ON CONDITIONAL CONNECTIVITY OF THE CARTESIAN PRODUCT OF CYCLES

J.B. Saraf
Department of Mathematics
Amruteshwar Arts, Commerce and Science College
Vinzar- 412213, India
e-mail: sarafjb@gmail.com
Y.M. Borse
Department of Mathematics
Savitribai Phule Pune University
Pune-411007, India
e-mail: ymborse11@gmail.com
AND
Ganesh Mundhe
Army Institute of Technology
Pune-411015, India
e-mail: ganumundhe@gmail.com

Abstract

The conditional h-vertex (h-edge) connectivity of a connected graph H of minimum degree $k>h$ is the size of a smallest vertex (edge) set F of H such that $H-F$ is a disconnected graph of minimum degree at least h. Let G be the Cartesian product of $r \geq 1$ cycles, each of length at least four and let h be an integer such that $0 \leq h \leq 2 r-2$. In this paper, we determine the conditional h-vertex-connectivity and the conditional h-edge-connectivity of the graph G. We prove that both these connectivities are equal to $(2 r-h) a_{h}^{r}$, where a_{h}^{r} is the number of vertices of a smallest h-regular subgraph of G.

Keywords: fault tolerance, hypercube, conditional connectivity, cut, Cartesian product.
2010 Mathematics Subject Classification: 05C40, 68R10.

1. Introduction

One of the feature of a good interconnection network is its high fault tolerance capacity. Interconnection network can be modelled into a graph with the help of which we can study many properties of the network. Connectivity of a modelled graph measures the fault tolerance capacity of the interconnection network. High fault tolerance capacity of the network plays an important role in practice. Traditional connectivities have some limitations to measure the fault tolerance capacity of a network accurately. In order to compute traditional edge connectivity, one allows failure of all the links incident with the same processor, practically which is rare. One can overcome this limitation effectively by considering the conditional connectivity of graphs introduced by Harary [6].

Let G be a connected graph with minimum degree at least $k \geq 1$ and let h be an integer such that $0 \leq h<k$. A set F of vertices (edges) of G such that $G-F$ is disconnected and each component of it has minimum degree at least h is an h-vertex (edge) cut of G. The conditional h-vertex (edge) connectivity of G, denoted by $\kappa^{h}(G)\left(\lambda^{h}(G)\right)$, is the minimum cardinality $|F|$ of an h-vertex(edge) cut F of G. Clearly, $h=0$ gives the traditional vertex (edge) connectivity.

Many researchers have worked on the problem of determining the conditional connectivities for various classes of graphs and determined these parameters for smaller values of $h[4,5,7,9]$. Exact values of one or both conditional connectivities are known for some classes of graphs. For the n-dimensional hypercube Q_{n}, the conditional connectivities λ^{h} and κ^{h} are same and their common value is $2^{h}(n-h)$; see [3, 7]. Li and Xu [10] proved that λ^{h} of any n-dimensional hypercube-like network G_{n} is also $2^{h}(n-h)$. Ye and Liang [16] established that κ^{h} is also $2^{h}(n-h)$ for some members of hypercube-like networks such as Crossed cubes, Locally twisted cubes, Möbius cubes. Independently, Wei and Hsieh [14] determined κ^{h} for the Locally twisted cubes. Ning [13] obtained κ^{h} for the exchanged crossed cubes. Both λ^{h} and κ^{h} are determined for the class of (n, k)-star graphs by Li et al. [11].

An r-dimensional torus is the Cartesian product of r cycles. The k-ary r-cube, denoted by Q_{r}^{k}, is the Cartesian product of r cycles each of length k. In particular, the hypercube $Q_{2 r}$ is Q_{r}^{4}. Hypercubes, k-ary r-cubes and multidimensional tori are widely used interconnection networks; see $[2,8,12,15]$.

It is easy to see that an r-dimensional torus is a $2 r$-regular graph with traditional vertex connectivity and edge connectivity $2 r$; see [15]. In this paper, we determine the conditional h-edge-connectivity as well as the conditional h-vertexconnectivity of the given multidimensional torus.

By C_{k} we mean a cycle of length k. For integers $h, r, k_{1}, k_{2}, \ldots, k_{r}$ with $0 \leq$ $h \leq 2 r$ and $4 \leq k_{1} \leq k_{2} \leq \cdots \leq k_{r}$, we define a quantity a_{h}^{r} as follows.

Definition 1.1.

$$
a_{h}^{r}= \begin{cases}2^{h} & \text { if } 0 \leq h \leq r, \\ 2^{r-i} k_{1} k_{2} \cdots k_{i} & \text { if } h=r+i, \quad 1 \leq i \leq r .\end{cases}
$$

We prove that both the conditional connectivities λ^{h} and k^{h} are equal to $a_{h}^{r}(2 r-h)$ for the Cartesian product of cycles $C_{k_{1}}, C_{k_{2}}, \ldots, C_{k_{r}}$.

The following is the main theorem of the paper.
Theorem 1.2. Let $h, r, k_{1}, k_{2}, \ldots, k_{r}$ be integers such that $0 \leq h \leq 2 r-2$ and $4 \leq k_{1} \leq k_{2} \leq \cdots \leq k_{r}$ and let G be the Cartesian product of the cycles $C_{k_{1}}, C_{k_{2}}, \ldots, C_{k_{r}}$. Then $\lambda^{h}(G)=\kappa^{h}(G)=a_{h}^{r}(2 r-h)$.

Corollary 1.3. Let h, r, k be integers such that $0 \leq h \leq 2 r-2,4 \leq k$ and let Q_{r}^{k} be the k-ary r-cube. Then $\lambda^{h}\left(Q_{r}^{k}\right)=k^{h}\left(Q_{r}^{k}\right)=a_{h}^{r}(2 r-h)$, where $a_{h}^{r}=2^{h}$ if $0 \leq h \leq r$ and $a_{h}^{r}=2^{r-i} k^{i}$ if $h=r+i$ and $1 \leq i \leq r$.

Corollary 1.4 [3, 7]. For integers h and r with $0 \leq h \leq 2 r-2, \lambda^{h}\left(Q_{2 r}\right)=$ $k^{h}\left(Q_{2 r}\right)=2^{h}(2 r-h)$.

The proof of our main result, Theorem 1.2 is divided into three sections. In Section 2, we characterize the h-regular subgraph of the graph G with minimum number of vertices and explore some of its properties. Using these properties we determine the conditional h-vertex connectivity and the conditional h-edge connectivity of G in Sections 3 and 4, respectively.

2. Smallest h-Regular Subgraph

In this section, we define a smallest h-regular subgraph of the Cartesian product of r cycles and obtain some properties of it. We first introduce some notations.

For a graph K, let $V(K)$ denote the set of all vertices of K. If H is a subgraph K, then $\delta(K)$ is the minimum degree of K while $\delta_{K}(H)$ is the minimum degree of H in K. The Cartesian product of two graphs H and K is a graph $H \square K$ with vertex set $V(H) \times V(K)$. Two vertices (x, y) and (u, v) are adjacent in $H \square K$ if and only if either $x=u$ and y is adjacent to v in K, or $y=v$ and x is adjacent to u in H. The hypercube Q_{n} is the Cartesian product of n copies of the complete graph K_{2}.

We use the following notations about the structure of the multidimensional torus.

Notation.

Consider the graph G of Theorem 1.2. We have $G=C_{k_{1}} \square C_{k_{2}} \square \cdots \square C_{k_{r}}$, where $C_{k_{i}}$ is a cycle of length k_{i} for $i=1,2, \ldots, k_{r}$ and $4 \leq k_{1} \leq k_{2} \leq \cdots \leq k_{r}$. We can
write G as $G=H \square C_{k_{r}}$, where $H=C_{k_{1}} \square C_{k_{2}} \square \cdots \square C_{k_{r-1}}$. Label by $1,2, \ldots, k_{r}$ the vertices of the cycle $C_{k_{r}}$ so that i is adjacent to $(i+1)\left(\bmod k_{r}\right)$. Hence G can be obtained by replacing $i^{\text {th }}$ vertex of $C_{k_{r}}$ by a copy H^{i} of H and replacing edge joining i and $i+1$ of $C_{k_{r}}$ by the perfect matching M_{i} between the corresponding vertices of H^{i} and H^{i+1}. Thus $G=H^{1} \cup H^{2} \cup \cdots \cup H^{k_{r}} \cup\left(M_{1} \cup M_{2} \cup \cdots \cup M_{k_{r}}\right)$; see Figure 1.

