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Abstract

Let G be a graph with vertex set V . A subset S ⊆ V is a semipaired
dominating set of G if every vertex in V \ S is adjacent to a vertex in S
and S can be partitioned into two element subsets such that the vertices
in each subset are at most distance two apart. The semipaired domination
number is the minimum cardinality of a semipaired dominating set of G. We
characterize the trees having a unique minimum semipaired dominating set.
We also determine an upper bound on the semipaired domination number
of these trees and characterize the trees attaining this bound.
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1. Introduction

Paired domination, where each vertex in the paired dominating set must be part-
nered with an adjacent vertex in the set, was introduced in [14, 15] as a model
for security applications. Semipaired domination relaxes the restriction that the
partners must be adjacent. Specifically, a set S of vertices in a graph G is a dom-

inating set of G if every vertex in V (G) \S is adjacent to a vertex in S. Further,
a dominating set S is a paired dominating set of G if the subgraph induced by S,
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denoted G[S], contains a perfect matching. The domination number γ(G) is the
minimum cardinality of a dominating set of G and the paired domination number

γpr(G) is the minimum cardinality of a paired dominating set of G. For a survey
of paired domination, see [5].

The distance between two vertices u and v in a connected graph G, denoted
by dG(u, v), is the length of a shortest (u, v)-path in G. A semi-matching M in a
graph G is a set of pairs of vertices such that every vertex of G belongs to at most
one pair in M and for every pair {u, v} ∈ M , either u and v are adjacent in G or
u and v are at distance 2 apart in G. Further, if {u, v} ∈ M and dG(u, v) = 1,
then u and v are said to be 1-paired in M , while if {u, v} ∈ M and dG(u, v) = 2,
then u and v are 2-paired in M . A vertex that belongs to the semi-matching M
is called an M -matched vertex, and a vertex not in the semi-matching M is called
an M -unmatched vertex.

A set S of vertices in a graph G with no isolated vertices is a semipaired

dominating set, abbreviated semi-PD-set, of G if S is a dominating set of G and
every vertex in S is paired with exactly one other vertex in S that is within
distance 2 from it. In other words, the vertices in the dominating set S can
be partitioned into 2-sets such that if {u, v} is a 2-set, then uv ∈ E(G) or the
distance between u and v is 2. We say that u and v are paired, and that u
and v are partners with respect to the resulting semi-matching consisting of the
pairings of vertices of S. The semipaired domination number, denoted by γpr2(G),
is the minimum cardinality of a semi-PD-set of G. We call a semi-PD-set of G of
cardinality γpr2(G) a γpr2-set of G. Semipaired domination was introduced in [11]
and studied, for example, in [12,13,19–21]. From the definitions, we observe the
following.

Observation 1. If G is a graph with no isolated vertices, then γ(G) ≤ γpr2(G) ≤
γpr(G).

In this paper, we investigate the trees having unique minimum semi-PD-sets,
and call such a tree a USPD-tree. Graphs having unique minimum dominating
sets have been studied for many graph families (for examples, see [6, 8, 16, 17,
26]). Gunther, Hartnell, Markus and Rall [8] were the first to consider such
graphs and they characterized the trees having unique minimum dominating sets.
Trees having unique paired dominating sets were characterized in [2]. Graphs
having a unique set for other domination parameters have also been much studied,
including [1, 3, 4, 7, 9, 10, 18, 24, 25]. It is worth mentioning the related topic of
which vertices appear in all or in no minimum dominating sets. Mynhardt [23]
introduced an ingenious technique called tree-pruning to characterize these sets
in trees.

A double star S(r, s) for 1 ≤ r ≤ s is the tree having exactly two non-leaf
vertices, one of which is adjacent to r leaves and the other to s leaves. For
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examples of USPD-trees, note that the set containing the two non-leaf vertices
of a double star T = S(r, s), for 2 ≤ r ≤ s, is a unique minimum γpr2-set of T
as well as a unique minimum dominating and minimum paired dominating set.
The double star S(1, 1), that is, the path P4:u1u2u3u4 has {u2, u3} as its unique
minimum paired dominating set. But the path P4 is not a USPD-tree since each
of {u2, u3}, {u2, u4}, and {u1, u3} is a γpr2-set of P4. On the other hand, for the
path P5:u1u2u3u4u5, the set {u2, u4} is the unique γpr2-set of P5, but not the
unique γ-set of P5 since each of {u1, u4}, {u2, u4}, and {u2, u5} is a γ-set of P5.
We also note that γpr(P5) = 4.

We proceed as follows. In Section 1.1, we describe the graph theory termi-
nology and notation, as well as additional definitions. In Section 2, we present
some known results, and give some preliminary results that will be need when
proving our main result. Thereafter, in Section 3, we present our main results,
including a characterization of the USPD-trees.

1.1. Notation and terminology

For notation and graph theory terminology, we in general follow [22]. Specifically,
the order of a graph G with vertex set V (G) and edge set E(G) is denoted by
n(G) = |V (G)| and its size by m(G) = |E(G)|. If the graph G is clear from the
context, we simply write V = V (G) and E = E(G). The open neighborhood of a
vertex v in G is the set NG(v) = {u ∈ V | uv ∈ E}, and its closed neighborhood

is the set NG[v] = NG(v)∪{v}. For a set S ⊆ V , its open neighborhood is the set
NG(S) =

⋃
v∈S NG(v) and its closed neighborhood is the set NG[S] = NG(S)∪S.

The degree of a vertex v in G is dG(v) = |N(v)|. If the graph G is clear from
context, we simply write n, m, N(v), N [v], and d(v) rather than n(G), m(G),
NG(v), NG[v], and dG(v), respectively.

