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Abstract

The conditional h-vertex (h-edge) connectivity of a connected graph H
of minimum degree k > h is the size of a smallest vertex (edge) set F of H
such that H − F is a disconnected graph of minimum degree at least h. Let
G be the Cartesian product of r ≥ 1 cycles, each of length at least four and
let h be an integer such that 0 ≤ h ≤ 2r−2. In this paper, we determine the
conditional h-vertex-connectivity and the conditional h-edge-connectivity of
the graph G. We prove that both these connectivities are equal to (2r−h)arh,
where arh is the number of vertices of a smallest h-regular subgraph of G.
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1. Introduction

One of the feature of a good interconnection network is its high fault tolerance
capacity. Interconnection network can be modelled into a graph with the help
of which we can study many properties of the network. Connectivity of a mod-
elled graph measures the fault tolerance capacity of the interconnection network.
High fault tolerance capacity of the network plays an important role in practice.
Traditional connectivities have some limitations to measure the fault tolerance
capacity of a network accurately. In order to compute traditional edge connectiv-
ity, one allows failure of all the links incident with the same processor, practically
which is rare. One can overcome this limitation effectively by considering the
conditional connectivity of graphs introduced by Harary [6].

Let G be a connected graph with minimum degree at least k ≥ 1 and let h
be an integer such that 0 ≤ h < k. A set F of vertices (edges) of G such that
G− F is disconnected and each component of it has minimum degree at least h
is an h-vertex (edge) cut of G. The conditional h-vertex (edge) connectivity of G,
denoted by κh(G) (λh(G)), is the minimum cardinality |F | of an h-vertex(edge)
cut F of G. Clearly, h = 0 gives the traditional vertex (edge) connectivity.

Many researchers have worked on the problem of determining the conditional
connectivities for various classes of graphs and determined these parameters for
smaller values of h [4, 5, 7, 9]. Exact values of one or both conditional connec-
tivities are known for some classes of graphs. For the n-dimensional hypercube
Qn, the conditional connectivities λh and κh are same and their common value
is 2h(n − h); see [3, 7]. Li and Xu [10] proved that λh of any n-dimensional
hypercube-like network Gn is also 2h(n− h). Ye and Liang [16] established that
κh is also 2h(n−h) for some members of hypercube-like networks such as Crossed
cubes, Locally twisted cubes, Möbius cubes. Independently, Wei and Hsieh [14]
determined κh for the Locally twisted cubes. Ning [13] obtained κh for the ex-
changed crossed cubes. Both λh and κh are determined for the class of (n, k)-star
graphs by Li et al. [11].

An r-dimensional torus is the Cartesian product of r cycles. The k-ary r-cube,
denoted by Qk

r , is the Cartesian product of r cycles each of length k. In particular,
the hypercube Q2r is Q4

r . Hypercubes, k-ary r-cubes and multidimensional tori
are widely used interconnection networks; see [2, 8, 12, 15].

It is easy to see that an r-dimensional torus is a 2r-regular graph with tra-
ditional vertex connectivity and edge connectivity 2r; see [15]. In this paper, we
determine the conditional h-edge-connectivity as well as the conditional h-vertex-
connectivity of the given multidimensional torus.

By Ck we mean a cycle of length k. For integers h, r, k1, k2, . . . , kr with 0 ≤
h ≤ 2r and 4 ≤ k1 ≤ k2 ≤ · · · ≤ kr, we define a quantity arh as follows.
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Definition 1.1.

arh =

{

2h if 0 ≤ h ≤ r,

2r−i k1k2 · · · ki if h = r + i, 1 ≤ i ≤ r.

We prove that both the conditional connectivities λh and kh are equal to
arh(2r − h) for the Cartesian product of cycles Ck1 , Ck2 , . . . , Ckr .

The following is the main theorem of the paper.

Theorem 1.2. Let h, r, k1, k2, . . . , kr be integers such that 0 ≤ h ≤ 2r − 2
and 4 ≤ k1 ≤ k2 ≤ · · · ≤ kr and let G be the Cartesian product of the cycles

Ck1 , Ck2 , . . . , Ckr . Then λh(G) = κh(G) = arh(2r − h).

Corollary 1.3. Let h, r, k be integers such that 0 ≤ h ≤ 2r − 2, 4 ≤ k and let

Qk
r be the k-ary r-cube. Then λh(Qk

r ) = kh(Qk
r ) = arh(2r − h), where arh = 2h if

0 ≤ h ≤ r and arh = 2r−iki if h = r + i and 1 ≤ i ≤ r.

Corollary 1.4 [3, 7]. For integers h and r with 0 ≤ h ≤ 2r − 2, λh(Q2r) =
kh(Q2r) = 2h(2r − h).

The proof of our main result, Theorem 1.2 is divided into three sections. In
Section 2, we characterize the h-regular subgraph of the graph G with minimum
number of vertices and explore some of its properties. Using these properties
we determine the conditional h-vertex connectivity and the conditional h-edge
connectivity of G in Sections 3 and 4, respectively.

2. Smallest h-Regular Subgraph

In this section, we define a smallest h-regular subgraph of the Cartesian product
of r cycles and obtain some properties of it. We first introduce some notations.