Figure 1. $G=H \square C_{k_{r}}$.
Henceforth, by G we mean the graph $C_{k_{1}} \square C_{k_{2}} \square \cdots \square C_{k_{r}}$ with $4 \leq k_{1} \leq k_{2} \leq$ $\cdots \leq k_{r}$, that is, the graph of Theorem 1.2.

From the following lemma, it is clear that G is a $2 r$-regular and $2 r$-connected graph on $k_{1} k_{2} \cdots k_{r}$ vertices.

Lemma 2.1. If G_{i} is an m_{i}-regular and m_{i}-connected graph on n_{i} vertices for $i=1,2$, then $G_{1} \square G_{2}$ is an $\left(m_{1}+m_{2}\right)$-regular and $\left(m_{1}+m_{2}\right)$-connected graph on $n_{1} n_{2}$ vertices.

We now define an h-regular subgraph, denoted by W_{h}^{r}, of the graph G.
Definition 2.2. For $4 \leq k_{1} \leq k_{2} \leq \cdots \leq k_{r}$ and $0 \leq h \leq 2 r$, let

$$
W_{h}^{r}= \begin{cases}Q_{h} & \text { if } 0 \leq h \leq r, \\ Q_{r-i} \square C_{k_{1}} \square C_{k_{2}} \square \cdots \square C_{k_{i}} & \text { if } h=r+i \text { and } 1 \leq i \leq r .\end{cases}
$$

In the following figure, a 2-regular subgraph W_{2}^{2} and a 3 -regular subgraph W_{3}^{2} of the graph $C_{5} \square C_{5}$ are shown by bold lines.

It is known that a smallest h-regular subgraph of the hypercube Q_{n} is isomorphic to Q_{h} (see [1]). We prove the analogous result for the Cartesian product of cycles. In fact, we establish that W_{h}^{r} is a smallest h-regular subgraph of the above graph G.

Figure 2. The subgraph W_{2}^{2} and W_{3}^{2} of $C_{5} \square C_{5}$.
The following lemma follows from Lemma 2.1, Definition 1.1 of the number a_{h}^{r} and the fact that the hypercube Q_{n} is an n-regular, n-connected graph on 2^{n} vertices for any integer $n \geq 0$.

Lemma 2.3. The graph W_{h}^{r} is h-regular and h-connected with a_{h}^{r} vertices.
We need the following lemma that gives relations between different values of a_{h}^{r}.

Lemma 2.4. Let $r \geq 2$ and let a_{h}^{r} be the quantity given in Definition 1.1. Then the following statements hold.

1. $a_{h}^{r}=2 a_{h-1}^{r-1}$ if $1 \leq h \leq 2 r-1$;
2. $k_{r} a_{h-2}^{r-1} \geq a_{h}^{r}$ if $2 \leq h \leq 2 r$;
3. $a_{h}^{r-1} \geq a_{h}^{r}$ if $0 \leq h \leq 2 r-2$.

Proof. Recall that $a_{h}^{r}=2^{h}$ if $0 \leq h \leq r$ and $a_{h}^{r}=2^{r-i} k_{1} k_{2} \cdots k_{i}$ if $h=r+i$ with $1 \leq i \leq r$, where $4 \leq k_{1} \leq k_{2} \leq \cdots \leq k_{r}$.
(1) If $1 \leq h \leq r$, then $a_{h}^{r}=2^{h}=2\left(2^{h-1}\right)=2 a_{h-1}^{r-1}$. For $r+1 \leq h \leq 2 r-1$, we have $h=r+i$ for some $1 \leq i \leq r-1$. Hence $h-1=(r-1)+i$ gives $a_{h-1}^{r-1}=2^{(r-1)-i} k_{1} k_{2} \cdots k_{i}$. Therefore $2 a_{h-1}^{r-1}=a_{h}^{r}$.
(2) Suppose $2 \leq h \leq r+1$. Then $a_{h-2}^{r-1}=2^{h-2}$, and $a_{h}^{r}=2^{h}$ if $h<r+1$ and $a_{h}^{r}=2^{r-1} k_{1}$ if $h=r+1$. For $r+2 \leq h \leq 2 r$, we have $h-2=(r-1)+(i-1)$ for some $2 \leq i \leq r$ and so, $a_{h-2}^{r-1}=2^{r-i} k_{1} k_{2} \cdots k_{i-1}$. Therefore, $k_{r} a_{h-2}^{r-1} \geq a_{h}^{r}$ in each case as $k_{r} \geq k_{i} \geq k_{1} \geq 4$.
(3) Note that $a_{h}^{r-1}=2^{h}$ for $1 \leq h \leq r-1$, and $a_{h}^{r-1}=2^{(r-2)} k_{1}$ for $h=r=$ $(r-1)+1$, and finally, $a_{h}^{r-1}=2^{r-i-2} k_{1} k_{2} \cdots k_{i} k_{i+1}$ for $h=(r-1)+(i+1)$ for $1 \leq i \leq r$. Since $k_{i+1} \geq k_{1} \geq 4$, we have $a_{h}^{r-1} \geq a_{h}^{r}$ in all the three cases.

Lemma 2.5. Every subgraph of the graph G of minimum degree at least h has at least a_{h}^{r} vertices.

Proof. The graph G is the product of r cycles. We prove the result by induction on r. The result holds obviously for $h=0$ and $h=1$ and so it holds for $r=1$. Suppose $r \geq 2$ and $h \geq 2$. Assume that the result holds for the product of $r-1$ cycles. We have $G=C_{k_{1}} \square C_{k_{2}} \square \cdots \square C_{k_{r}}$, where $4 \leq k_{1} \leq k_{2} \leq \cdots \leq k_{r}$. Write G as $G=H \square C_{k_{r}}$, where $H=C_{k_{1}} \square C_{k_{2}} \square \cdots \square C_{k_{r-1}}$. Then $G=H^{1} \cup H^{2} \cup \cdots \cup$ $H^{k_{r}} \cup\left(M_{1} \cup M_{2} \cup \cdots \cup M_{k_{r}}\right)$, where H^{i} is the copy of H corresponding to vertex i of $C_{k_{r}}$ and M_{i} is the perfect matching between the corresponding vertices of H^{i} and H^{i+1}.

Let K be a subgraph of G with $\delta(K) \geq h$. We prove that $|V(K)| \geq a_{h}^{r}$. Clearly, K intersects at least one H^{i}. Let $K^{i}=K \cap H^{i}$ for $i=1,2, \ldots, k_{r}$. We have the following three cases.
(1) Suppose only one K^{i} is non-empty. Due to symmetry in G, we may assume K^{1} is non-empty and K^{j} is empty for every $j \neq 1$. Therefore K is a subgraph of H^{1} and it has minimum degree at least h in H^{1}. Since H^{1} is $2(r-1)$ regular, $h \leq 2 r-2$. Suppose $h=2 r-2$. Then $K=H^{1}$ and so, $|V(K)|=$ $k_{1} k_{2} \cdots k_{r-1}$. If $r=2$, then $|V(K)|=k_{1} \geq 4=a_{2}^{2}=a_{h}^{r}$. If $r \geq 3$, then $|V(K)| \geq$ $4 k_{1} k_{2} \cdots k_{r-2}=a_{h}^{r}$ as $k_{r-1} \geq 4$. If $h<2 r-2$, then, by induction and Lemma $2.4(3)$, we have $|V(K)| \geq a_{h}^{r-1} \geq a_{h}^{r}$.
(2) Suppose K^{i} is non-empty for all i. Note that in the graph G, every vertex of H^{i} has exactly one neighbour in H^{i-1} and one in H^{i+1}. Hence the minimum degree of K^{i} is at least $h-2$. By induction, $\left|V\left(K^{i}\right)\right| \geq a_{h-2}^{r-1}$. Therefore, by Lemma 2.4(2),

$$
|V(K)|=\left|V\left(K^{1}\right)\right|+\left|V\left(K^{2}\right)\right|+\cdots+\left|V\left(K^{k_{r}}\right)\right| \geq k_{r} a_{h-2}^{r-1} \geq a_{h}^{r}
$$

(3) Suppose at least two K^{i} are non-empty and at least one K^{i} is empty. Hence, we may assume that $K^{1} \neq \emptyset$ but $K^{k_{r}}=\emptyset$. Further, we get an integer $1<t<k_{r}$ such that $K^{t} \neq \emptyset$ but $K^{t+1}=\emptyset$. Then $\delta\left(K^{j}\right) \geq h-1$ and so, by induction, $\left|V\left(K^{j}\right)\right| \geq a_{h-1}^{r-1}$ for $j=1, t$. Now, by Lemma 2.4(1),

$$
|V(K)| \geq\left|V\left(K^{1}\right)\right|+\left|V\left(K^{t}\right)\right| \geq 2 a_{h-1}^{r-1}=a_{h}^{r}
$$

This completes the proof.
The following result is an immediate consequence of Lemmas 2.3 and 2.5.
Corollary 2.6. W_{h}^{r} is a smallest subgraph of the graph G of minimum degree at least h.