For a subset S of vertices of G, the S-private neighborhood of the vertex v
in S is the set pn(v, S) = {w ∈ V (G) | NG[w] ∩ S = {v}}, while the external

S-private neighborhood of v is epn(v, S) = pn(v, S) \ S. An S-external private
neighbor of v is a vertex in epn(v, S). The subgraph induced by the set S is
denoted by G[S].

A non-trivial tree is a tree of order at least 2. A leaf of a tree is a vertex
of degree 1 and its neighbor is called a support vertex. A non-leaf is a vertex
of degree at least 2 in the tree. We denote a path on n vertices by Pn. We call
P1 a trivial star. A non-trivial star K1,k is a tree having exactly one non-leaf
vertex (of degree k) with k leaf neighbors for some k ≥ 1. A trivial star and a
non-trivial star, we call a star. An odd star is a star of odd order; that is, an
odd star is either a trivial star (of order 1) or a non-trivial star of odd order (at
least 3).

A rooted tree T distinguishes one vertex r called the root. For each vertex
v 6= r of T , the parent of v is the neighbor of v on the unique (r, v)-path, while a
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child of v is any other neighbor of v. The set of children of v is denoted by C(v).
A descendant of v is a vertex u 6= v such that the unique (r, u)-path contains v.

2. Preliminary Results and Observations

In this section, we present known results and preliminary results that we will
need when proving our main results. We begin with the following observations.

Observation 2. The path Pn for n ≥ 2 is a USPD-tree if and only if n = 2 or

n ≡ 0 (mod 5).

As observed earlier, a star is a USPD-tree if and only if it has order 2, while
a double star is a USPD-tree if and only if both its support vertices have at least
two leaf neighbors. We state this formally as follows.

Observation 3. A nontrivial tree T of diameter at most 3 is a USPD-tree if and

only if T = P2 or T is a double star S(r, s) where r, s ≥ 2.

For a vertex v, let Lv denote the set of leaves adjacent to v.

Proposition 1. If T is a USPD-tree with unique γpr2-set S, then every support

vertex of T is in S.

Proof. Assume S is the unique γpr2-set of T , and let M be a semi-matching of
S. Suppose, to the contrary, that v is a support vertex and v ∈ V \ S. The
set of leaves Lv of v is therefore contained in S. Let u ∈ Lv, and let x be the
partner of u in S, and so {u, x} ∈ M and u and x are 2-paired in M . We
note that x ∈ N(v) \ {u}. Hence, S′ = (S \ {u}) ∪ {v} with semi-matching
M ′ = (M \ {{u, x}})∪{{v, x}} is a γpr2-set of T , contradicting the fact that S is
the unique γpr2-set of T .

A tight upper bound on the semipaired domination number of connected
graphs is established in [13].

Theorem 1 [13]. If G is a connected graph of order n ≥ 3, then γpr2(G) ≤ 2
3
n,

and this bound is tight.

To see that the bound of Theorem 1 is sharp, consider the tree Tk obtained
from a star K1,k+1 for k ≥ 2 by subdividing k of the edges exactly twice and the
remaining edge exactly once. The resulting tree Tk has order n = 3k + 3 and
γpr2(Tk) = 2k + 2 = 2

3
n.
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3. Main Results

Our immediate aim is to characterize the trees having unique minimum semi-
PD-sets; that is, to characterize the USPD-trees. For this purpose, we need some
additional notation. For a given γpr2-set S and semi-matching M of a graph G,
we say that the set S has properties P1 and P2 if the following hold.

(a) Property P1 if for every 1-pair {u, v} in M , we have |epn(u, S)| ≥ 2 and
|epn(v, S)| ≥ 2.

(b) Property P2 if for every 2-pair {u, v} in M , we have |epn(u, S)| ≥ 1 and
|epn(v, S)| ≥ 1.

Further, we say that a γpr2-set S in the graph G has Property P if every
possible semi-matching in G[S] has both Property P1 and Property P2. We call
a pair {u, v} in a semi-matching M , an M -bad pair if {u, v} is a 1-pair that does
not have Property P1 or {u, v} is a 2-pair that does not have Property P2. We
observe the following about trees for which every γpr2-set has Property P.

Observation 4. If T is a tree such that every γpr2-set of T has Property P, then

no leaf is in any γpr2-set of T .

We are now in a position to present our characterization of USPD-trees. A
proof of Theorem 2 is presented in Section 4.

Theorem 2. If T is a tree of order at least 3, then T is a USPD-tree if and only

if T has a γpr2-set with Property P.

Our second aim is to show that the tight upper bound given in Theorem 1
can be significantly improved for USPD-trees by establishing a tight upper bound
on the semipaired domination number of USPD-trees and characterizing the trees
attaining this bound. In order to state this characterization, we define an even

rooted tree as a rooted tree T of order at least 3 such that every vertex of T has
an even number, including the possibility of zero, of children. By definition, the
root of an even rooted tree has even degree at least 2, while every vertex different
from the root has odd degree. An example of an even rooted tree with root r is
illustrated in Figure 1.

Let T be the family of all trees that can be obtained from an even rooted
tree T by adding a pendant edge to every vertex of T different from the root. For
example, if T is the even rooted tree shown in Figure 1, then the tree built from
T that belongs to the family T is shown in Figure 2.

We are now in a position to present our second main result. A proof of
Theorem 3 is given in Section 5.

Theorem 3. If T is a USPD-tree of order n ≥ 3, then γpr2(T ) ≤
1
2
(n− 1), with

equality if and only if T ∈ T .
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r

Figure 1. An even rooted tree T .

r

Figure 2. A tree in the family T .

4. Proof of Theorem 2

In this section, we present a proof of Theorem 2. For this purpose, we first prove
two lemmas.

Lemma 1. If T is a USPD-tree of order at least 3 with unique γpr2-set S, then
the set S has Property P.