For a graph K, let V (K) denote the set of all vertices of K. If H is a subgraph
K, then δ(K) is the minimum degree of K while δK(H) is the minimum degree
of H in K. The Cartesian product of two graphs H and K is a graph H�K with
vertex set V (H)× V (K). Two vertices (x, y) and (u, v) are adjacent in H�K if
and only if either x = u and y is adjacent to v in K, or y = v and x is adjacent to
u in H. The hypercube Qn is the Cartesian product of n copies of the complete
graph K2.

We use the following notations about the structure of the multidimensional
torus.

Notation.

Consider the graph G of Theorem 1.2. We have G = Ck1�Ck2� · · ·�Ckr , where
Cki is a cycle of length ki for i = 1, 2, . . . , kr and 4 ≤ k1 ≤ k2 ≤ · · · ≤ kr. We can
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write G as G = H�Ckr , where H = Ck1�Ck2� · · ·�Ckr−1
. Label by 1, 2, . . . , kr

the vertices of the cycle Ckr so that i is adjacent to (i+1) (mod kr). Hence G can
be obtained by replacing ith vertex of Ckr by a copy H i of H and replacing edge
joining i and i+1 of Ckr by the perfect matching Mi between the corresponding
vertices of H i and H i+1. Thus G = H1 ∪H2 ∪ · · · ∪Hkr ∪ (M1 ∪M2 ∪ · · · ∪Mkr);
see Figure 1.

...
...

...
...

...

H1 H2 Ht Ht+1 Hkr

M1

Mkr

Mt

Figure 1. G = H�Ckr
.

Henceforth, by G we mean the graph Ck1�Ck2� · · ·�Ckr with 4 ≤ k1 ≤ k2 ≤
· · · ≤ kr, that is, the graph of Theorem 1.2.

From the following lemma, it is clear that G is a 2r-regular and 2r-connected
graph on k1k2 · · · kr vertices.

Lemma 2.1. If Gi is an mi-regular and mi-connected graph on ni vertices for

i = 1, 2, then G1�G2 is an (m1+m2)-regular and (m1+m2)-connected graph on

n1n2 vertices.

We now define an h-regular subgraph, denoted by W r
h , of the graph G.

Definition 2.2. For 4 ≤ k1 ≤ k2 ≤ · · · ≤ kr and 0 ≤ h ≤ 2r, let

W r
h =

{

Qh if 0 ≤ h ≤ r,

Qr−i�Ck1�Ck2� · · ·�Cki if h = r + i and 1 ≤ i ≤ r.

In the following figure, a 2-regular subgraph W 2
2 and a 3-regular subgraph

W 2
3 of the graph C5�C5 are shown by bold lines.

It is known that a smallest h-regular subgraph of the hypercube Qn is iso-
morphic to Qh (see [1]). We prove the analogous result for the Cartesian product
of cycles. In fact, we establish that W r

h is a smallest h-regular subgraph of the
above graph G.
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Figure 2. The subgraph W 2

2
and W 2

3
of C5�C5.

The following lemma follows from Lemma 2.1, Definition 1.1 of the number
arh and the fact that the hypercube Qn is an n-regular, n-connected graph on 2n

vertices for any integer n ≥ 0.

Lemma 2.3. The graph W r
h is h-regular and h-connected with arh vertices.

We need the following lemma that gives relations between different values
of arh.

Lemma 2.4. Let r ≥ 2 and let arh be the quantity given in Definition 1.1. Then
the following statements hold.

1. arh = 2ar−1
h−1 if 1 ≤ h ≤ 2r − 1;

2. kra
r−1
h−2 ≥ arh if 2 ≤ h ≤ 2r;

3. ar−1
h ≥ arh if 0 ≤ h ≤ 2r − 2.

Proof. Recall that arh = 2h if 0 ≤ h ≤ r and arh = 2r−ik1k2 · · · ki if h = r + i
with 1 ≤ i ≤ r, where 4 ≤ k1 ≤ k2 ≤ · · · ≤ kr.

(1) If 1 ≤ h ≤ r, then arh = 2h = 2(2h−1) = 2ar−1
h−1. For r + 1 ≤ h ≤ 2r − 1,

we have h = r + i for some 1 ≤ i ≤ r − 1. Hence h − 1 = (r − 1) + i gives
ar−1
h−1 = 2(r−1)−ik1k2 · · · ki. Therefore 2ar−1

h−1 = arh.

(2) Suppose 2 ≤ h ≤ r + 1. Then ar−1
h−2 = 2h−2, and arh = 2h if h < r + 1 and

arh = 2r−1k1 if h = r+1. For r+2 ≤ h ≤ 2r, we have h− 2 = (r− 1)+ (i− 1) for
some 2 ≤ i ≤ r and so, ar−1

h−2 = 2r−ik1k2 · · · ki−1. Therefore, kra
r−1
h−2 ≥ arh in each

case as kr ≥ ki ≥ k1 ≥ 4.