We obtain some more properties of the subgraph W_{h}^{r} of G to obtain an upper bound on the conditional connectivity of the graph G.

First, we introduce some notations. Let K be a graph and let Y be a subgraph of K. A neighbour of Y in K is a vertex in $V(K) \backslash V(Y)$ that is adjacent to
a vertex of Y. Let $N(Y)$ denote the set of all neighbours of Y in K and let $N[Y]=N(Y) \cup V(Y)$. Also, for a subgraph H of K, let $N_{H}(Y)$ be the set of all neighbours of Y that are present in H and let $N_{H}[Y]=N_{H}(Y) \cup V(Y)$.

The following result is analogous to the result of hypercubes which states that if K is a subgraph of the hypercube Q_{n} isomorphic to Q_{h}, then every vertex of Q_{n} which is not in K has at most one neighbour in K; see [1].

Lemma 2.7. If $0 \leq h<2 r-1$ and K is a subgraph of G isomorphic to the graph W_{h}^{r}, then every vertex of G belonging to $V(G) \backslash V(K)$ has at most one neighbour in the subgraph K.

Proof. We argue by induction on r. If $r=1$, then G is just a cycle and so the result holds obviously. Suppose $r \geq 2$. Assume that the result holds for the product of any $r-1$ cycles. We have $G=H \square C_{k_{r}}$. Then $G=H^{1} \cup H^{2} \cup \cdots \cup$ $H^{k_{r}} \cup\left(M_{1} \cup M_{2} \cup \cdots \cup M_{k_{r}}\right)$, where H^{i} is the copy of H corresponding to vertex i of $C_{k_{r}}$ and M_{i} is the perfect matching between the corresponding vertices of H^{i} and H^{i+1}. Since the graph W_{h}^{r} is isomorphic to $W_{h-1}^{r-1} \square K_{2}$, we may assume that W_{h}^{r} is a subgraph of $H \square K_{2}$ by considering W_{h-1}^{r-1} as a subgraph of H. Hence, we may assume that K is a subgraph of $H^{2} \cup H^{3} \cup M_{2}$, where M_{2} is the perfect matching between H^{2} and H^{3}.

Let $K^{i}=K \cap H^{i}$ for $i=2,3$. Then K^{i} is isomprphic to W_{h-1}^{r-1}. Let x be any vertex of $V(G) \backslash V(K)$. If x is in $V\left(H^{2}\right)$, then, by induction, x has at most one neighbour in K^{2}. Then x has no neighbour in K^{3} and so, it has at most one neighbour in K. Similarly, x has at most one neighbour in K if it belongs to $V\left(H^{3}\right)$. Suppose x is in H^{j} for some $j \notin\{2,3\}$. Then x has exactly one neighbour in H^{j+1} and one in H^{j-1} each and no neighbour in H^{i} for any $i \notin\{j-1, j+1\}$. This shows that x has at most one neighbour in $H^{2} \cup H^{3}$ and hence in K as $k_{r} \geq 4$. This completes the proof.

Lemma 2.8. If $0 \leq h \leq 2 r-1$ and $Y=W_{h}^{r}$, then any vertex of G which is not in $N[Y]$ has at most two neighbours in $N[Y]$.

Proof. We proceed by induction on r. The result holds trivially for $r=1$ as G is just a cycle in this case. Suppose $r \geq 2$. Assume that the result holds for the product of any $r-1$ cycles. Write G as $H \square C_{k_{r}}$, where $H=C_{k_{1}} \square C_{k_{2}} \square \cdots \square C_{k_{r-1}}$. Since the graph W_{h}^{r} is isomorphic to $W_{h-1}^{r-1} \square K_{2}$, we may assume that $Y=W_{h}^{r}$ is a subgraph of $H^{2} \cup H^{3} \cup M_{2}$. Then Y has neighbours in H^{1} and H^{4}. Let $Y_{i}=W_{h}^{r} \cap H^{i}$ for $i=2,3$. Let $S_{1}=N_{H^{1}}\left(Y_{2}\right), S_{2}=N_{H^{2}}\left[Y_{2}\right], S_{3}=N_{H^{3}}\left[Y_{3}\right]$ and $S_{4}=N_{H^{4}}\left(Y_{3}\right)$. Then $N[Y]=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}$.

Let $x \in V(G) \backslash N[Y]$. Then x is a vertex of H^{j} for some j. If $j>4$, then x has at most two neighbours in the set $V\left(H^{1}\right) \cup V\left(H^{2}\right) \cup V\left(H^{3}\right) \cup V\left(H^{4}\right)$ and so in its subset $N[Y]$. Suppose $j \in\{1,2,3,4\}$. Then $h \leq 2 r-2$ as for $h=2 r-1$, we have $Y=H^{2} \cup H^{3} \cup M_{2}$ and so, $N[Y]=V\left(H^{1}\right) \cup V\left(H^{2}\right) \cup V\left(H^{3}\right) \cup V\left(H^{4}\right)$.

The subgraph of G induced by the set S_{i} is isomorphic to the graph W_{h-1}^{r-1} for $i=1,4$. If $j \in\{1,4\}$, then x has at most one neighbour in $S_{1} \cup S_{4}$ and at most one in $V\left(H^{2}\right) \cup V\left(H^{3}\right)$ by Lemma 2.7. If $j=2$, then, by induction, x has at most two neighbours in S_{2} and no neighbour in $S_{1} \cup S_{3} \cup S_{4}$. Similarly, if $j=3$, then x has at most two neighbours in S_{3} and no neighbour in $S_{1} \cup S_{2} \cup S_{4}$. Thus, in any case, x has at most two neighbours in $N[Y]$.

Lemma 2.9. For $0 \leq h \leq 2 r-1$, the inequality $(2 r-h+1) a_{h}^{r} \leq k_{1} k_{2} \cdots k_{r}$ holds. Moreover, the inequality is strict if $h<2 r-1$.

Proof. Recall that $4 \leq k_{1} \leq k_{2} \cdots \leq k_{r}$, and $a_{h}^{r}=2^{h}$ if $h \leq r$ and $a_{h}^{r}=$ $2^{(r-i)} k_{1} k_{2} \cdots k_{i}$ if $h=r+i$. For convenience, let $L=(2 r-h+1) a_{h}^{r}$ and $R=$ $k_{1} k_{2} \cdots k_{r}$. Then $L=2 a_{h}^{r}=4 k_{1} k_{2} \cdots k_{r-1} \leq R$ for $h=2 r-1$. Suppose $h \leq 2 r-2$. If $h=0$ or $h=1$, then $L<4^{r} \leq R$. Similarly, if $2 \leq h \leq r$, then $L<2 r a_{h}^{r}=$ $2 r 2^{h} \leq 2 r 2^{r} \leq 4^{r} \leq R$ as $2 r \leq 2^{r}$. Suppose $h=r+i$ with $1 \leq i \leq r-2$. Then $L=(r-i+1) 2^{r-i} k_{1} k_{2} \cdots k_{i}<2^{2(r-i)} k_{1} k_{2} \cdots k_{i}$, as $2 l \leq 2^{l}$ if $l \geq 1$. This shows that $L \leq 4^{r-i} k_{1} k_{2} \cdots k_{i} \leq k_{1} k_{2} \cdots k_{r}=R$.