Proof. Let T be a USPD-tree of order n ≥ 3 and let S be the unique γpr2-set
of T . Suppose, to the contrary, that S does not have Property P. Then there
exists a semi-matching M of S with an M -bad pair {u, v}. We consider two cases.

Case 1. {u, v} is a 1-pair in M that does not have Property P1. Renaming the
vertices u and v if necessary, we may assume that |epn(u, S)| ≤ 1. If |epn(u, S)| =
1 where epn(u, S) = {u′}, then (S\{u})∪{u′} with semi-matching (M\{{u, v}})∪
{{v, u′}} is a γpr2-set of T , contradicting the uniqueness of the γpr2-set S of T .
Thus, epn(u, S) = ∅. A similar argument shows that |epn(v, S)| 6= 1, and so,
|epn(v, S)| ≥ 2 or epn(v, S) = ∅. If epn(v, S) ≥ 2 and v′ ∈ epn(v, S), then
(S \ {u}) ∪ {v′} with semi-matching (M \ {{u, v}}) ∪ {{v, v′}} is a γpr2-set of T ,
contradicting the uniqueness of the γpr2-set S of T . Hence, epn(v, S) = ∅.

We note that |S| > 2, for otherwise since T is a tree and n ≥ 3, at least one of
u and v has an S-external private neighbor. If either u or v, say u, has a neighbor
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u′ in V \ S, then (S \ {u}) ∪ {u′} with semi-matching (M \ {{u, v}}) ∪ {{v, u′}}
is a γpr2-set of T different from S, contradicting the uniqueness of the γpr2-set S
of T . Hence, neither u nor v has a neighbor in V \ S.

If both u and v have a neighbor in S \ {u, v}, then S \ {u, v} with semi-
matching M \ {{u, v}} is a semi-PD-set of T with cardinality less than γpr2(T ),
a contradiction, implying by our earlier observations that exactly one of u and v
has a neighbor in S \ {u, v}. Renaming the vertices u and v, if necessary, we may
assume that v has a neighbor in S \ {u, v}. Therefore, the vertex u is a leaf of T ,
N [v] ⊆ S, and the vertex v has at least one neighbor, say w, in S \ {u}. Let x
be the partner of w in M , and so {w, x} ∈ M and x ∈ S \ {u, v, w}.

If w has a neighbor w′ in V \S, then (S\{u})∪{w′} with semi-matching (M \
{{u, v}})∪{{v, w′}} is a semi-PD-set of T different from S, again a contradiction.
Hence, N(w) ⊂ S, and so epn(w, S) = ∅. If {w, x} is a 1-pair inM , then S\{u,w}
with semi-matching (M \ {{u, v}, {w, x}}) ∪ {v, x} is a semi-PD-set of T with
cardinality less than γpr2(T ), a contradiction. Hence, {w, x} is a 2-pair in M .
Let y be the common neighbor of w and x. Since w has no neighbor in V \S, we
note that y ∈ S. If epn(x, S) = ∅, then S\{w, x} with semi-matchingM\{{w, x}}
is a semi-PD-set of T with cardinality less than γpr2(T ), a contradiction. Thus,
x′ is an S-external private neighbor of x; that is, x′ ∈ epn(x, S). But then
(S \ {w}) ∪ {x′} with semi-matching (M \ {{w, x}}) ∪ {{x, x′}} is a semi-PD-set
of T different from S, a contradiction.

Case 2. {u, v} is a 2-pair in M that does not have Property P2. Renaming
the vertices u and v if necessary, we may assume that epn(u, S) = ∅. Let x
be the common neighbor of u and v. If x /∈ S, then (S \ {u}) ∪ {x} with
semi-matching (M \ {{u, v}}) ∪ {{v, x}} is a γpr2-set of T , contradicting the
uniqueness of the γpr2-set S of T . Hence, x ∈ S and {x, y} ∈ M for some vertex
y ∈ S\{u, v, x}. If epn(v, S) = ∅, then S\{u, v} with semi-matching M \{{u, v}}
is a semi-PD-set of T having cardinality less than γpr2(T ), a contradiction. Hence,
|epn(v, S)| ≥ 1. Let v′ ∈ epn(v, S). Then (S \ {u}) ∪ {v′} with semi-matching
(M \ {{u, v}}) ∪ {{v, v′}} is a γpr2-set of T , contradicting the uniqueness of the
γpr2-set S of T .

Lemma 2. If T is a tree of order at least 3 that contains a γpr2-set with Prop-

erty P, then T is a USPD-tree.

Proof. Let T be a tree of order n ≥ 3 and let S be a γpr2-set of T with Prop-
erty P. Let M be a semi-matching associated with S. We wish to prove that S
is the unique γpr2-set of T . We proceed by induction on n. Since γpr2(T ) ≥ 2
and every vertex S has at least one S-external private neighbor, it follows that
n ≥ 4. If S contains a 1-pair, then since S has Property P1, it follows that n ≥ 6.
If S contains a 2-pair, then n ≥ 5. The only tree with n = 5 for which S has
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Property P2 is the path P5, which is a USPD-tree by Observation 2, establishing
the base case. Henceforth, we may assume that T is a tree of order n ≥ 6.

Assume that if T ′ is a tree of order n′, where 3 ≤ n′ < n, with a γpr2-set
having Property P, then T ′ is a USPD-tree. Suppose, to the contrary, that T is
not a USPD-tree. Let D be a γpr2-set of T different from S. We proceed further
with the following claim.

Claim 1. The set V \ S is an independent set.

Proof. Suppose, to the contrary, that V \ S contains two adjacent vertices, say
u1, u2 ∈ V \S such that u1u2 ∈ E(T ). Let Ti be the component of T −u1u2 that
contains the vertex ui for i ∈ [2] and let Si be the restriction of S to Ti, and so
Si = S ∩ V (Ti). Let Mi be the semi-matching subset of M consisting of pairs
from Si for i ∈ [2].