(3) Note that ar−1
h = 2h for 1 ≤ h ≤ r − 1, and ar−1

h = 2(r−2)k1 for h = r =
(r − 1) + 1, and finally, ar−1

h = 2r−i−2k1k2 · · · kiki+1 for h = (r − 1) + (i+ 1) for
1 ≤ i ≤ r. Since ki+1 ≥ k1 ≥ 4, we have ar−1

h ≥ arh in all the three cases.

Lemma 2.5. Every subgraph of the graph G of minimum degree at least h has

at least arh vertices.
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Proof. The graph G is the product of r cycles. We prove the result by induction
on r. The result holds obviously for h = 0 and h = 1 and so it holds for r = 1.
Suppose r ≥ 2 and h ≥ 2. Assume that the result holds for the product of r − 1
cycles. We have G = Ck1�Ck2� · · ·�Ckr , where 4 ≤ k1 ≤ k2 ≤ · · · ≤ kr. Write
G as G = H�Ckr , where H = Ck1�Ck2� · · ·�Ckr−1

. Then G = H1 ∪H2 ∪ · · · ∪
Hkr ∪ (M1∪M2∪· · ·∪Mkr), where H

i is the copy of H corresponding to vertex i
of Ckr and Mi is the perfect matching between the corresponding vertices of H i

and H i+1.
Let K be a subgraph of G with δ(K) ≥ h. We prove that |V (K)| ≥ arh.

Clearly, K intersects at least one H i. Let Ki = K ∩H i for i = 1, 2, . . . , kr. We
have the following three cases.

(1) Suppose only one Ki is non-empty. Due to symmetry in G, we may
assume K1 is non-empty and Kj is empty for every j 6= 1. Therefore K is a
subgraph of H1 and it has minimum degree at least h in H1. Since H1 is 2(r−1)-
regular, h ≤ 2r − 2. Suppose h = 2r − 2. Then K = H1 and so, |V (K)| =
k1k2 · · · kr−1. If r = 2, then |V (K)| = k1 ≥ 4 = a22 = arh. If r ≥ 3, then |V (K)| ≥
4k1k2 · · · kr−2 = arh as kr−1 ≥ 4. If h < 2r − 2, then, by induction and Lemma
2.4(3), we have |V (K)| ≥ ar−1

h ≥ arh.
(2) Suppose Ki is non-empty for all i. Note that in the graph G, every vertex

of H i has exactly one neighbour in H i−1 and one in H i+1. Hence the minimum
degree of Ki is at least h−2. By induction, |V (Ki)| ≥ ar−1

h−2. Therefore, by Lemma
2.4(2),

|V (K)| =
∣

∣V
(

K1
)
∣

∣+
∣

∣V
(

K2
)
∣

∣+ · · ·+
∣

∣V
(

Kkr
)
∣

∣ ≥ kra
r−1
h−2 ≥ arh.

(3) Suppose at least two Ki are non-empty and at least one Ki is empty.
Hence, we may assume that K1 6= ∅ but Kkr = ∅. Further, we get an integer
1 < t < kr such that Kt 6= ∅ but Kt+1 = ∅. Then δ(Kj) ≥ h − 1 and so, by
induction, |V (Kj)| ≥ ar−1

h−1 for j = 1, t. Now, by Lemma 2.4(1),

|V (K)| ≥
∣

∣V
(

K1
)
∣

∣+
∣

∣V
(

Kt
)
∣

∣ ≥ 2ar−1
h−1 = arh.

This completes the proof.

The following result is an immediate consequence of Lemmas 2.3 and 2.5.

Corollary 2.6. W r
h is a smallest subgraph of the graph G of minimum degree at

least h.

We obtain some more properties of the subgraph W r
h of G to obtain an upper

bound on the conditional connectivity of the graph G.
First, we introduce some notations. LetK be a graph and let Y be a subgraph

of K. A neighbour of Y in K is a vertex in V (K) \V (Y ) that is adjacent to
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a vertex of Y. Let N(Y ) denote the set of all neighbours of Y in K and let
N [Y ] = N(Y ) ∪ V (Y ). Also, for a subgraph H of K, let NH(Y ) be the set of all
neighbours of Y that are present in H and let NH [Y ] = NH(Y ) ∪ V (Y ).

The following result is analogous to the result of hypercubes which states
that if K is a subgraph of the hypercube Qn isomorphic to Qh, then every vertex
of Qn which is not in K has at most one neighbour in K; see [1].

Lemma 2.7. If 0 ≤ h < 2r−1 and K is a subgraph of G isomorphic to the graph

W r
h , then every vertex of G belonging to V (G) \V (K) has at most one neighbour

in the subgraph K.

Proof. We argue by induction on r. If r = 1, then G is just a cycle and so
the result holds obviously. Suppose r ≥ 2. Assume that the result holds for the
product of any r − 1 cycles. We have G = H�Ckr . Then G = H1 ∪H2 ∪ · · · ∪
Hkr ∪ (M1∪M2∪· · ·∪Mkr), where H

i is the copy of H corresponding to vertex i
of Ckr and Mi is the perfect matching between the corresponding vertices of H i

and H i+1. Since the graph W r
h is isomorphic to W r−1

h−1�K2, we may assume that

W r
h is a subgraph of H�K2 by considering W r−1

h−1 as a subgraph of H. Hence,
we may assume that K is a subgraph of H2 ∪H3 ∪M2, where M2 is the perfect
matching between H2 and H3.