3. Conditional Vertex Connectivity

Recall from Section 2 the graph $G=C_{k_{1}} \square C_{k_{2}} \square \cdots \square C_{k_{r}}$ and its h-regular subgraph W_{h}^{r} with a_{h}^{r} vertices, where $4 \leq k_{1} \leq k_{2} \leq \cdots \leq k_{r}$. In this section, we prove that the conditional h-vertex connectivity $\kappa^{h}(G)$ the graph G is $(2 r-h) a_{h}^{r}$. Using Lemmas 2.7, 2.8 and 2.9, it easily follows that $\kappa^{h}(G) \leq(2 r-h) a_{h}^{r}$.
Lemma 3.1. If $0 \leq h \leq 2 r-2$, then $\kappa^{h}(G) \leq(2 r-h) a_{h}^{r}$.
Proof. We have $G=C_{k_{1}} \square C_{k_{2}} \square \cdots \square C_{k_{r}}$. We simply denote the subgraph W_{h}^{r} of G by Y. Then $|V(Y)|=a_{h}^{r}$. Since G is $2 r$-regular and Y is h-regular, every vertex of Y has $2 r-h$ neighbours in the $G-V(Y)$. By Lemma 2.7, $|N(Y)|=(2 r-$ $h)|V(Y)|=(2 r-h) a_{h}^{r}$. This gives $|N[Y]|=|V(Y) \cup N(Y)|=|V(Y)|+|N(Y)|=$ $(2 r-h+1) a_{h}^{r}$. Therefore, by Lemma 2.9, $|N[Y]|<k_{1} k_{2} \cdots k_{r}=|V(G)|$. Hence $V(G) \backslash N[Y]$ is a non-empty set and by Lemma 2.8, every member of this set has at most two neighbours in $N[Y]$. Consequently, the minimum degree of the subgraph of G induced by this set is at least $2 r-2 \geq h$. Already, the minimum degree of the graph Y is h. Hence the graph $G-N(Y)$ is disconnected and every component of it has minimum degree at least h. Thus $N(Y)$ is an h-vertex cut of G. Therefore $\kappa^{h}(G) \leq|N(Y)|=(2 r-h) a_{h}^{r}$.

To prove the reverse inequality for $\kappa^{h}(G)$, we obtain the following lemma.
Lemma 3.2. If $0 \leq h \leq 2 r-1$ and Y is a subgraph of the graph G with minimum degree at least h, then $|N[Y]| \geq a_{h}^{r}(2 r-h+1)$.

Proof. If $N[Y]=V(G)$, then the result follows obviously from Lemma 2.9. Suppose $N[Y] \neq V(G)$. We prove the result by induction on r. Since G is $2 r$ regular, all $2 r$ neighbours of any vertex of Y belong to the set $N[Y]$. Hence $|N[Y]| \geq 2 r+1$. Therefore the result holds for $h=0$. Also, the result trivially follows for $r=1$ and $h=1$ as in this case G is a cycle of length $k_{1} \geq 4, Y$ is a path on at least two vertices and $a_{1}^{1}=2$.

Suppose $r \geq 2$ and $h \geq 1$. Assume that the result holds for a graph that is the product of $r-1$ cycles. Let $G=C_{k_{1}} \square C_{k_{2}} \square \cdots \square C_{k_{r}}$. Then $G=H \square C_{k_{r}}$, where $H=C_{k_{1}} \square C_{k_{2}} \square \cdots \square C_{k_{r-1}}$. Then G contains k_{r} vertex-disjoint copies $H^{1}, H^{2}, \ldots, H^{k_{r}}$ of H. Then every vertex of H^{i} has one neighbour in H^{i-1} and H^{i+1}, where the addition and subtraction in the superscript is carried out modulo k_{r}. Let Y be a subgraph of G with $\delta(Y) \geq h$ and $N[Y] \neq V(G)$. Then Y intersects at least one copy of H^{i}. Let $Y_{i}=Y \cap H^{i}$ for $i=1,2, \ldots, k_{r}$.

Case 1. $\quad Y_{i} \neq \emptyset$ for only one value of i. Without loss of generality we may assume that only Y_{1} is non-empty. Then $Y=Y_{1}$ is contained in the graph H^{1}. Since H^{1} is $(2 r-2)$-regular, $h \leq 2 r-2$. Also, the minimum degree of Y in H^{1} is at least h. Hence, by Lemma 2.5, Y has at least a_{h}^{r-1} vertices. We have $N[Y]=N_{H^{1}}[Y] \cup N_{H^{k r}}(Y) \cup N_{H^{2}}(Y)$. If $h=2 r-2$, then $Y=H^{1}$ and so, $N[Y]=V\left(H^{1}\right) \cup V\left(H^{2}\right) \cup V\left(H^{k_{r}}\right)$. Therefore

$$
|N[Y]| \geq 3\left|V\left(H^{1}\right)\right|=3 k_{1} k_{2} \cdots k_{r-1} \geq 12 k_{1} k_{2} \cdots k_{r-2}=(2 r-h+1) a_{h}^{r} .
$$

Suppose $0 \leq h \leq 2 r-3=2(r-1)-1$. Then, by induction, $\left|N_{H^{1}}[Y]\right| \geq a_{h}^{r-1}(2 r-$ $h-1)$. As $\left|N_{H^{k_{r}}}(Y)\right|=\left|N_{H^{2}}(Y)\right|=|V(Y)| \geq a_{h}^{r-1}$, by Lemma 2.4(3) we have

$$
|N[Y]| \geq a_{h}^{r-1}(2 r-h-1)+2 a_{h}^{r-1}=(2 r-h+1) a_{h}^{r-1} \geq(2 r-h+1) a_{h}^{r} .
$$

Case 2. $\quad Y_{i} \neq \emptyset$ for all $i=1,2, \ldots, k_{r}$. In this case, $N[Y] \supseteq N_{H^{1}}\left[Y_{1}\right] \cup$ $N_{H^{2}}\left[Y_{2}\right] \cup \cdots \cup N_{H^{k_{r}}}\left[Y_{k_{r}}\right]$. If $h=1$, then $\delta_{H^{i}}\left(Y_{i}\right) \geq 0$ and so, by induction, $\left|N_{H^{i}}\left[Y_{i}\right]\right| \geq a_{0}^{r-1}(2(r-1)-0+1)=2 r-1$ implying

$$
\begin{aligned}
|N[Y]| & \geq\left|N_{H^{1}}\left[Y_{1}\right]\right|+\left|N_{H^{2}}\left[Y_{2}\right]\right|+\cdots+\left|N_{H^{k_{r}}}\left[Y_{k_{r}}\right]\right| \\
& \geq k_{r}(2 r-1) \geq 8 r-4 \geq 4 r \geq a_{1}^{r}(2 r)=a_{h}^{r}(2 r-h+1) .
\end{aligned}
$$

Suppose $h \geq 2$. Then $\delta_{H^{i}}\left(Y_{i}\right) \geq h-2 \geq 0$ and so, by induction, $\left|N_{H^{i}}\left[Y_{i}\right]\right| \geq$ $a_{h-2}^{r-1}(2 r-h+1)$ for all i. Therefore, by Lemma 2.4(2),

$$
\begin{aligned}
|N[Y]| & \geq\left|N_{H^{1}}\left[Y_{1}\right]\right|+\left|N_{H^{2}}\left[Y_{2}\right]\right|+\cdots+\left|N_{H^{k_{r}}}\left[Y_{k_{r}}\right]\right| \\
& \geq k_{r} a_{h-2}^{r-1}(2 r-h+1) \geq a_{h}^{r}(2 r-h+1) .
\end{aligned}
$$

Case 3. $Y_{i} \neq \emptyset$ for more than one but not all values of i. Without loss of generality, we may assume that Y_{1} is non-empty but $Y_{k_{r}}$ is empty. Let t be
the largest integer such that Y_{t} is non-empty. Then $1<t<k_{r}$; see Figure 3. Suppose that $h=2 r-1$. Then $Y_{1}=H^{1}$ and $Y_{t}=H^{t}$. Hence $N[Y] \supseteq V\left(H^{1}\right) \cup$ $V\left(H^{2}\right) \cup V\left(H^{t}\right) \cup V\left(H^{t+1}\right) \cup V\left(H^{k_{r}}\right)$. Since $k_{r} \geq 4, t \neq 2$ or $t+1 \neq k_{r}$ and $\left|V\left(H^{1}\right)\right|=\left|V\left(H^{i}\right)\right|$ for all $i>1$. By Lemma 2.9,

$$
|N[Y]| \geq 4\left|V\left(H^{1}\right)\right|=4|V(H)| \geq 4 k_{1} k_{2} \cdots k_{r-1}=(2 r-h+1) a_{h}^{r} .
$$