Claim 1.1 The set Si is the unique γpr2-set of Ti and for i ∈ [2]. Further, the

γpr2-set Si has Property P in Ti.

Proof. Since neither u1 nor u2 belongs to the set S, we note that the distance
between a vertex of S1 and a vertex of S2 is at least 3 in T . Thus since S is a
semi-PD-set of T , the set Si with semi-matching Mi is a semi-PD-set of Ti, and
so γpr2(Ti) ≤ |Si| for i ∈ [2]. The union of a γpr2-set of T1 and a γpr2-set of T2 is a
semi-PD-set of T , implying that γpr2(T ) ≤ γpr2(T1)+γpr2(T2) ≤ |S1|+|S2| = |S| =
γpr2(T ). Hence we must have equality throughout this inequality chain, implying
that γpr2(Ti) = |Si| and therefore that the set Si is a γpr2-set of Ti for i ∈ [2]. If
v ∈ Si, then we note that epnTi

(v, Si) ⊂ V (Ti), and so epnTi
(v, Si) = epnT (v, S)

for i ∈ [2]. Thus, since the γpr2-set S of T has Property P in T , the γpr2-set Si

has Property P in Ti. Further, the tree Ti has order at least 5. Applying the
inductive hypothesis to Ti, the tree Ti is a USPD-tree and the set Si is the unique
γpr2-set of Ti for i ∈ [2].

We now consider the γpr2-set D of T and let Di be the restriction of D to Ti,
and so Di = D ∩ V (Ti) for i ∈ [2]. For a semi-matching X associated with D, let
Xi be the pairs of the vertices of Di in X for i ∈ [2]. Note that X may contain
pairs that are not in X1 ∪X2, that is, pairs that contain one vertex from D1 and
one vertex from D2. We call such a pair a cross pair. Among all semi-matchings
of D, let X be one with the fewest cross pairs.

Analogously as with the set S, if neither u1 nor u2 is in D, then the set Di

is a semi-PD-set of Di for i ∈ [2]. Thus, γpr2(Ti) = |Si| ≤ |Di| for i ∈ [2], and
so γpr2(T ) = γpr2(T1) + γpr2(T2) ≤ |D1| + |D2| = γpr2(T ), implying that Di is a
γpr2-set of Ti. Since Si is the unique γpr2-set of Ti for i ∈ [2], this implies that
Di = Si, and so D = S, a contradiction.
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Hence, at least one of u1 and u2 is in D. Renaming vertices if necessary, we
may assume that u1 ∈ D. Let x be the vertex paired with u1 in X. If u2 ∈ D,
then let y be the vertex paired with u2 in X. We note that y could be u1.

Claim 1.2. The semi-matching X of the γpr2-set D of T has exactly one cross

pair.

Proof. We show firstly that the semi-matching X has at least one cross pair.
Suppose, to the contrary, that X has no cross pairs. Thus the vertex x ∈ D1, and
if u2 ∈ D2, then the vertex y ∈ D2. That is, every vertex in D1 is paired with a
vertex of D1 and every vertex of D2 is paired with a vertex of D2. Thus, D1 with
semi-matching X1 is a semi-PD-set of T1. Since S1 is the unique γpr2-set of T1

and u1 /∈ S1, it follows that |S1| = γpr2(T1) < |D1|. If D2 dominates T2, then D2

with semi-matching X2 is a semi-PD-set of T2, and so |S2| = γpr2(T2) ≤ |D2|. If
D2 does not dominate T2, then no vertex in N [u2] is in D2. In this case, the set
D′

2 = D2∪{u2, z}, where z ∈ N(u2) \ {u1}, with semi-matching X2 ∪{{u2, z}} is
a semi-PD-set of T2. Since S2 is the unique γpr2-set of T2 and u2 /∈ S2, it follows
that |S2| = γpr2(T2) < |D′

2|. Furthermore, since both |S2| and D′

2| are even,
|S2| = γpr2(T2) ≤ |D′

2| − 2 = |D2|. Hence in both cases, we have |S2| ≤ |D2|. As
observed earlier, |S1| < |D1|. Thus, γpr2(T ) = |S1|+ |S2| < |D1|+ |D2| = γpr2(T ),
a contradiction. Hence, the semi-matching X has at least one cross pair.

We show next that the semi-matching X has exactly one cross pair. If this
is not the case, then X has exactly two cross pairs, namely {u1, x} and {u2, y},
where x 6= u2 and y 6= u1. In this case, we note that x ∈ D2 and x is a neighbor
of u2 in T2, while y ∈ D1 and y is a neighbor of u1 in T1. Hence, the set D
with semi-matching (X \ {{u1, x}, {u2, y}}) ∪ {{u1, y}, {u2, x}} is a γpr2-set of T
having no cross pairs, contradicting our choice of X.

By Claim 1.2, the semi-matching X of the γpr2-set D of T has exactly one
cross pair. Renaming the vertices u1 and u2 if necessary, we may assume that
{u1, x} is the cross pair of X. Thus, x ∈ D2, and so x = u2 or x is a neighbor of
u2 in T2. We note that if u2 ∈ D2, then either y = u1 or y ∈ D2.

Claim 1.3. γpr2(T1) ≤ |D1| − 1.

Proof. IfD1\{u1} with semi-matchingX1 is a semi-PD-set of T1, then γpr2(T1) ≤
|D1| − 1. Hence we may assume that D1 \ {u1} with semi-matching X1 is not
a semi-PD-set of T1, for otherwise the desired result of the claim follows. This
implies that some vertex in the N [u1] in T1 is not dominated by D1 \ {u1}. In
this case, there is a vertex z1 ∈ N(u1) ∩ (V (T1) \ D1). Hence, D′

1 = D1 ∪ {z1}
with semi-matching X ′

1 = X1 ∪ {{u1, z1}} is a semi-PD-set of T1, and so |S1| =
γpr2(T1) ≤ |D′

1| = |D1| + 1. Since S1 is the unique γpr2-set of T1 and u1 /∈ S1,
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it follows that |S1| = γpr2(T1) < |D′

1|. Since both |D′

1| and |S1| are even, this
implies that |S1| ≤ |D′

1| − 2 = |D1| − 1. Thus, γpr2(T1) = |S1| ≤ |D1| − 1.

