.g. that $x_{0} x_{1}, y_{0} y_{1}$ and $w_{0} w_{1}$ are blue; then $x_{i} x_{i+1}, y_{i} y_{i+1}$ and $w_{i} w_{i+1}$ are blue whenever $i \equiv 0(\bmod 2)$ and they are red whenever $i \equiv 1(\bmod 2)$.

Case 1. C_{i} is singular w.r.t. C_{i+1} for each $i \in[1,3]$, where $C_{4}=C_{1}$. Suppose w.l.o.g. that x_{0}, y_{0} and w_{0} are red-singular vertices w.r.t. C_{2}, C_{3} and C_{1}, respectively.

Then x_{i}, y_{i} and w_{i} are red-singular vertices w.r.t. C_{2}, C_{3} and C_{1}, respectively, whenever $i \equiv 0(\bmod 2)$ and blue-singular otherwise.

Case 2. C_{i} is singular w.r.t. C_{j} whenever $1 \leq i<j \leq 3$. Take $v_{1} \in V\left(C_{1}\right)$. By the definition of singular cycle, we have that v_{1} is singular w.r.t. C_{i} for each $i \in\{2,3\}$. If $s_{C_{2}}\left(v_{1}\right)=s_{C_{3}}\left(v_{1}\right)$, then v_{1} is singular w.r.t. $G_{0}=G\left\langle V\left(G_{2}\right) \cup V\left(G_{3}\right)\right\rangle$, and thus C_{1} is singular w.r.t. G_{0}, as the color of the singularities of vertices in C_{1} alternate and C_{1} is singular w.r.t. C_{i} for each $i \in\{2,3\}$.

As $G \in G_{1} \oplus G_{0}$ and G contains a cycle γ such that $V(\gamma) \cap V\left(G_{i}\right) \neq \emptyset$ for each $i \in[1,3]$, we have by contrapositive of Proposition 17 that it must exist an edge $x y \in E\left(G_{1}\right) \backslash E\left(C_{1}\right)$ such that $x \equiv y(\bmod 2)$ in C_{1} and $c(x y) \neq s_{G_{0}}(x)$. Observe that G_{1} is singular w.r.t. $G_{2}, s_{G_{0}}(v)=s_{G_{2}}(v)$ for each $v \in V\left(G_{1}\right)$ and thus the edge $x y \in E\left(G_{1}\right) \backslash E\left(C_{1}\right)$ is such that $x \equiv y(\bmod 2)$ in C_{1} and $c(x y) \neq s_{G_{2}}(x)$. Then if we consider the induced subgraph by $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ in G, namely $H_{12}=G\left\langle V\left(G_{1}\right) \cup V\left(G_{2}\right)\right\rangle$, it satisfies the hypothesis of Proposition 19. Hence, H_{12} is an alternating-pancyclic graph and thus it contains an alternating Hamiltonian cycle, contradicting our assumption.

Then, $s_{C_{2}}\left(v_{1}\right) \neq s_{C_{3}}\left(v_{1}\right)$. Assume w.l.o.g. that x_{0} and y_{0} are red-singular vertices w.r.t. C_{2} and C_{3}, respectively. Then x_{0} is blue-singular w.r.t. $C_{3} ; x_{i}$ and y_{i} are red-singular vertices w.r.t. C_{2} and C_{3}, respectively, whenever $i \equiv 0$ $(\bmod 2)$ and blue-singular otherwise; x_{i} is blue-singular w.r.t. C_{3} whenever $i \equiv 0$ $(\bmod 2)$ and red-singular otherwise.

Hence, in both cases, $x_{2 n-2 p} y_{2 t}$ is red for each $p \in[1, n]$ and each $t \in$ $[0, m-1], y_{0} w_{2 l-1}$ is red, $w_{2 l-2 s} x_{2 n-1}$ is red for each $s \in[1, l]$; the paths $w_{2 l-1} w_{2 l-2} \cdots w_{2 l-2 s}$ and $x_{2 n-1} x_{2 n-2} \cdots x_{2 n-2 p}$ are alternating which start and end at blue edges and the paths $y_{2 t} y_{2 t-1} \cdots y_{0}$ are alternating which start at a red edge and end at a blue edge.