Figure 3. The graph G with $Y_{j}=\emptyset$ for $t<j \leq k_{r}$.
Suppose that $0 \leq h \leq 2 r-2$. The graph Y_{i} has $\left|V\left(Y_{i}\right)\right|$ neighbours in H^{i-1} and H^{i+1} for $i=1, t$. Therefore $|N[Y]| \geq\left|N_{H^{1}}\left[Y_{1}\right]\right|+\left|N_{H^{t}}\left[Y_{t}\right]\right|+\left|V\left(Y_{1}\right)\right|+\left|V\left(Y_{t}\right)\right|$. If $i \in\{1, t\}$, then $\delta_{H^{i}}\left(Y_{i}\right) \geq h-1$ and so, by induction, $\left|N_{H^{i}}\left(Y_{i}\right]\right| \geq a_{h-1}^{r-1}(2 r-h)$. Also, by Lemma 2.5, $\left|V\left(Y_{i}\right)\right| \geq a_{h-1}^{r-1}$. Hence, by Lemma 2.4(1), we have

$$
|N[Y]| \geq 2 a_{h-1}^{r-1}(2 r-h)+2 a_{h-1}^{r-1}=a_{h}^{r}(2 r-h)+a_{h}^{r}=a_{h}^{r}(2 r-h+1) .
$$

Thus $|N[Y]| \geq a_{h}^{r}(2 r-h+1)$ in each case. This completes the proof.
Proposition 3.3. If $0 \leq h \leq 2 r-2$ and S is an h-vertex cut of the graph G, then $|S| \geq a_{h}^{r}(2 r-h)$.

Proof. We argue by induction on r. Suppose $h=0$. Then S is a traditional vertex cut of G. Therefore $|S| \geq 2 r=a_{0}^{r}(2 r-0)$ as G is $2 r$-connected by Lemma 2.1. Hence the result holds for $h=0$ and so for $r=1$. Suppose $r \geq 2$ and $h \geq 1$. Assume that the result is true for the Cartesian product of $r-1$ cycles, each of length at least 4. Let $G=C_{k_{1}} \square C_{k_{2}} \square \cdots \square C_{k_{r}}$. Then $G=H \square C_{k_{r}}$, where $H=C_{k_{1}} \square C_{k_{2}} \square \cdots \square C_{k_{r-1}}$. Then G is obtained by replacing $i^{\text {th }}$ vertex of $C_{k_{r}}$ by the copy H^{i} of H and replacing each edge $C_{k_{r}}$ by the matching between the two copies of H^{i} corresponding to the end vertices of that edge.

As S is an h-vertex cut of G, the graph $G-S$ is disconnected and each component of it has minimum degree h. Let Y be a subgraph of $G-S$ consisting of at least one but not all components of $G-S$ and let Z be the subgraph consisting of the remaining components. Thus $G-S=Y \cup Z$ and further, $\delta(Y) \geq h$ and $\delta(Z) \geq h$. As S is a cut, $N(Y) \subseteq S$ and $N(Z) \subseteq S$ and so, $|S| \geq|N(Y)|$ and $|S| \geq|N(Z)|$. Note that Y and Z each intersects H^{i} for at least one i. Let $S_{i}=S \cap V\left(H^{i}\right), Y_{i}=Y \cap V\left(H^{i}\right)$ and $Z_{i}=Z \cap V\left(H^{i}\right)$. Depending upon the nature of Y and Z, the proof is divided into several cases.

Case 1. Suppose $Y_{i} \neq \emptyset$ for only one i. Without loss of generality, we may assume that only Y_{1} is non-empty. Then $Y=Y_{1}$ is contained in H^{1}. Therefore $\delta_{H^{1}}(Y) \geq h-1$. As H^{1} is $(2 r-2)$-regular, $0 \leq h \leq 2 r-2$. If $h=2 r-2$, then $Y=H^{1}, N(Y)=V\left(H^{k_{r}}\right) \cup V\left(H^{2}\right)$ and therefore,

$$
\begin{aligned}
|S| & \geq|N(Y)|=\left|V\left(H^{k_{r}}\right)\right|+\left|V\left(H^{2}\right)\right|=2 k_{1} k_{2} \cdots k_{r-2} k_{r-1} \\
& \geq 8 k_{1} k_{2} \cdots k_{r-2}=a_{h}^{r}(2 r-h) .
\end{aligned}
$$

Suppose $0 \leq h \leq 2 r-3=2(r-1)-1$. The graph Y has $|V(Y)|$ neighbours in each of $H^{k_{r}}$ and H^{2}. Therefore $|N(Y)|=\left|N_{H^{1}}(Y)\right|+|V(Y)|+|V(Y)|=$ $\left|N_{H^{1}}[Y]\right|+|V(Y)|$. By Lemmas 2.4(3), 2.5 and 3.2,

$$
|S| \geq|N(Y)| \geq a_{h}^{r-1}(2 r-h-1)+a_{h}^{r-1}=a_{h}^{r-1}(2 r-h) \geq a_{h}^{r}(2 r-h) .
$$

Case 2. Suppose $Y_{i} \neq \emptyset$ for more than one but not all values of i. Without loss of generality, we may assume that Y_{1} is non-empty but $Y_{k_{r}}$ is empty. Suppose there is an integer t with $1<t<k_{r}$ such that Y_{t} is non-empty. Note that $\delta_{H^{1}}\left(Y_{1}\right) \geq h-1$. Further, the set $S_{k_{r}}$ contains all $\left|V\left(Y_{1}\right)\right|$ neighbours of Y_{1} present in $H^{k_{r}}$ and S_{1} contains the set $N_{H^{1}}\left(Y_{1}\right)$ of neighbours of Y_{1} in H^{1}. Therefore, by Lemma 3.2,

$$
\left|S_{1} \cup S_{k_{r}}\right| \geq\left|N_{H^{1}}\left(Y_{1}\right)\right|+\left|V\left(Y_{1}\right)\right|=\left|N_{H^{1}}\left[Y_{1}\right]\right| \geq(2 r-h) a_{h-1}^{r-1} .
$$

Suppose Y_{i} is empty for more than one values of i. Suppose $Y_{k_{r}-1}$ is empty. Then we can choose t so that Y_{t+1} is empty. Then $\delta_{H^{t}}\left(Y_{t}\right) \geq h-1$. The set S contains $\left|N_{H^{1}}\left(Y_{1}\right)\right|$ neighbours of Y_{t} present in H^{t} and the $\left|V\left(Y_{t}\right)\right|$ neighbours of Y_{t} that are present in H^{t+1}. Thus, by Lemmas 2.4(1) and 3.2,

$$
\begin{aligned}
|S| & \geq\left|S_{1} \cup S_{k_{r}}\right|+\left|N_{H^{t}}\left(Y_{t}\right)\right|+\left|V\left(Y_{t}\right)\right| \geq(2 r-h) a_{h-1}^{r-1}+\left|N_{H^{t}}\left[Y_{t}\right]\right| \\
& \geq 2(2 r-h) a_{h-1}^{r-1} \geq a_{h}^{r}(2 r-h) .
\end{aligned}
$$

Similarly, if $Y_{k_{r}-1}$ is non-empty, then we can choose t so that Y_{t-1} is empty and so, in this case S contains $N_{H^{t}}\left(Y_{t}\right)$ and $N_{H^{t-1}}\left(Y_{t}\right)$ implying $|S| \geq a_{h}^{r}(2 r-h)$.