Let Ki = K ∩ H i for i = 2, 3. Then Ki is isomprphic to W r−1
h−1 . Let x be

any vertex of V (G) \V (K). If x is in V (H2), then, by induction, x has at most
one neighbour in K2. Then x has no neighbour in K3 and so, it has at most
one neighbour in K. Similarly, x has at most one neighbour in K if it belongs to
V (H3). Suppose x is in Hj for some j /∈ {2, 3}. Then x has exactly one neighbour
in Hj+1 and one in Hj−1 each and no neighbour in H i for any i /∈ {j − 1, j +1}.
This shows that x has at most one neighbour in H2 ∪ H3 and hence in K as
kr ≥ 4. This completes the proof.

Lemma 2.8. If 0 ≤ h ≤ 2r − 1 and Y = W r
h , then any vertex of G which is not

in N [Y ] has at most two neighbours in N [Y ].

Proof. We proceed by induction on r. The result holds trivially for r = 1 as G
is just a cycle in this case. Suppose r ≥ 2. Assume that the result holds for the
product of any r−1 cycles. Write G asH�Ckr , whereH = Ck1�Ck2� · · ·�Ckr−1

.
Since the graph W r

h is isomorphic to W r−1
h−1�K2, we may assume that Y = W r

h

is a subgraph of H2 ∪ H3 ∪ M2. Then Y has neighbours in H1 and H4. Let
Yi = W r

h ∩H i for i = 2, 3. Let S1 = NH1(Y2), S2 = NH2 [Y2], S3 = NH3 [Y3] and
S4 = NH4(Y3). Then N [Y ] = S1 ∪ S2 ∪ S3 ∪ S4.

Let x ∈ V (G) \N [Y ]. Then x is a vertex of Hj for some j. If j > 4, then x
has at most two neighbours in the set V (H1) ∪ V (H2) ∪ V (H3) ∪ V (H4) and so
in its subset N [Y ]. Suppose j ∈ {1, 2, 3, 4}. Then h ≤ 2r − 2 as for h = 2r − 1,
we have Y = H2 ∪H3 ∪M2 and so, N [Y ] = V (H1) ∪ V (H2) ∪ V (H3) ∪ V (H4).
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The subgraph of G induced by the set Si is isomorphic to the graph W r−1
h−1 for

i = 1, 4. If j ∈ {1, 4}, then x has at most one neighbour in S1 ∪ S4 and at most
one in V (H2)∪V (H3) by Lemma 2.7. If j = 2, then, by induction, x has at most
two neighbours in S2 and no neighbour in S1 ∪ S3 ∪ S4. Similarly, if j = 3, then
x has at most two neighbours in S3 and no neighbour in S1 ∪ S2 ∪ S4. Thus, in
any case, x has at most two neighbours in N [Y ].

Lemma 2.9. For 0 ≤ h ≤ 2r − 1, the inequality (2r − h + 1)arh ≤ k1k2 · · · kr
holds. Moreover, the inequality is strict if h < 2r − 1.

Proof. Recall that 4 ≤ k1 ≤ k2 · · · ≤ kr, and arh = 2h if h ≤ r and arh =
2(r−i)k1k2 · · · ki if h = r + i. For convenience, let L = (2r − h + 1)arh and R =
k1k2 · · · kr. Then L = 2arh = 4k1k2 · · · kr−1 ≤ R for h = 2r−1. Suppose h ≤ 2r−2.
If h = 0 or h = 1, then L < 4r ≤ R. Similarly, if 2 ≤ h ≤ r, then L < 2rarh =
2r2h ≤ 2r2r ≤ 4r ≤ R as 2r ≤ 2r. Suppose h = r + i with 1 ≤ i ≤ r − 2. Then
L = (r − i + 1)2r−ik1k2 · · · ki < 22(r−i)k1k2 · · · ki, as 2l ≤ 2l if l ≥ 1. This shows
that L ≤ 4r−ik1k2 · · · ki ≤ k1k2 · · · kr = R.

3. Conditional Vertex Connectivity

Recall from Section 2 the graph G = Ck1�Ck2� · · ·�Ckr and its h-regular sub-
graph W r

h with arh vertices, where 4 ≤ k1 ≤ k2 ≤ · · · ≤ kr. In this section, we
prove that the conditional h-vertex connectivity κh(G) the graph G is (2r−h)arh.
Using Lemmas 2.7, 2.8 and 2.9, it easily follows that κh(G) ≤ (2r − h)arh.

Lemma 3.1. If 0 ≤ h ≤ 2r − 2, then κh(G) ≤ (2r − h)arh.