Therefore, the cycle $\beta_{s}=x_{2 n-1} y_{0} w_{2 l-1} w_{2 l-2} \cdots w_{2 l-2 s} x_{2 n-1}$ is alternating of length $1+1+(2 s-1)+1=2+2 s$ for each $s \in[1, l]$; the cycle $\delta_{t}=x_{2 n-1} y_{2 t} y_{2 t-1} \cdots y_{0} w_{2 l-1} w_{2 l-2} \cdots w_{0} x_{2 n-1}$ is alternating of length $1+$ $2 t+1+(2 l-1)+1=2+2 l+2 t$ for each $t \in[1, m-1]$; and the cycle η_{p} $=x_{2 n-1} x_{2 n-2} \cdots x_{2 n-2 p} y_{2 m-1} y_{2 m-2} \cdots y_{0} w_{2 l-1} w_{2 l-2} \cdots w_{0} x_{2 n-1}$ is alternating of length $(2 p-1)+1+(2 m-1)+1+(2 l-1)+1=2 l+2 m+2 p$ for each $p \in[1, n]$.

From the above, G is alternating-pancyclic.
Now, assume that the assertion of this theorem holds for each $k^{\prime} \leq k-1$. We will prove it for $k \geq 4$.

Let $G_{1}, G_{2}, \ldots, G_{k}$ be a collection of $k \geq 4$ vertex disjoint graphs with alternating Hamiltonian cycles, $C_{1}, C_{2}, \ldots, C_{k}$, respectively, and take $G \in \oplus_{i=1}^{k} G_{i}$ as in the hypothesis.

Claim 27. There exists an alternating cycle β in G such that $V(\beta) \subset \bigcup_{j \in J} V\left(G_{j}\right)$ for some $J \subset[1, k]$, with $2 \leq|J| \leq k-1$, and $V(\beta) \cap V\left(G_{j}\right) \neq \emptyset$ for each $j \in J$.

Proof. Suppose by contradiction that there is no such a cycle. Then each alternating cycle β in G satisfies either $V(\beta) \subset V\left(G_{i}\right)$ for some $i \in[1, k]$ or $V(\beta) \cap V\left(G_{i}\right) \neq \emptyset$ for each $i \in[1, k]$.

Then for each pair of different indices $i, j \in[1, k]$ the graph $H_{i j}=G\left\langle V\left(G_{i}\right) \cup\right.$ $\left.V\left(G_{j}\right)\right\rangle$ has no alternating Hamiltonian cycle and thus, by the contrapositive of Corollary 25 , either C_{i} is singular w.r.t. C_{j} or C_{j} is singular w.r.t. C_{i}.

Define a digraph T of order k with vertex set $V(T)=\left\{G_{i} \mid i \in[1, k]\right\}$ and $\left(G_{i}, G_{j}\right)$ is an arc of T if and only if C_{i} is singular w.r.t. C_{j} in $H_{i j}$ (and thus, in G).

From the above, between each pair of different summands in G, G_{i} and G_{j}, for some $r \in\{i, j\}$ the alternating Hamiltonian cycle C_{r} of G_{r} is singular w.r.t. $G_{r^{\prime}}$ in G, where $r^{\prime} \in\{i, j\} \backslash\{r\}$. In this way, any two vertices in T are adjacent and, by Remark $15, C_{i}$ and C_{j} cannot be simultaneously singular with respect each other. Hence, there is exactly one arc between G_{i} and G_{j} in T and thus T is a tournament.

Claim 28. T is an acyclic tournament.
Proof. Suppose by contradiction that T has a cycle, namely $\alpha=\left(G_{i_{1}}, G_{i_{2}}, \ldots\right.$, $G_{i_{s}}, G_{i_{1}}$) where $3 \leq s \leq k-1$. This cycle in T produces a sequence $\left\{i_{j}\right\}_{j=1}^{s}$ such that $C_{i_{j}}$ is singular w.r.t. $C_{i_{j+1}}$ in G (and so $C_{i_{j}}$ contains a red-singular vertex w.r.t. $C_{i_{j+1}}$ in G) for each $j \in[1, s]$, where $C_{i_{s+1}}=C_{i_{1}}$. Therefore, by Proposition 23, $G_{0}=G\left\langle\bigcup_{j=1}^{s} V\left(G_{i_{j}}\right)\right\rangle$ contains an alternating Hamiltonian cycle C_{0}. Then $V\left(C_{0}\right) \cap V\left(G_{i_{j}}\right) \neq \emptyset$ for each $j \in[1, s]$, contradicting our assumption.