Suppose Y_{i} is non-empty for all $1 \leq i \leq k_{r}-1$. Here we calculate $\left|S_{i}\right|$ by using Lemma 3.2 or induction. To use induction, we need to consider the nature
of the graph Z also. If $Z_{i} \neq \emptyset$ for only one value of i, then result follows from Case 1. Suppose $Z_{i} \neq \emptyset$ for more than one values of i. If $Z_{i}=\emptyset$ for at least two values of i, then the result follows from the above paragraph by replacing Y with Z. It remains to consider the two subcases depending on whether Z_{i} is empty for exactly one value of i or no value of i.

Subcase 1. $Z_{i}=\emptyset$ for exactly one value of i. We have two subcases depending on $i=k_{r}$ or $i<k_{r}$.
(i) Suppose $Z_{k_{r}}$ is empty. Then Z_{j} is non-empty like Y_{j} for $1 \leq j<k_{r}$; Figure $4(\mathrm{a})$. Suppose $h=1$. Then $\delta_{H^{i}}\left(Y_{i}\right) \geq 0$ and $\delta_{H^{i}}\left(Z_{i}\right) \geq 0$ for all i. Hence $\left|S_{1} \cup S_{k_{r}}\right| \geq(2 r-1) a_{0}^{r-1}=(2 r-1)$ and by induction, $\left|S_{i}\right| \geq(2(r-1)-0) a_{0}^{r-1}=$ $2 r-2$ for $i \in\left\{2,3, \ldots, k_{r}-1\right\}$. Therefore, as $S=S_{1} \cup S_{2} \cup \cdots \cup S_{k_{r}}$, we have

$$
\begin{aligned}
|S| & =\left(\left|S_{1} \cup S_{k_{r}}\right|\right)+\sum_{i=2}^{k_{r}-1}\left|S_{i}\right| \geq(2 r-1)+\sum_{i=2}^{k_{r}-1}(2 r-2) \\
& =(2 r-1)+(2 r-2)\left(k_{r}-2\right) \geq 2(2 r-1)=(2 r-h) a_{h}^{r} .
\end{aligned}
$$

Suppose $h \geq 2$. Since $Y_{k_{r}}$ and $Z_{k_{r}}$ are empty, $\delta_{H^{k_{r}-1}}\left(Y_{k_{r}-1}\right) \geq h-1>h-2$ and $\delta_{H^{k_{r}-1}}\left(Z_{k_{r}-1}\right) \geq h-1>h-2$. Thus $S_{k_{r}-1}$ is an $(h-2)$-cut in $H^{k_{r}-1}$. For $i \in\left\{2,3, \ldots, k_{r}-2\right\}$, as both Y_{i} and Z_{i} are non-empty subgraphs of H^{i} of minimum degree at least $h-2, S_{i}$ is an $(h-2)$-cut in H^{i}. Hence, by induction, $\left|S_{i}\right| \geq(2 r-h) a_{h-2}^{r-1}$ for $i \in\left\{2,3, \ldots, k_{r}-1\right\}$. Therefore

$$
\begin{array}{rlrl}
|S| & =\left(\left|S_{1} \cup S_{k_{r}}\right|\right)+\sum_{i=2}^{k_{r}-1}\left|S_{i}\right| \geq(2 r-h) a_{h-1}^{r-1}+ & \sum_{i=2}^{k_{r}-1}(2 r-h) a_{h-2}^{r-1} \\
& =(2 r-h) a_{h-1}^{r-1}+\left(k_{r}-2\right)(2 r-h) a_{h-2}^{r-1} & & \\
& \geq(2 r-h) a_{h-1}^{r-1}+\frac{k_{r}}{2} a_{h-2}^{r-1}(2 r-h) & & \left(\text { since } k_{r} \geq 4\right) \\
& \geq(2 r-h) a_{h-1}^{r-1}+\frac{1}{2} a_{h}^{r}(2 r-h) & & \text { (by Lemma 2.4(2)) } \\
& =(2 r-h) a_{h-1}^{r-1}+a_{h-1}^{r-1}(2 r-h) & & \text { (by Lemma 2.4(1)) } \\
& =2 a_{h-1}^{r-1}(2 r-h) & & \\
& =a_{h}^{r}(2 r-h) & & \text { (by Lemma 2.4(1)). }
\end{array}
$$

(ii) Suppose $Z_{k_{r}}$ is non-empty. Then Z_{l} is empty for some l with $1 \leq l<k_{r}$ and Z_{j} is non-empty for every $j \neq l$; see Figure $4(\mathrm{~b})$. Then the minimum degree of Z_{l+1} is at least $h-1$ in H^{l+1}. Also, the neighbours of Z_{l+1} present in H^{i} are contained in S_{i} for $i=l, l+1$. Hence $\left|S_{l} \cup S_{l+1}\right| \geq\left|N_{H^{l+1}}\left[Z_{l+1}\right]\right| \geq a_{h-1}^{r-1}(2 r-h)$ by Lemma 3.2. Thus, if $l \notin\left\{1, k_{r}-1\right\}$, then

$$
|S| \geq\left|S_{1} \cup S_{k_{r}}\right|+\left|S_{l} \cup S_{l+1}\right| \geq 2 a_{h-1}^{r-1}(2 r-h)=a_{h}^{r}(2 r-h) .
$$

Figure 4. The graph G with $Y_{k_{r}}=\emptyset$.
Suppose $l=1$. Then by using similar arguments, we see that $S_{1} \cup S_{2} \supseteq$ $N_{H^{2}}\left(Z_{2}\right) \cup N_{H^{1}}\left(Z_{2}\right)$ and $S_{k_{r}} \cup S_{k_{r}-1} \supseteq N_{H^{k_{r}-1}}\left(Y_{k_{r}-1}\right) \cup N_{H^{k_{r}}}\left(Y_{k_{r}-1}\right)$. Hence

$$
|S| \geq\left|S_{1} \cup S_{2}\right|+\left|S_{k_{r}-1} \cup S_{k_{r}}\right| \geq 2 a_{h-1}^{r-1}(2 r-h)=a_{h}^{r}(2 r-h) .
$$

Similarly, for $l=k_{r}-1$,

$$
|S| \geq\left|S_{1} \cup S_{k_{r}}\right|+\left|S_{k_{r}-2} \cup S_{k_{r}-1}\right| \geq 2 a_{h-1}^{r-1}(2 r-h)=a_{h}^{r}(2 r-h) .
$$

Subcase 2. Suppose that $Z_{i} \neq \emptyset$ for $i=1,2, \ldots, k_{r}$. Then $\left|S_{1} \cup S_{k_{r}}\right| \geq$ $a_{h-1}^{r-1}(2 r-h)$ and $\left|S_{i}\right| \geq(2 r-h) a_{h-2}^{r-1}$ for $i \in\left\{2,3, \ldots, k_{r-1}\right\}$. As in Subcase 1(i), we have $|S| \geq a_{h}^{r}(2 r-h)$.

Case 3. Suppose $Y_{i} \neq \emptyset$ for $i=1,2, \ldots, k_{r}$. If Z does not intersect H^{i} for some i, then the result follows by replacing Y by Z in Case 1 and Case 2 . Suppose that Z intersects H^{i} for all $i=1,2, \ldots, k_{r}$. If $h=1$, then the minimum degree of Y_{i} and Z_{i} is at least 0 and so, by induction, $\left|S_{i}\right| \geq a_{0}^{r-1}(2(r-1)-0)=2 r-2$, also as $r \geq 2$ implies

$$
\begin{aligned}
|S| & =\sum_{i=1}^{k_{r}}\left|S_{i}\right| \geq \sum_{i=1}^{k_{r}}(2 r-2)=k_{r}(2 r-2) \geq 4(2 r-2) \\
& =8(r-1)>2(2 r-1)=a_{1}^{r}(2 r-1)
\end{aligned}
$$

Suppose $h \geq 2$. The minimum degree of Y_{i} and Z_{i} is at least $h-2 \geq 0$. This shows that S_{i} is an $(h-2)$-vertex cut of the graph H^{i} for $i=1,2, \ldots, k_{r}$. Therefore, by induction and by Lemma 2.4(2), we have

$$
|S|=\sum_{i=1}^{k_{r}}\left|S_{i}\right| \geq \sum_{i=1}^{k_{r}} a_{h-2}^{r-1}(2 r-h)=k_{r} a_{h-2}^{r-1}(2 r-h) \geq a_{h}^{r}(2 r-h) .
$$

Thus $|S| \geq a_{h}^{r}(2 r-h)$ in all the above cases. This completes the proof.