Proof. We have G = Ck1�Ck2� · · ·�Ckr . We simply denote the subgraph W r
h of

G by Y. Then |V (Y )| = arh. Since G is 2r-regular and Y is h-regular, every vertex
of Y has 2r − h neighbours in the G − V (Y ). By Lemma 2.7, |N(Y )| = (2r −
h)|V (Y )| = (2r−h)arh. This gives |N [Y ]| = |V (Y )∪N(Y )| = |V (Y )|+ |N(Y )| =
(2r − h + 1)arh. Therefore, by Lemma 2.9, |N [Y ]| < k1k2 · · · kr = |V (G)|. Hence
V (G) \N [Y ] is a non-empty set and by Lemma 2.8, every member of this set
has at most two neighbours in N [Y ]. Consequently, the minimum degree of the
subgraph of G induced by this set is at least 2r − 2 ≥ h. Already, the minimum
degree of the graph Y is h. Hence the graph G−N(Y ) is disconnected and every
component of it has minimum degree at least h. Thus N(Y ) is an h-vertex cut
of G. Therefore κh(G) ≤ |N(Y )| = (2r − h)arh.

To prove the reverse inequality for κh(G), we obtain the following lemma.

Lemma 3.2. If 0 ≤ h ≤ 2r−1 and Y is a subgraph of the graph G with minimum

degree at least h, then |N [Y ]| ≥ arh(2r − h+ 1).
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Proof. If N [Y ] = V (G), then the result follows obviously from Lemma 2.9.
Suppose N [Y ] 6= V (G). We prove the result by induction on r. Since G is 2r-
regular, all 2r neighbours of any vertex of Y belong to the set N [Y ]. Hence
|N [Y ]| ≥ 2r + 1. Therefore the result holds for h = 0. Also, the result trivially
follows for r = 1 and h = 1 as in this case G is a cycle of length k1 ≥ 4, Y is a
path on at least two vertices and a11 = 2.

Suppose r ≥ 2 and h ≥ 1. Assume that the result holds for a graph that is
the product of r − 1 cycles. Let G = Ck1�Ck2� · · ·�Ckr . Then G = H�Ckr ,
where H = Ck1�Ck2� · · ·�Ckr−1

. Then G contains kr vertex-disjoint copies
H1, H2, . . . , Hkr of H. Then every vertex of H i has one neighbour in H i−1 and
H i+1, where the addition and subtraction in the superscript is carried out mod-
ulo kr. Let Y be a subgraph of G with δ(Y ) ≥ h and N [Y ] 6= V (G). Then Y
intersects at least one copy of H i. Let Yi = Y ∩H i for i = 1, 2, . . . , kr.

Case 1. Yi 6= ∅ for only one value of i. Without loss of generality we may
assume that only Y1 is non-empty. Then Y = Y1 is contained in the graph H1.
Since H1 is (2r − 2)-regular, h ≤ 2r − 2. Also, the minimum degree of Y in
H1 is at least h. Hence, by Lemma 2.5, Y has at least ar−1

h vertices. We have
N [Y ] = NH1 [Y ] ∪ NHkr (Y ) ∪ NH2(Y ). If h = 2r − 2, then Y = H1 and so,
N [Y ] = V (H1) ∪ V (H2) ∪ V (Hkr). Therefore

|N [Y ]| ≥ 3
∣

∣V
(

H1
)∣

∣ = 3k1k2 · · · kr−1 ≥ 12k1k2 · · · kr−2 = (2r − h+ 1)arh.

Suppose 0 ≤ h ≤ 2r−3 = 2(r−1)−1. Then, by induction, |NH1 [Y ]| ≥ ar−1
h (2r−

h− 1). As |NHkr (Y )| = |NH2(Y )| = |V (Y )| ≥ ar−1
h , by Lemma 2.4(3) we have

|N [Y ]| ≥ ar−1
h (2r − h− 1) + 2ar−1

h = (2r − h+ 1)ar−1
h ≥ (2r − h+ 1)arh.

Case 2. Yi 6= ∅ for all i = 1, 2, . . . , kr. In this case, N [Y ] ⊇ NH1 [Y1] ∪
NH2 [Y2] ∪ · · · ∪ NHkr [Ykr ]. If h = 1, then δHi(Yi) ≥ 0 and so, by induction,
|NHi [Yi]| ≥ ar−1

0 (2(r − 1)− 0 + 1) = 2r − 1 implying

|N [Y ]| ≥
∣

∣NH1 [Y1]
∣

∣+
∣

∣NH2 [Y2]
∣

∣+ · · ·+
∣

∣NHkr [Ykr ]
∣

∣

≥ kr(2r − 1) ≥ 8r − 4 ≥ 4r ≥ ar1(2r) = arh(2r − h+ 1).

Suppose h ≥ 2. Then δHi(Yi) ≥ h− 2 ≥ 0 and so, by induction, |NHi [Yi]| ≥
ar−1
h−2(2r − h+ 1) for all i. Therefore, by Lemma 2.4(2),

|N [Y ]| ≥
∣

∣NH1 [Y1]
∣

∣+
∣

∣NH2 [Y2]
∣

∣+ · · ·+
∣

∣NHkr [Ykr ]
∣

∣

≥ kra
r−1
h−2(2r − h+ 1) ≥ arh(2r − h+ 1).