Now, suppose by contradiction that T has a Hamiltonian cycle, namely $\alpha=$ $\left(G_{i_{1}}, G_{i_{2}}, \ldots, G_{i_{k}}, G_{i_{1}}\right)$. Then, as $G_{i_{1}}$ and $G_{i_{3}}$ are adjacent, either $\left(G_{i_{1}}, G_{i_{3}}\right) \in$ $A(T)$ or $\left(G_{i_{3}}, G_{i_{1}}\right) \in A(T)$. If $\left(G_{i_{1}}, G_{i_{3}}\right) \in A(T)$, then $\left(G_{i_{1}}, G_{i_{3}}, \ldots, G_{i_{k}}, G_{i_{1}}\right)$ is a cycle of length $k-1$ in T, a contradiction. If $\left(G_{i_{3}}, G_{i_{1}}\right) \in A(T)$, then $\left(G_{i_{1}}, G_{i_{2}}, G_{i_{3}}, G_{i_{1}}\right)$ is a cycle of length 3 in T, a contradiction.

As T is acyclic, it follows that T is transitive and it contains a Hamiltonian path $\tau=\left(G_{i_{1}}, G_{i_{2}}, \ldots, G_{i_{k}}\right)$ such that $\left(G_{i_{j}}, G_{i_{j^{\prime}}}\right)$ is an arc in T if and only if $1 \leq j<j^{\prime} \leq k$.

If each vertex $v \in V\left(G_{i_{1}}\right)$ is singular w.r.t. $H=G\left\langle\bigcup_{j=2}^{k} V\left(G_{i_{j}}\right)\right\rangle$, that is, all exterior arcs incident with v are colored alike. Then, as $C_{i_{1}}$ is singular w.r.t. $C_{i_{j}}$ for each $j \in[2, k]$, it follows that $C_{i_{1}}$ is singular w.r.t. H. Notice that $G \in G_{i_{1}} \oplus H$; $C_{i_{1}}$ is an alternating Hamiltonian cycle in $G_{i_{1}}$ which is singular w.r.t. H and; G contains the alternating cycle γ which contains vertices in both $G_{i_{1}}$ and H. Therefore, by Proposition 17, it must exist an edge $x y \in E\left(G_{i_{1}}\right) \backslash E\left(C_{i_{1}}\right)$ such that $x \equiv y(\bmod 2)$ in $C_{i_{1}}$ and $c(x y) \neq s_{H}(x)$.

Observe that $G_{i_{1}}$ is singular w.r.t $G_{i_{2}}, s_{H}(v)=s_{G_{i_{2}}}(v)$ for each $v \in V\left(G_{i_{1}}\right)$ and thus the edge $x y \in E\left(G_{i_{1}}\right) \backslash E\left(C_{i_{1}}\right)$ is such that $x \equiv y(\bmod 2)$ in $C_{i_{1}}$
and $c(x y) \neq s_{G_{i_{2}}}(x)$. Then if we consider the induced subgraph by $V\left(G_{i_{1}}\right) \cup$ $V\left(G_{i_{2}}\right)$ in G, namely $H_{i_{1} i_{2}}=G\left\langle V\left(G_{i_{1}}\right) \cup V\left(G_{i_{2}}\right)\right\rangle$, it satisfies the hypothesis of Proposition 19. Hence, $H_{i_{1} i_{2}}$ is an alternating-pancyclic graph and thus it contains an alternating Hamiltonian cycle, contradicting our assumption.

Therefore, there is a vertex $v_{1} \in V\left(G_{i_{1}}\right)$ such that $d_{r}\left(v_{1}\right) \geq 1$ and $d_{b}\left(v_{1}\right) \geq 1$, i.e., there are blue exterior and red exterior edges incident with v_{1}. Since $C_{i_{1}}$ is singular w.r.t. $C_{i_{j}}$ for each $j \in[2, k], v_{1}$ is singular w.r.t. $C_{i_{j}}$ for each $j \in[2, k]$ and, as $d_{r}\left(v_{1}\right) \geq 1$ and $d_{b}\left(v_{1}\right) \geq 1$, there are $j, j^{\prime} \in[2, k]$, with $j \neq j^{\prime}$, such that v_{1} is red-singular w.r.t. $C_{i_{j}}$ and it is blue-singular w.r.t. $C_{i_{j^{\prime}}}$. We may assume w.l.o.g. that v_{1} is red-singular w.r.t. $C_{i_{2}}$ and let s be the minimum index in $[3, k]$ such that v_{1} is blue-singular w.r.t. $C_{i_{j}}$. Then v_{1} is red-singular w.r.t. $C_{i_{s-1}}$, it is blue-singular w.r.t. $C_{i_{s}}$, and v_{1}^{r}, the red neighbor of v_{1} in $C_{i_{1}}$, is red-singular w.r.t. $C_{i_{s}}$, by definition of singular cycle.