Claim 1.4. γpr2(T2) ≤ |D2| − 1.

Proof. If D2 \ {x} with semi-matching X2 is a semi-PD-set of T2, then |S2| =
γpr2(T2) ≤ |D2| − 1. Hence we may assume that D2 \ {x} with semi-matching X2

is not a semi-PD-set of T2, for otherwise the desired result of the claim follows.
Since {u1, x} is the unique cross pair of X, we note that every vertex in D2 \ {x}
is paired in X with a vertex of D2 \{x}. Thus since D2 \{x} is not a semi-PD-set
of T2, this implies that at least one neighbor of x in T2 does not belong to the
set D2.

We now define the vertex z2 as follows. If u2 = x or if u2 6= x and u2 ∈ D2,
let z2 be an arbitrary neighbor of x in T2 that does not belong to the set D2.
If u2 /∈ D2, let z2 = u2. In both cases, the vertex z2 /∈ D2. We now let
D′

2 = D2∪{z2} andX ′

2 = X2∪{{x, z2}}. The resulting setD
′

2 with semi-matching
X ′

2 is a semi-PD-set of T2 satisfying |D′

2| = |D2| + 1. Further by our choice of
the vertex z2, we note that u2 ∈ D′

2. Since S2 is the unique γpr2-set of T2 and
u2 /∈ S2, it follows that |S2| = γpr2(T2) < |D′

2|. Since both |D′

2| and |S2| are even,
this implies that |S2| ≤ |D′

2|−2 = |D2|−1. Hence, γpr2(T2) = |S2| ≤ |D2|−1.

We now return to the proof of Claim 1. By Claim 1.3, γpr2(T1) ≤ |D1|−1. By
Claim 1.4, γpr2(T2) ≤ |D2|−1. Thus, γpr2(T ) = |S1|+|S2| = γpr2(T1)+γpr2(T2) ≤
|D1|−1+ |D2|−1 < |D1|+ |D2| = |D| = γpr2(T ), a contradiction. This completes
the proof of Claim 1.

By Claim 1, the set V \ S is an independent set. Thus every vertex outside
S has all its neighbors in the set S; that is, for every vertex w ∈ V \ S, we have
N(w) ⊆ S. Since the γpr2-set S has Property P, by Observation 4 all the leaves
of T are in V \ S and therefore all the support vertices of T are in S. Moreover,
since no edge is in T [V \ S], all the S-external private neighbors of vertices of S
are leaves of T . Since every vertex in S has an S-external private neighbor, every
vertex in S is a support vertex of T . But since every γpr2-set of T contains the
support vertices of T , it follows that S is the unique γpr2-set of T , and so T is a
USPD-tree. This completes the proof of Lemma 2.

Theorem 2 is an immediate consequence of Lemmas 1 and 2.

5. Proof of Theorem 3

In this section we prove Theorem 3 which gives an upper bound on the semipaired
domination number of USPD-trees in terms of their order and characterizes the
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trees achieving equality in this upper bound. Before we present a proof of Theo-
rem 3, we first prove five lemmas.

Lemma 3. If T is a USPD-tree of order n ≥ 3, then γpr2(T ) ≤
1
2
(n− 1).

Proof. Let T be a USPD-tree of order n ≥ 3 with unique γpr2-set S and an
associated semi-matching M . Further, let a1 be the number of 1-pairs and a2 be
the number of 2-pairs in M . Thus,

|S| = 2a1 + 2a2.(1)

Let S = V \S, and so |S| = n−|S|. By Theorem 2, the γpr2-set S has Property
P in the tree T . Hence, for every 1-pair {u, v} in M , we have |epn(u, S)| ≥ 2 and
|epn(v, S)| ≥ 2, and for every 2-pair {u, v} in M , we have |epn(u, S)| ≥ 1 and
|epn(v, S)| ≥ 1. Thus,

|S| ≥ 4a1 + 2a2.(2)

If there is at least one 1-pair in M , then by inequalities (1) and (2), we have

n = |S|+ |S| ≥ (2a1 + 2a2) + (4a1 + 2a2)

= (4a1 + 4a2) + 2a1 = 2|S|+ 2a1 ≥ 2γpr2(T ) + 2,

implying that γpr2(T ) ≤ 1
2
(n − 2) < 1

2
(n − 1). Hence, we may assume that

every pair in M is a 2-pair, for otherwise the desired result follows. With this
assumption, a1 = 0. Thus, by inequalities (1) and (2), we have |S| = 2a2 and
|S| ≥ 2a2 = |S|. Thus, |S| = 2a2 + ℓ for some integer ℓ ≥ 0. If ℓ ≥ 1, then

n = |S|+ |S| = 2a2 + (2a2 + ℓ) = 2|S|+ ℓ = 2γpr2(T ) + ℓ,

or, equivalently, γpr2(T ) ≤
1
2
(n− ℓ) ≤ 1

2
(n− 1). Further if ℓ > 1, then γpr2(T ) <

1
2
(n − 1). Hence, we may assume that ℓ = 0, for otherwise the desired upper

bound holds. With this assumption and our earlier observations, |epn(v, S)| = 1
for every vertex v ∈ S and

S =
⋃

v∈S

epn(v, S) and |S| =
∑

v∈S

|epn(v, S)| = |S|.(3)