Corollary 3.4. For the graph G of Theorem $1.2, \kappa^{h}(G)=a_{h}^{r}(2 r-h)$.
Proof. By Lemma 3.1, $\kappa^{h}(G) \leq a_{h}^{r}(2 r-h)$. Since $\kappa^{h}(G)$ is the cardinality of a smallest h-vertex cut of G, by Proposition 3.3, $\kappa^{h}(G) \geq a_{h}^{r}(2 r-h)$. Hence $\kappa^{h}(G)=a_{h}^{r}(2 r-h)$.

4. Conditional Edge Connectivity

In this section, we prove that the conditional edge connectivity $\lambda^{h}(G)$ of the graph G of Theorem 1.2 is same as its conditional vertex connectivity $\kappa^{h}(G)$.

Recall that $G=C_{k_{1}} \square C_{k_{2}} \square \cdots \square C_{k_{r}}$ with $4 \leq k_{1} \leq k_{2} \leq \cdots \leq k_{r}$ and W_{h}^{r} is an h-regular subgraph of G with a_{h}^{r} vertices. We get an upper bound for $\lambda^{h}(G)$ from the set of edges of G each of which has exactly one end vertex in W_{h}^{r}. For such edge sets we introduce the following notation. For a subgraph K of a graph H, let

$$
E_{H}(K)=\{x y: x \in V(K) \text { and } y \in V(H) \backslash V(K)\} .
$$

Lemma 4.1. For $0 \leq h \leq 2 r-1, \lambda^{h}(G) \leq(2 r-h) a_{h}^{r}$.
Proof. Let $K=W_{h}^{r}$. Then K is h-regular and G is $2 r$-regular. Hence $\left|E_{G}(K)\right|=$ $(2 r-h)|V(K)|$ and $G-E_{G}(K)$ is disconnected with K as one of its components. By Lemma 2.7, the minimum degree of every component of $G-E_{G}(K)$ other than K is at least $2 r-1 \geq h$. Therefore $E_{G}(K)$ contains an h-edge cut of G. This shows that $\lambda^{h}(G) \leq\left|E_{G}(K)\right|=(2 r-h) a_{h}^{r}$.

Lemma 4.2. For a subgraph Y of G of minimum degree at least $h,|V(Y)|+$ $\left|E_{G}(Y)\right| \geq a_{h}^{r}(2 r-h+1)$.

Proof. If Y spans G, then $|V(Y)|=k_{1} k_{2} \cdots k_{r} \geq a_{h}^{r}(2 r-h+1)$ by Lemma 2.9. Suppose Y is not a spanning subgraph of G. Since for every x in $N(Y)$ there is a vertex y of Y adjacent to x so that the edge $x y$ belongs to the edge set $E_{G}(Y)$. This implies that $\left|E_{G}(Y)\right| \geq|N(Y)|$. Hence, by Lemma 3.2, $|V(Y)|+\left|E_{G}(Y)\right| \geq$ $|N[Y]| \geq a_{h}^{r}(2 r-h+1)$.

Using this lemma we now obtain the reverse inequality for $\lambda^{h}(G)$.
Proposition 4.3. Let F be an h-edge cut of the graph G. Then $|F| \geq a_{h}^{r}(2 r-h)$.
Proof. Since the graph G is $2 r$-regular, $0 \leq h \leq 2 r$. The result holds obviously for $h=2 r$. Suppose $h=0$. Then F is a set of edges G such that $G-F$ is a disconnected graph. It follows from Lemma 2.1 that G is $2 r$-edge connected and so, $|F| \geq 2 r=a_{0}^{r}(2 r-0)$. Thus the result holds for $h=0$ also. Suppose $1 \leq h \leq 2 r-1$. We prove the result by induction on r. The result follows trivially
for $r=1$. Suppose $r \geq 2$. Assume that the result holds for the product of $r-1$ cycles. Let F be an h-edge cut of G. Then $G-F$ is disconnected and every component of it has minimum degree at least h.

Let Y be a subgraph of $G-F$ consisting of at least one but not all components of $G-F$ and let Z be the subgraph consisting of the remaining components. Then Y and Z are vertex disjoint subgraphs of $G-F$ of minimum degree at least h and their union is $G-F$. Note that F contains both edge sets $E_{G}(Y)$ and $E_{G}(Z)$. Hence $|F| \geq\left|E_{G}(Y)\right|$ and $|F| \geq\left|E_{G}(Z)\right|$.

Write G as $H \square C_{k_{r}}$, where $H=C_{k_{1}} \square C_{k_{2}} \square \cdots \square C_{k_{r-1}}$. Then G is obtained by replacing vertex i of the cycle $C_{k_{r}}$ by a copy H^{i} of H and replacing the edge joining i and $i+1\left(\bmod k_{r}\right)$ by the perfect matching M_{i} between the corresponding vertices of H^{i} and $H^{i+1}\left(\bmod k_{r}\right)$. Then Y intersects at least one H^{i}. Similarly, Z intersects at least one H^{i}. Let $Y_{i}=Y \cap H^{i}$ and $Z_{i}=Z \cap H^{i}$ for $i=1,2, \ldots, k_{r}$.

For a subgraph K of G, let $M_{i}(K)$ be the set of all edges in the matching M_{i} each having exactly one end vertex in K.

Case 1. Suppose $Y_{i} \neq \emptyset$ for only one value of i. Without loss of generality, we may assume that Y_{i} is non-empty for only $i=1$. Then Y is contained in the graph H^{1} and $\delta_{H^{1}}(Y) \geq h$. Since H^{1} is $(2 r-2)$-regular, $h \leq 2 r-2$. If $h=2 r-2$, then $Y=H^{1}$ and so, $\left|E_{G}(Y)\right|=\left|M_{1}\right|+\left|M_{k_{r}}\right|=2\left|V\left(H^{1}\right)\right|=2 k_{1} k_{2} \cdots k_{r-1}$. As $4 \leq k_{r-1}$, we have

$$
\begin{aligned}
a_{h}^{r}(2 r-h) & =2 a_{h}^{r} 2\left(2^{r-(r-2)} k_{1} k_{2} \cdots k_{r-2}\right)=2\left(4 k_{1} k_{2} \cdots k_{r-2}\right) \\
& \leq 2 k_{1} k_{2} \cdots k_{r-2} k_{r-1}=\left|E_{G}(Y)\right| \leq|F| .
\end{aligned}
$$

Suppose $h<2 r-2$. Then $E_{G}(Y) \supseteq E_{H^{1}}(Y) \cup M_{1}(Y) \cup M_{k_{r}}(Y)$. As $\left|M_{1}(Y)\right|=$ $\left|M_{k_{r}}(Y)\right|=|V(Y)|$, by Lemmas 2.4(3), 2.5 and 4.2, we have

$$
\begin{aligned}
\left|E_{G}(Y)\right| & \geq\left(\left|E_{H^{1}}(Y)\right|+|V(Y)|\right)+|V(Y)| \geq a_{h}^{r-1}(2 r-h-1)+a_{h}^{r-1} \\
& =a_{h}^{r-1}(2 r-h) \geq a_{h}^{r}(2 r-h) .
\end{aligned}
$$

Case 2. Suppose $Y_{i} \neq \emptyset$ for more than one but not all values of i. Without loss of generality, we may assume that Y_{1} is non-empty but $Y_{k_{r}}$ is empty. Let t be the largest integer such that Y_{t} is non-empty. Then $1<t<k_{r}$. The minimum degree of Y_{i} in H^{i} is at least $h-1$ for $i=1, t$. The graph Y_{1} has $\left|V\left(Y_{1}\right)\right|$ neighbours in $H^{k_{r}}$ and Y_{t} has $\left|V\left(Y_{t}\right)\right|$ neighbours in H^{t+1}. Hence $E_{G}(Y) \supseteq$ $E_{H^{1}}\left(Y_{1}\right) \cup E_{H^{t}}\left(Y_{t}\right) \cup M_{k_{r}}\left(Y_{1}\right) \cup M_{t}\left(Y_{t}\right)$.