Consider $v_{s-1} \in V\left(C_{i_{s-1}}\right)$ such that v_{s-1} is red-singular w.r.t. $C_{i_{s}}$ and $v_{s} \in$ $V\left(C_{i_{s}}\right)$.

Now, take the red exterior edges $v_{1} v_{s-1}^{r}, v_{s-1} v_{s}^{r}$ and $v_{s} v_{1}^{r}$ and; P_{j}, the $v_{j}^{r} v_{j^{-}}$ alternating path which is obtained from $C_{i_{j}}$ by removing the red edge $v_{j} v_{j}^{r}$, for each $j \in\{1, s-1, s\}$. Hence, $C=P_{1} \cup v_{1} v_{s-1}^{r} \cup P_{s-1} \cup v_{s-1} v_{s}^{r} \cup P_{s} \cup v_{s} v_{1}^{r}$ is an alternating cycle in $H^{\prime}=G\left\langle V\left(G_{i_{1}}\right) \cup V\left(G_{i_{s-1}}\right) \cup V\left(G_{i_{s}}\right)\right\rangle$ with $V(C)=$ $V\left(G_{i_{1}}\right) \cup V\left(G_{i_{s-1}}\right) \cup V\left(G_{i_{s}}\right)$, contradicting our assumption (as $k \geq 4$).

Let β be an alternating cycle as in the assertion of Claim 27.
Then $G_{0}=G\left\langle\bigcup_{j \in J} V\left(G_{j}\right)\right\rangle$ is a graph in $\oplus_{j \in J} G_{j}$ which contains β and has no good cycle (as G_{0} is a subgraph of G). Hence, by induction hypothesis G_{0} is alternating-pancyclic. In particular, it contains an alternating Hamiltonian cycle C_{0}.

Notice that $\left\{G_{i}\right\}_{i \in[0, k \backslash \backslash J}$ is a collection of $k+1-|J| \leq k-1$ alternating Hamiltonian graphs; $G \in \oplus_{i \in[0, k] \backslash J} G_{i}$ as it satisfies the definition of a c.g.s. of $\left\{G_{i}\right\}_{i \in[0, k] \backslash J} ; G$ contains γ which satisfies $V(\gamma) \cap V\left(G_{i}\right) \neq \emptyset$ for each $i \in[0, k] \backslash J$ and G has no good cycle (the set of exterior edges in G as c.g.s. in $\oplus_{i \in[0, k] \backslash J} G_{i}$ is contained in the set of exterior edges of G as c.g.s. in $\left.\oplus_{i=1}^{k} G_{i}\right)$. Then, by induction hypothesis, G is alternating-pancyclic.
(ii) The proof is similar to that of (i). However, in the induction basis we can only assert that the graph G is alternating Hamiltonian, by Corollary 24, instead of alternating pancyclic, as the hypothesis about good cycles is missing. And thus, the induction process asserts that $G \in \oplus_{i=1}^{k} G_{i}$ must be an alternating Hamiltonian graph.

The converse is immediate.
Let $G_{1}, G_{2}, \ldots, G_{k}$ be a collection of $k 2$-edge-colored graphs with alternating Hamiltonian cycles $C_{1}, C_{2}, \ldots, C_{k}$, respectively. In Theorem 4 we characterized graphs in $\oplus_{i=1}^{k} G_{i}$ which are alternating Hamiltonian, we gave sufficient conditions
for a graph in $\oplus_{i=1}^{k} G_{i}$ to be alternating-pancyclic; and in Theorem 2 [6], we gave sufficient conditions for a graph in that same set to be vertex alternatingpancyclic. Those conditions are not proved to be necessary, as we used at most one edge in $E\left(G_{i}\right) \backslash E\left(C_{i}\right)$, for each $i \in[1, k]$ and we do not know if there are other edges in those sets, and if there are, we do not know how they behave.

Acknowledgements

We would like to thank the anonymous referees for many comments which helped to improve the presentation of this paper.