Case 3. Yi 6= ∅ for more than one but not all values of i. Without loss of
generality, we may assume that Y1 is non-empty but Ykr is empty. Let t be
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the largest integer such that Yt is non-empty. Then 1 < t < kr; see Figure 3.
Suppose that h = 2r − 1. Then Y1 = H1 and Yt = Ht. Hence N [Y ] ⊇ V (H1) ∪
V (H2) ∪ V (Ht) ∪ V (Ht+1) ∪ V (Hkr). Since kr ≥ 4, t 6= 2 or t + 1 6= kr and
|V (H1)| = |V (H i)| for all i > 1. By Lemma 2.9,

|N [Y ]| ≥ 4
∣

∣V
(

H1
)∣

∣ = 4|V (H)| ≥ 4k1k2 · · · kr−1 = (2r − h+ 1)arh.

...
...

...
...

...
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�
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�
Y1 Y2 Yt

H1 H2 Ht Ht+1 Hkr

Figure 3. The graph G with Yj = ∅ for t < j ≤ kr.

Suppose that 0 ≤ h ≤ 2r − 2. The graph Yi has |V (Yi)| neighbours in H i−1

and H i+1 for i = 1, t. Therefore |N [Y ]| ≥ |NH1 [Y1]|+|NHt [Yt]|+|V (Y1)|+|V (Yt)|.
If i ∈ {1, t}, then δHi(Yi) ≥ h− 1 and so, by induction, |NHi [Yi]| ≥ ar−1

h−1(2r− h).

Also, by Lemma 2.5, |V (Yi)| ≥ ar−1
h−1. Hence, by Lemma 2.4(1), we have

|N [Y ]| ≥ 2ar−1
h−1(2r − h) + 2ar−1

h−1 = arh(2r − h) + arh = arh(2r − h+ 1).

Thus |N [Y ]| ≥ arh(2r − h+ 1) in each case. This completes the proof.

Proposition 3.3. If 0 ≤ h ≤ 2r − 2 and S is an h-vertex cut of the graph G,
then |S| ≥ arh(2r − h).

Proof. We argue by induction on r. Suppose h = 0. Then S is a traditional
vertex cut of G. Therefore |S| ≥ 2r = ar0(2r− 0) as G is 2r-connected by Lemma
2.1. Hence the result holds for h = 0 and so for r = 1. Suppose r ≥ 2 and
h ≥ 1. Assume that the result is true for the Cartesian product of r − 1 cycles,
each of length at least 4. Let G = Ck1�Ck2� · · ·�Ckr . Then G = H�Ckr , where
H = Ck1�Ck2� · · ·�Ckr−1

. Then G is obtained by replacing ith vertex of Ckr by
the copy H i of H and replacing each edge Ckr by the matching between the two
copies of H i corresponding to the end vertices of that edge.
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As S is an h-vertex cut of G, the graph G − S is disconnected and each
component of it has minimum degree h. Let Y be a subgraph of G−S consisting
of at least one but not all components of G − S and let Z be the subgraph
consisting of the remaining components. Thus G − S = Y ∪ Z and further,
δ(Y ) ≥ h and δ(Z) ≥ h. As S is a cut, N(Y ) ⊆ S and N(Z) ⊆ S and so,
|S| ≥ |N(Y )| and |S| ≥ |N(Z)|. Note that Y and Z each intersects H i for at
least one i. Let Si = S∩V (H i), Yi = Y ∩V (H i) and Zi = Z ∩V (H i). Depending
upon the nature of Y and Z, the proof is divided into several cases.

Case 1. Suppose Yi 6= ∅ for only one i. Without loss of generality, we may
assume that only Y1 is non-empty. Then Y = Y1 is contained in H1. Therefore
δH1(Y ) ≥ h − 1. As H1 is (2r − 2)-regular, 0 ≤ h ≤ 2r − 2. If h = 2r − 2, then
Y = H1, N(Y ) = V (Hkr) ∪ V (H2) and therefore,

|S| ≥ |N(Y )| =
∣

∣V
(

Hkr
)
∣

∣+
∣

∣V
(

H2
)
∣

∣ = 2k1k2 · · · kr−2kr−1

≥ 8k1k2 · · · kr−2 = arh(2r − h).

Suppose 0 ≤ h ≤ 2r − 3 = 2(r − 1)− 1. The graph Y has |V (Y )| neighbours
in each of Hkr and H2. Therefore |N(Y )| = |NH1(Y )| + |V (Y )| + |V (Y )| =
|NH1 [Y ]|+ |V (Y )|. By Lemmas 2.4(3), 2.5 and 3.2,

|S| ≥ |N(Y )| ≥ ar−1
h (2r − h− 1) + ar−1

h = ar−1
h (2r − h) ≥ arh(2r − h).

Case 2. Suppose Yi 6= ∅ for more than one but not all values of i.Without loss
of generality, we may assume that Y1 is non-empty but Ykr is empty. Suppose
there is an integer t with 1 < t < kr such that Yt is non-empty. Note that
δH1(Y1) ≥ h−1. Further, the set Skr contains all |V (Y1)| neighbours of Y1 present
in Hkr and S1 contains the set NH1(Y1) of neighbours of Y1 in H1. Therefore, by
Lemma 3.2,

|S1 ∪ Skr | ≥
∣

∣NH1(Y1)
∣

∣+ |V (Y1)| =
∣

∣NH1 [Y1]
∣

∣ ≥ (2r − h)ar−1
h−1.