Let {u1, v1} be an arbitrary 2-pair in M , and let u2 be the common neighbor
of u1 and v1. We note that u2 ∈ S. Let v2 be the partner of u2 in M , and so
{u2, v2} is a 2-pair in M . Let x be the common neighbor of u2 and v2. Suppose
that x ∈ {u1, v1}. Renaming u1 and v1 if necessary, we may assume in this case
that x = v1. We now replace the 2-pairs {u1, v1} and {u2, v2} in M with the 1-
pairs {u1, u2} and {v1, v2}. Proceeding as before when there is at least one 1-pair
in M , we have γpr2(T ) <

1
2
(n− 1). Hence, we may assume that x /∈ {u1, v1}. Let
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x = u3 and let v3 be the partner of u3 in M , and so {u3, v3} is a 2-pair in M .
Continuing in this manner, since S is finite, there must exist two 2-pairs in M ,
say {ui, vi} and {uj , vj} for some i and j where 1 ≤ i < j such that uiujvivj is a
path in T . We now replace the 2-pairs {ui, vi} and {uj , vj} in M with the 1-pairs
{ui, uj} and {vi, vj}. Proceeding as before when there is at least one 1-pair in
M , we have γpr2(T ) <

1
2
(n− 1).

Lemma 4. The following properties hold in an even rooted tree T .

(a) The tree T contains a semi-matching M such that every vertex different from

the root is an M -matched vertex.

(b) Every semi-matching of T satisfying part (a) contains only 2-pairs.

Proof. (a) Let T be an even rooted tree with root r. Let X be the set of vertices
of T of degree at least 2. Thus, X consists of all vertices of T that are not leaves.
In particular, the root r belongs to the set X. Since T is an even rooted tree,
we note that every vertex in X is the parent of an even number (at least two) of
children in T . We can therefore partition V (T ) \ {r} into |X| sets, namely the
sets C(v) for each vertex v ∈ X where recall that C(v) denotes the set of children
of v. Since |C(v)| ≥ 2 is even, we can partition the set C(v) into 1

2
|C(v)| pairs of

vertices. We note that if {v1, v2} is such a pair of children of v, then d(v1, v2) = 2.
Let M be the resulting set of all such pairs of vertices over all vertices v that
belong to the set X. The resulting set M is a semi-matching of T in which every
vertex of T different from the root is an M -matched vertex. Further, every pair
in M is a 2-pair. This completes the proof of part (a).

To prove part (b), let T be a counterexample of smallest order n ≥ 3. Thus,
the tree T contains a semi-matching M such that every vertex of T different from
the root is an M -matched vertex and at least one pair in M is a 1-pair.

Suppose that T is a star. In this case, T is an odd star of order at least 3.
The set V (T )\{r} of vertices different from the root is an independent set of even
order and consists of all leaves in T . Thus, every semi-matching of T satisfying
part (a) contains only 2-pairs, a contradiction to tree T being a counterexample.
Hence, T is not a star, implying that at least one child of the root is not a leaf.
Let v be a descendant of the root r that is not a leaf and is at maximum distance
from r. Let w denote the parent of v in T . (Possibly, w = r.) Since T is an even
rooted tree, the vertex v has an even number of children. By our choice of v, we
note that every child of v is a leaf.

Let u1 and u2 be two arbitrary children of v, and let T ′ = T − {u1, u2}.
We note that T ′ is an even rooted tree with root r. Let T ′ have order n′, and
so 3 ≤ n′ < n. Since T ′ is not a counterexample to our theorem, every semi-
matching of T ′ satisfying part (a) contains only 2-pairs. Suppose that some pair
in M contains two children of v. Renaming vertices if necessary, we may assume
that {u1, u2} is such a pair in the semi-matching M . Thus, M ′ = M \ {{u1, u2}}
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is a semi-matching in T ′ satisfying part (a) that contains at least one 1-pair,
a contradiction. Hence, no pair in M contains two children of v. This implies
that v has exactly two children, namely u1 and u2. Further, renaming u1 and
u2 if necessary, we may assume that {u1, v} and {u2, w} are pairs in M . Since
the root r is M -unmatched, we note that in this case w 6= r. Since u1 and
v are adjacent, we note that {u1, v} is a 1-pair in M . But then M ′ = (M \
{{u1, v}, {u2, w}}) ∪ {{v, w}} is a semi-matching in T ′ satisfying part (a) that
contains at least one 1-pair, a contradiction. This proves part (b) and completes
the proof of Lemma 4.

We call a semi-matching of a graph that matches every vertex a perfect semi-

matching of the graph.

Lemma 5. If T is a tree of even order n ≥ 2, then T contains a perfect semi-

matching with at least one 1-pair.

Proof. We proceed by induction on the order n ≥ 2 of a tree T of even order.
If n = 2, then there is a unique perfect semi-matching in T , and such a semi-
matching is a matching (in the ordinary sense). This establishes the base case.
Let n ≥ 4 and assume that every tree T ′ of even order n′ where 2 ≤ n′ < n
contains a perfect semi-matching with at least one 1-pair. Let T be a tree of even
order n ≥ 4, and let P : v1v2 · · · vk be a longest path in T , where we note that
k ≥ 3.

Suppose that v2 has degree at least 3 in T . Let u1 be a neighbor of v2 different
from v1 and v3. Since P is a longest path in T , we note that u1 is a leaf. We
now let T ′ = T − {u1, v1}. Applying the inductive hypothesis to the tree T ′ of
even order strictly less than n, the tree T ′ contains a perfect semi-matching M ′

with at least one 1-pair. We can now extend the semi-matching M ′ to a perfect
semi-matching M = M ′ ∪ {{u1, v1}} of T with at least one 1-pair (namely, a
1-pair that belongs to M ′), as desired. Hence, we may assume that the vertex v2
has degree 2 in T . In this case, we let T ′ = T − {v1, v2}. Applying the inductive
hypothesis to T ′, the tree T ′ contains a perfect semi-matching M ′ with at least
one 1-pair. We can now extend the semi-matching M ′ to a perfect semi-matching
M = M ′ ∪ {{v1, v2}} of T with at least one 1-pair, as desired.