References

[1] J. Bang-Jensen and G. Gutin, Alternating cycles and paths in edge-coloured multigraphs: A survey, Discrete Math. 165/166 (1997) 39-60. doi:10.1016/S0012-365X(96)00160-4
[2] J. Bang-Jensen and G. Gutin, Alternating cycles and trails in 2 -edge-coloured complete multigraphs, Discrete Math. 188 (1998) 61-72. doi:10.1016/S0012-365X(97)00274-4
[3] J. Bang-Jensen and G.Z. Gutin, Digraphs: Theory, Algorithms and Applications (Springer-Verlag London, Ltd, London, 2009). doi:10.1007/978-1-84800-998-1
[4] W.S. Chou, Y. Manoussakis, O. Megalakaki, M. Spyratos and Zs. Tuza, Paths through fixed vertices in edge-colored graphs, Math. Sci. Hum. 127 (1994) 49-58.
[5] A. Contreras-Balbuena, H. Galeana-Sánchez and I.A. Goldfeder, A new sufficient condition for the existence of alternating Hamiltonian cycles in 2 -edge-colored multigraphs, Discrete Appl. Math. 229 (2017) 55-63. doi:10.1016/j.dam.2017.04.033
[6] N. Cordero-Michel and H. Galeana-Sánchez, Vertex alternating-pancyclism in 2-edge-colored generalized sum of graphs, Discrete Appl. Math 284 (2020) 281-289. doi:10.1016/j.dam.2020.03.047
[7] P. Das, Pan-alternating cyclic edge-partitioned graphs, Ars Combin. 14 (1982) 105-114.
[8] D. Dorninger, On permutations of chromosomes, in: Contributions to General Algebra 5, Proceedings of the Salzburg Conference, May 29-June 1, 1986, Hölder-Pichler-Tempsky (Ed(s)), (Teubner-Verlag, Stuttgart, 1987) 95-103.
[9] D. Dorninger, Hamiltonian circuits determining the order of chromosomes, Discrete Appl. Math. 50 (1994) 159-168. doi:10.1016/0166-218X(92)00171-H
[10] D. Dorninger and W. Timischl, Geometrical constraints on Bennett's predictions of chromosome order, Heredity 59 (1987) 321-325.
doi:10.1038/hdy.1987.138
[11] S. Fujita and C. Magnant, Properly colored paths and cycles, Discrete Appl. Math. 159 (2011) 1391-1397. doi:10.1016/j.dam.2011.06.005
[12] A. Gorbenko and V. Popov, The Hamiltonian alternating path problem, IAENG Int. J. Appl. Math. 42 (2012) 204-213.
[13] L. Gourves, A. Lyra, C. Martinhon and J. Monnot, The minimum reload $s-t$ path, trail and walk problems, Discrete Appl. Math. 158 (2010) 1404-1417. doi:10.1016/j.dam.2010.03.009
[14] R. Häggkvist and Y. Manoussakis, Cycles and paths in bipartite tournaments with spanning configurations, Combinatorica 9 (1989) 33-38. doi:10.1007/BF02122681
[15] J. Petersen, Die Theorie der regulären graphs, Acta Math. 15 (1891) 193-220. doi:10.1007/BF02392606
[16] P.A. Pevzner, DNA physical mapping and alternating Eulerian cycles in colored graphs, Algorithmica 13 (1995) 77-105.
doi:10.1007/BF01188582
[17] G. Wang and H. Li, Color degree and alternating cycles in edge-colored graphs, Discrete Math. 309 (2009) 4349-4354.
doi:10.1016/j.disc.2009.01.016
[18] H.C. Wirth and J. Steffan, Reload cost problems: minimum diameter spanning tree, Discrete Appl. Math. 113 (2001) 73-85. doi:10.1016/S0166-218X(00)00392-9
[19] H. Xu, D.M. Kilgour, K.W. Hipel and G. Kemkes, Using matrices to link conflict evolution and resolution in a graph model, European J. Oper. Res. 207 (2010) 318-329. doi:10.1016/j.ejor.2010.03.025
[20] H. Xu, K.W. Li, K.W. Hipel and D.M. Kilgour, A matrix approach to status quo analysis in the graph model for conflict resolution, Appl. Math. Comput. 212 (2009) 470-480. doi:10.1016/j.amc.2009.02.051
[21] H. Xu, K.W. Li, D.M. Kilgour and K.W. Hipel, A matrix-based approach to searching colored paths in a weighted colored multidigraph, Appl. Math. Comput. 215 (2009) 353-366. doi:10.1016/j.amc.2009.04.086

[^0]: ${ }^{1}$ This research was supported by grants UNAM-DGAPA-PAPIIT IN102320.

[^1]: ${ }^{2}$ This construction is due to Das [7] and later by Häggkvist and Manoussakis [14], it was used to study Hamiltonian alternating cycles in complete bipartite 2-edge-colored graphs.

[^2]: ${ }^{3}$ In Section 2 we define good pair, in Section 3 we define singular vertex and in Section 4 we define good cycle.