Suppose $h=2 r-1$. Then $Y_{j}=H^{j}$ for $j=1, t$ giving $M_{k_{r}}\left(Y_{1}\right)=M_{k_{r}}\left(H^{1}\right)=$ $M_{k_{r}}$ and $M_{t}\left(Y_{t}\right)=M_{t}\left(H^{t}\right)=M_{t}$. Hence

$$
\begin{aligned}
a_{h}^{r}(2 r-h) & =a_{h}^{r}=2 k_{1} k_{2} \cdots k_{r-1}=\left|V\left(H^{1}\right)\right|+\left|V\left(H^{t}\right)\right| \\
& =\left|M_{k_{r}}\right|+\left|M_{t}\right| \leq\left|E_{G}(Y)\right| \leq|F| .
\end{aligned}
$$

Suppose $h \leq 2 r-2$. Then $h-1 \leq 2 r-3$ and so, by Lemmas 4.2 and 2.4(1),

$$
\begin{aligned}
|F| & \geq\left|E_{G}(Y)\right| \geq\left(\left|E_{H^{1}}\left(Y_{1}\right)\right|+\left|V\left(Y_{1}\right)\right|\right)+\left(\left|E_{H^{t}}\left(Y_{t}\right)\right|+\left|V\left(Y_{t}\right)\right|\right) \\
& \geq 2 a_{h-1}^{r-1}(2 r-h)=(2 r-h) a_{h}^{r} .
\end{aligned}
$$

Case 3. Suppose $Y_{i} \neq \emptyset$ for all $i=1,2, \ldots, k_{r}$. If the graph Z does not intersect H^{i} for some i, then the result follows easily by replacing Y by Z in Case 1 and Case 2. Suppose Z intersects H^{i} for all $i=1,2, \ldots, k_{r}$. Suppose $h=1$. As $r \geq 2, \delta\left(Y_{i}\right) \geq 0$ and $\delta\left(Z_{i}\right) \geq 0$, by induction, we have

$$
\begin{aligned}
\left|E_{G}(Y)\right| & =\sum_{i=1}^{k_{r}}\left|E_{H^{i}}\left(Y_{i}\right)\right| \geq \sum_{i=1}^{k_{r}}(2 r-2) \geq k_{r}(2 r-2) \\
& \geq 4(2 r-2)=8(r-1)>2(2 r-1)=a_{1}^{r}(2 r-1) .
\end{aligned}
$$

Suppose $h \geq 2$. The minimum degree of Y_{i} and Z_{i} is at least $h-2 \geq 0$. Therefore the edge set $E_{H^{i}}\left(Y_{i}\right)$ is an $(h-2)$-edge cut of H^{i}. By induction, $\left|E_{H^{i}}\left(Y_{i}\right)\right| \geq$ $a_{h-2}^{r-1}(2 r-h)$ for $i=1,2, \ldots, k_{r}$. By Lemma 2.4(2),

$$
\begin{aligned}
|F| & \geq\left|E_{G}(Y)\right|=\sum_{i=1}^{k_{r}}\left|E_{H^{i}}\left(Y_{i}\right)\right| \geq \sum_{i=1}^{k_{r}} a_{h-2}^{r-1}(2 r-h) \\
& \geq k_{r} a_{h-2}^{r-1}(2 r-h) \geq a_{h}^{r}(2 r-h) .
\end{aligned}
$$

This completes the proof.
Corollary 4.4. For the graph G of Theorem $1.2, \lambda^{h}(G)=a_{h}^{r}(2 r-h)=\kappa^{h}(G)$.
Proof. By Proposition 4.3, $\lambda^{h}(G) \geq a_{h}^{r}(2 r-h)$ and by Lemma 4.1, $\lambda^{h}(G) \leq$ $a_{h}^{r}(2 r-h)$. Hence $\lambda^{h}(G)=a_{h}^{r}(2 r-h)=\kappa^{h}(G)$ by Corollary 3.4.

This completes the proof of Theorem 1.2.

It is worth mentioning that the edge connectivity part of Theorem 1.2 proves that the following conjecture of $\mathrm{Xu}[7]$ holds for the classes of multidimensional tori and k-ary r-cubes.

Conjecture 4.5. Let k, h be two non-negative integers and G be a connected graph with minimum degree at least k and $a_{h}(G)$ be the minimum cardinality of a vertex set of an h-regular subgraph of G. If $\lambda^{h}(G)$ exists, then $\lambda^{h}(G) \leq$ $a_{h}(G)(k-h)$.

Concluding Remarks.

We determine the conditional h-vertex connectivity and the conditional h-edge connectivity of a multidimensional torus G which is the Cartesian product of r
cycles each of length at least four, for all possible values of h. We first characterize the h-regular subgraph of G with minimum number of vertices and then establish that both these conditional connectivities of G are equal to $(2 r-h)$ times the number of vertices of this subgraph.

Acknowledgement

The second author is financially supported by DST-SERB, Government of India through the project MTR/2018/000447.

References

[1] Y.M. Borse and S.R. Shaikh, On 4-regular 4-connected bipancyclic subgraphs of hypercubes, Discrete Math. Algorithms Appl. 9 (2017) 1750032. https://doi.org/10.1142/S179383091750032X
[2] X.-B. Chen, Panconnectivity and edge-pancyclicity of multidimensional torus networks, Discrete Appl. Math. 178 (2014) 33-45. https://doi.org/10.1016/j.dam.2014.06.021
[3] A.D. Oh and H.-A. Choi, Generalized measures of fault tolerence in n-cube networks, IEEE Trans. Parallel Distrib. Syst. 4 (1993) 702-703. https://doi.org/10.1109/71.242153
[4] A.-H. Esfahanian, Generalized measures of fault tolerance with application to N-cube networks, IEEE Trans. Comput. 38 (1989) 1586-1591. https://doi.org/10.1109/12.42131
[5] A.-H. Esfahanian and S.L. Hakimi, On computing a conditional edge-connectivity of a graph, Inform. Process. Lett. 27 (1988) 195-199. https://doi.org/10.1016/0020-0190(88)90025-7
[6] F. Harary, Conditional connectivity, Networks 13 (1983) 347-357. https://doi.org/10.1002/net. 3230130303
[7] J.-M. Xu, On conditional edge-connectivity of graphs, Acta Math. Appl. Sin. 16 (2000) 414-419. https://doi.org/10.1007/BF02671131
[8] F.T. Leighton, Arrays and trees, in: Introduction to Parallel Algorithms and Architectures, (Morgan Kaufmann, San Mateo, CA, 1992) 1-276. https://doi.org/10.1016/B978-1-4832-0772-8.50005-4
[9] S. Latifi, M. Hegde and M. Naraghi-Pour, Conditional connectivity measures for large multiprocessor systems, IEEE Trans. Comput. 43 (1994) 218-222. https://doi.org/10.1109/12.262126
[10] X.-J. Li and J.-M. Xu, Edge-fault tolerance of hypercube-like networks, Inform. Process. Lett. 113 (2013) 760-763.
https://doi.org/10.1016/j.ipl.2013.07.010
[11] X.-J. Li, Y.-N. Guan, Z. Yan and J.-M. Xu, On fault tolerance of (n, k)-star networks, Theoret. Comput. Sci. 704 (2017) 82-86.
https://doi.org/10.1016/j.tcs.2017.08.004
[12] S. Lin, S. Wang and C. Li, Panconnectivity and edge-pancyclicity of k-ary n-cubes with faulty elements, Discrete Appl. Math. 159 (2011) 212-223.
https://doi.org/10.1016/j.dam.2010.10.015
[13] W. Ning, The h-connectivity of exchanged crossed cube, Theoret. Comput. Sci. 696 (2017) 65-68.
https://doi.org/10.1016/j.tcs.2017.07.023
[14] C.-C. Wei and S.-Y. Hsieh, h-restricted connectivity of locally twisted cubes, Discrete Appl. Math. 217 (2017) 330-339.
https://doi.org/10.1016/j.dam.2016.08.012
[15] M. Xu, J.-M. Xu, X.-M. Hou, Fault diameter of Cartesian product graphs, Inform. Process. Lett. 93 (2005) 245-248.
https://doi.org/10.1016/j.ipl.2004.11.005
[16] L. Ye and J. Liang, On conditional h-vertex connectivity of some networks, Chinese J. Electron. 25 (2016) 556-560.
https://doi.org/10.1049/cje.2016.05.023

Revised 1 July 2020
Accepted 6 July 2020