We next establish properties of a tree that belongs to the family T .

Lemma 6. If T is an arbitrary tree of order n that belongs to the family T , then

the following hold.

(a) γpr2(T ) =
1
2
(n− 1).

(b) The tree T is a USPD-tree whose unique γpr2-set is the set of support vertices

in T .
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Proof. Let T be a tree of order n in the family T . Thus, T is built from an even
rooted tree H with root r by adding a pendant edge to every vertex of H different
from the root. If S = V (H) \ {r}, then by Lemma 4, the tree H contains a semi-
matching M such that every vertex of S is an M -matched vertex. Since the set
S dominates the tree T , we note that S with semi-matching M is a semi-PD-set
of T , implying that γpr2(T ) ≤ |S|. Since every vertex in S is a support vertex
in T , we note that |S| ≤ γ(T ) ≤ γpr2(T ) ≤ |S|. Thus we must have equality
throughout this inequality chain. In particular, γpr2(T ) = |S| = 1

2
(n − 1) and S

is a γpr2-set of T . We note that S is precisely the set of support vertices of T .
This completes the proof of part (a).

To prove part (b), suppose, to the contrary, that S is not the unique γpr2-set
of T . Let S′ be a γpr2-set of T different from S, and let M ′ be the associated
semi-matching of T . Since every γpr2-set of T contains either a support vertex
or its leaf neighbor, this implies that the set S′ contains at least one leaf, say v′,
of T . Let v be the support vertex with v′ as its leaf neighbor. By our earlier
observations, we note that v /∈ S′ and r /∈ S′. Let w be the partner of v′ in
S′, and so {v′, w} is a 2-pair in M ′ and the vertex w is a support vertex that
belongs to the set S. We now replace every such 2-pair {v′, w} in M ′ with the
1-pair {v, w} to produce a new semi-matching M∗ in T . By construction, the
semi-matching M∗ consisting entirely of support vertices and contains at least
one 1-pair. Hence, M∗ is a semi-matching of the even rooted tree H such that
every vertex different from the root r of H is an M∗-matched vertex. However,
M∗ contains at least one 1-pair, namely the pair {v, w}, contradicting Lemma 4.
This proves part (b) and completes the proof of Lemma 6.

Lemma 7. Let T be a tree of odd order n ≥ 3 and let r be a specified vertex of

T of degree at least 2. If the tree satisfies both properties (a) and (b) below, then
T is an even rooted tree with root r.

(a) The tree T contains a semi-matching M such that every vertex different from

r is an M -matched vertex.

(b) Every semi-matching of T satisfying part (a) contains only 2-pairs.

Proof. Suppose, to the contrary, that the lemma is false, and let T be a coun-
terexample of smallest order n ≥ 3. Thus, the tree T satisfies both properties (a)
and (b), but T is not an even rooted tree with root r. Suppose that T is a star.
In this case, T is an odd star of order at least 3. By assumption, the vertex
r has degree at least 2 in T , and hence the vertex r is the center of the star,
implying that T is an even rooted tree with root r, a contradiction to T being a
counterexample. Hence, T is not a star.

We now root the tree T at the vertex r. Since T is not a star, at least one
child of the vertex r is not a leaf. Let v be a descendant of the vertex r at
maximum distance from r, and let w denote the parent of v and let x denote the
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parent of w. We note that w 6= r. Further by our choice of the vertex v, every
child of w is a leaf. In particular, the vertex v is a leaf. Let M be an arbitrary
semi-matching of T satisfies both properties (a) and (b). Let {v, v∗} and {w,w∗}
be the 2-pairs in M containing v and w, respectively. Since M contains no 1-pair,
we note that v∗ 6= w.

Suppose that v∗ is a leaf neighbor of w in the rooted tree T with root r. In
this case, we let T ′ = T −{v, v∗} and we let M ′ = M \{{v, v∗}}. We note that T ′

is a tree of odd order n′ where 3 ≤ n′ = n− 2. Further, M ′ is a semi-matching in
T ′ such that every vertex different from r is an M ′-matched vertex. If T ′ has a
semi-matching that matches every vertex different from r and contains a 1-pair,
then such a semi-matching can be extended to a semi-matching of T that satisfies
property (a) but not property (b) by adding to it the pair {v, v∗}, a contradiction.
Hence, the tree T ′ satisfies both properties (a) and (b) (with T replaced by T ′,
and with M replaced by M ′). Since T ′ is not a counterexample to our lemma,
the tree T ′ is an even rooted tree with root r. By restoring the tree T by adding
back the two deleted children v and v∗ of w (both of which are leaf neighbors of
w), the tree T is therefore is an even rooted tree with root r, a contradiction.

Hence, we may assume that v∗ is not a leaf neighbor of w in the rooted
tree T with root r. Thus, v∗ is necessarily the parent, x, of the vertex w in
T . In particular, this implies that x 6= r since r is an M -unmatched vertex.
Since M contains no 1-pair, and since every child of w is a leaf, we note that the
vertex w∗ paired with w in M is a neighbor of x (different from w). But then
M∗ = (M \ {{v, v∗}, {w,w∗}}) ∪ {{v, w}, {v∗, w∗}} is a semi-matching in T such
that every vertex different from r is an M∗-matched vertex but such that M∗

contains at least two 1-pairs, contradicting the fact that T satisfies property (b).
This completes the proof of Lemma 7.

We are now in a position to prove Theorem 3. Recall its statement.

Theorem 3. If T is a USPD-tree of order n ≥ 3, then γpr2(T ) ≤
1
2
(n− 1), with

equality if and only if T ∈ T .