Suppose Yi is empty for more than one values of i. Suppose Ykr−1 is empty. Then
we can choose t so that Yt+1 is empty. Then δHt(Yt) ≥ h− 1. The set S contains
|NH1(Y1)| neighbours of Yt present in Ht and the |V (Yt)| neighbours of Yt that
are present in Ht+1. Thus, by Lemmas 2.4(1) and 3.2,

|S| ≥
∣

∣S1 ∪ Skr

∣

∣+
∣

∣NHt(Yt)
∣

∣+
∣

∣V (Yt)
∣

∣ ≥ (2r − h)ar−1
h−1 +

∣

∣NHt [Yt]
∣

∣

≥ 2(2r − h)ar−1
h−1 ≥ arh(2r − h).

Similarly, if Ykr−1 is non-empty, then we can choose t so that Yt−1 is empty and
so, in this case S contains NHt(Yt) and NHt−1(Yt) implying |S| ≥ arh(2r − h).

Suppose Yi is non-empty for all 1 ≤ i ≤ kr − 1. Here we calculate |Si| by
using Lemma 3.2 or induction. To use induction, we need to consider the nature
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of the graph Z also. If Zi 6= ∅ for only one value of i, then result follows from
Case 1. Suppose Zi 6= ∅ for more than one values of i. If Zi = ∅ for at least two
values of i, then the result follows from the above paragraph by replacing Y with
Z. It remains to consider the two subcases depending on whether Zi is empty for
exactly one value of i or no value of i.

Subcase 1. Zi = ∅ for exactly one value of i. We have two subcases depending
on i = kr or i < kr.

(i) Suppose Zkr is empty. Then Zj is non-empty like Yj for 1 ≤ j < kr;
Figure 4(a). Suppose h = 1. Then δHi(Yi) ≥ 0 and δHi(Zi) ≥ 0 for all i. Hence
|S1∪Skr | ≥ (2r− 1)ar−1

0 = (2r− 1) and by induction, |Si| ≥ (2(r− 1)− 0)ar−1
0 =

2r − 2 for i ∈ {2, 3, . . . , kr − 1}. Therefore, as S = S1 ∪ S2 ∪ · · · ∪ Skr , we have

|S| = (|S1 ∪ Skr |) +
kr−1
∑

i=2

|Si| ≥ (2r − 1) +

kr−1
∑

i=2

(2r − 2)

= (2r − 1) + (2r − 2)(kr − 2) ≥ 2(2r − 1) = (2r − h)arh.

Suppose h ≥ 2. Since Ykr and Zkr are empty, δHkr−1(Ykr−1) ≥ h − 1 > h − 2
and δHkr−1(Zkr−1) ≥ h − 1 > h − 2. Thus Skr−1 is an (h − 2)-cut in Hkr−1.
For i ∈ {2, 3, . . . , kr − 2}, as both Yi and Zi are non-empty subgraphs of H i of
minimum degree at least h− 2, Si is an (h− 2)-cut in H i. Hence, by induction,
|Si| ≥ (2r − h)ar−1

h−2 for i ∈ {2, 3, . . . , kr − 1}. Therefore

|S| = (|S1 ∪ Skr |) +
kr−1
∑

i=2

|Si| ≥ (2r − h)ar−1
h−1 +

kr−1
∑

i=2

(2r − h)ar−1
h−2

= (2r − h)ar−1
h−1 + (kr − 2)(2r − h)ar−1

h−2

≥ (2r − h)ar−1
h−1 +

kr
2
ar−1
h−2(2r − h) (since kr ≥ 4)

≥ (2r − h)ar−1
h−1 +

1

2
arh(2r − h) (by Lemma 2.4(2))

= (2r − h)ar−1
h−1 + ar−1

h−1(2r − h) (by Lemma 2.4(1))

= 2ar−1
h−1(2r − h)

= arh(2r − h) (by Lemma 2.4(1)).

(ii) Suppose Zkr is non-empty. Then Zl is empty for some l with 1 ≤ l < kr
and Zj is non-empty for every j 6= l; see Figure 4(b). Then the minimum degree
of Zl+1 is at least h− 1 in H l+1. Also, the neighbours of Zl+1 present in H i are
contained in Si for i = l, l + 1. Hence |Sl ∪ Sl+1| ≥ |NHl+1 [Zl+1]| ≥ ar−1

h−1(2r − h)
by Lemma 3.2. Thus, if l /∈ {1, kr − 1}, then

|S| ≥ |S1 ∪ Skr |+ |Sl ∪ Sl+1| ≥ 2ar−1
h−1(2r − h) = arh(2r − h).
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Y1 Y1Y2 Y2Yi

Zi

YlYi+1 Yl+1

Z1 Z1Z2 Z2Zi+1 Zl+1 Zkr

H1 H1H2 H2H i H lH i+1 H l+1Hkr Hkr

(a) Zkr = ∅. (b) Zl = ∅ for some l < kr.

Figure 4. The graph G with Ykr
= ∅.