Proof. Let T be a USPD-tree of order n ≥ 3. By Lemma 3, γpr2(T ) ≤
1
2
(n− 1).

By Lemma 6, if T ∈ T has order n, then γpr2(T ) =
1
2
(n− 1). Hence it suffices for

us to prove that if T is a USPD-tree of order n ≥ 3 satisfying γpr2(T ) =
1
2
(n−1),

then T ∈ T . Suppose therefore that T is a USPD-tree of order n ≥ 3 such
that γpr2(T ) = 1

2
(n − 1). In this case, we must have equality throughout the

inequalities in the proof of Lemma 3. Adopting the notation in the proof of
Lemma 3, this implies that a1 = 0, and so every pair in M is a 2-pair. We state
this formally as follows.

Claim 2. Every pair in M is a 2-pair.
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Adopting our earlier notation, this also implies that |S| = 2a2 and that ℓ = 1;
that is, |S| = 2a2 + 1 and n = |S| + |S| = 4a2 + 1. Further, |epn(v, S)| = 1 for
every vertex v ∈ S, except for possibly one vertex v ∈ S for which |epn(v, S)| = 2.
Recall that S = V \ S.

Claim 3. The set S is an independent set.

Proof. Suppose, to the contrary, that S contains two adjacent vertices u1 and
u2. Let Ti be the component of T − u1u2 that contains the vertex ui for i ∈ [2]
and let Si be the restriction of S to Ti, and so Si = S ∩ V (Ti). Also, let Mi be
pairs of M that contain two vertices from Ti for i ∈ [2]. Since neither u1 nor
u2 belongs to the set S, we note that the distance between a vertex of S1 and a
vertex of S2 is at least 3 in T . Thus, since S is a semi-PD-set of T , the set Si

with semi-matching Mi is a semi-PD-set of Ti, and so γpr2(Ti) ≤ |Si| for i ∈ [2].
The union of a γpr2-set of T1 and a γpr2-set of T2 is a semi-PD-set of T , implying
that γpr2(T ) ≤ γpr2(T1) + γpr2(T2) ≤ |S1|+ |S2| = |S| = γpr2(T ). Hence we must
have equality throughout this inequality chain, implying that γpr2(Ti) = |Si| and
therefore that the set Si is a γpr2-set of Ti for i ∈ [2].

We note that if T1 has a γpr2-set D1 different from S1, then D1 ∪ S2 is a
γpr2-set of T different from S, contradicting the fact that T is a USPD-tree.
Hence, S1 is the unique γpr2-set of T1, and a similar argument shows that S2 is
the unique γpr2-set of S2. Let n1 and n2 be the order of T1 and T2, respectively.
Thus each tree Ti is a USPD-tree of order ni ≥ 3, implying by our earlier result
that γpr2(Ti) ≤ 1

2
(ni − 1) for i ∈ [2]. This implies that γpr2(T ) = γpr2(T1) +

γpr2(T2) ≤
1
2
(n1 − 1) + 1

2
(n2 − 1) = 1

2
(n− 2), a contradiction to our supposition

that γpr2(T ) =
1
2
(n− 1).

We present properties of the sets S and S.

Claim 4. The following holds.

(a) Every vertex v ∈ S is a support vertex with exactly one leaf neighbor, say v′.
Further, epn(v, S) = {v′}.

(b) The set S consists of |S| leaves and exactly one non-leaf vertex.

Proof. By Claim 3, the set S is an independent set. Thus every vertex outside
S has all its neighbors in the set S; that is, for every vertex w ∈ S, we have
N(w) ⊆ S. By Theorem 2, the γpr2-set S has Property P. Thus, Observation 4
implies that all the leaves of T are in S and therefore all the support vertices of T
are in S. Moreover, since no edge is in T [S], all the S-external private neighbors
of vertices of S are leaves of T . Since every vertex in S has an S-external private
neighbor, every vertex in S is a support vertex of T . By our earlier observations,
recall that |S| = 2a2 +1 and n = |S|+ |S| = 4a2 +1. Further, |epn(v, S)| = 1 for
every vertex v ∈ S, except for possibly one vertex v ∈ S for which |epn(v, S)| = 2.
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Suppose that |epn(v, S)| = 2 for some vertex v ∈ S. Thus, every vertex in S
is a leaf of T . In particular, this implies that T [S] is a tree of even order |S| = 2a2.
By Lemma 5, there is a perfect semi-matching of T with at least one 1-pair. Thus,
we can choose a semi-matching of the γpr2-set S to contain at least one 1-pair.
But then by our earlier observations this would imply that γpr2(T ) <

1
2
(n − 1),

a contradiction. Hence, |epn(v, S)| = 1 for every vertex v ∈ S. Thus, every
vertex v ∈ S is a support vertex with exactly one leaf neighbor, say v′. Further,
epn(v, S) = {v′}. There is therefore exactly one vertex in S that is not a leaf and
has at least two neighbors in S.

By Claim 4, every vertex v ∈ S is a support vertex with exactly one leaf
neighbor, say v′. Further, epn(v, S) = {v′}. Further, the set S consists of |S|
leaves and exactly one non-leaf vertex. Let r be the non-leaf that belongs to S.
By Claim 3, NT (r) ⊆ S. Let H be the subtree of T induced by the set S ∪ {r}.
Thus, H is the tree obtained from T by deleting all leaves of T . By Claim 2 and
Claim 4, H is a tree of odd order at least 3 and with a specified vertex r of degree
at least 2 that satisfies both properties (a) and (b) in the statement of Lemma 7
(with T replaced by H). Thus by Lemma 7, the tree H is an even rooted tree
with root r. Hence by our earlier observation that every vertex of S is a support
vertex of T , we have that T ∈ T . This completes the proof of Theorem 3.
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