Suppose l = 1. Then by using similar arguments, we see that S1 ∪ S2 ⊇
NH2(Z2) ∪NH1(Z2) and Skr ∪ Skr−1 ⊇ NHkr−1(Ykr−1) ∪NHkr (Ykr−1). Hence

|S| ≥ |S1 ∪ S2|+
∣

∣Skr−1 ∪ Skr

∣

∣ ≥ 2ar−1
h−1(2r − h) = arh(2r − h).

Similarly, for l = kr − 1,

|S| ≥ |S1 ∪ Skr |+
∣

∣Skr−2 ∪ Skr−1

∣

∣ ≥ 2ar−1
h−1(2r − h) = arh(2r − h).

Subcase 2. Suppose that Zi 6= ∅ for i = 1, 2, . . . , kr. Then |S1 ∪ Skr | ≥
ar−1
h−1(2r − h) and |Si| ≥ (2r − h)ar−1

h−2 for i ∈ {2, 3, . . . , kr−1}. As in Subcase 1(i),
we have |S| ≥ arh(2r − h).

Case 3. Suppose Yi 6= ∅ for i = 1, 2, . . . , kr. If Z does not intersect H i for
some i, then the result follows by replacing Y by Z in Case 1 and Case 2. Suppose
that Z intersects H i for all i = 1, 2, . . . , kr. If h = 1, then the minimum degree
of Yi and Zi is at least 0 and so, by induction, |Si| ≥ ar−1

0 (2(r− 1)− 0) = 2r− 2,
also as r ≥ 2 implies

|S| =
kr
∑

i=1

|Si| ≥
kr
∑

i=1

(2r − 2) = kr(2r − 2) ≥ 4(2r − 2)

= 8(r − 1) > 2(2r − 1) = ar1(2r − 1).

Suppose h ≥ 2. The minimum degree of Yi and Zi is at least h−2 ≥ 0. This shows
that Si is an (h− 2)-vertex cut of the graph H i for i = 1, 2, . . . , kr. Therefore, by
induction and by Lemma 2.4(2), we have

|S| =
kr
∑

i=1

|Si| ≥
kr
∑

i=1

ar−1
h−2(2r − h) = kra

r−1
h−2(2r − h) ≥ arh(2r − h).

Thus |S| ≥ arh(2r − h) in all the above cases. This completes the proof.
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Corollary 3.4. For the graph G of Theorem 1.2, κh(G) = arh(2r − h).

Proof. By Lemma 3.1, κh(G) ≤ arh(2r − h). Since κh(G) is the cardinality of
a smallest h-vertex cut of G, by Proposition 3.3, κh(G) ≥ arh(2r − h). Hence
κh(G) = arh(2r − h).

4. Conditional Edge Connectivity

In this section, we prove that the conditional edge connectivity λh(G) of the
graph G of Theorem 1.2 is same as its conditional vertex connectivity κh(G).

Recall that G = Ck1�Ck2� · · ·�Ckr with 4 ≤ k1 ≤ k2 ≤ · · · ≤ kr and W r
h is

an h-regular subgraph of G with arh vertices. We get an upper bound for λh(G)
from the set of edges of G each of which has exactly one end vertex in W r

h . For
such edge sets we introduce the following notation. For a subgraph K of a graph
H, let

EH(K) = {xy : x ∈ V (K) and y ∈ V (H) \V (K)}.

Lemma 4.1. For 0 ≤ h ≤ 2r − 1, λh(G) ≤ (2r − h)arh.

Proof. Let K = W r
h . Then K is h-regular and G is 2r-regular. Hence |EG(K)| =

(2r−h)|V (K)| and G−EG(K) is disconnected with K as one of its components.
By Lemma 2.7, the minimum degree of every component of G − EG(K) other
than K is at least 2r − 1 ≥ h. Therefore EG(K) contains an h-edge cut of G.
This shows that λh(G) ≤ |EG(K)| = (2r − h)arh.

Lemma 4.2. For a subgraph Y of G of minimum degree at least h, |V (Y )| +
|EG(Y )| ≥ arh(2r − h+ 1).

Proof. If Y spans G, then |V (Y )| = k1k2 · · · kr ≥ arh(2r− h+ 1) by Lemma 2.9.
Suppose Y is not a spanning subgraph of G. Since for every x in N(Y ) there is a
vertex y of Y adjacent to x so that the edge xy belongs to the edge set EG(Y ).
This implies that |EG(Y )| ≥ |N(Y )|. Hence, by Lemma 3.2, |V (Y )|+ |EG(Y )| ≥
|N [Y ]| ≥ arh(2r − h+ 1).

Using this lemma we now obtain the reverse inequality for λh(G).

Proposition 4.3. Let F be an h-edge cut of the graph G. Then |F | ≥ arh(2r−h).

Proof. Since the graph G is 2r-regular, 0 ≤ h ≤ 2r. The result holds obviously
for h = 2r. Suppose h = 0. Then F is a set of edges G such that G − F is
a disconnected graph. It follows from Lemma 2.1 that G is 2r-edge connected
and so, |F | ≥ 2r = ar0(2r − 0). Thus the result holds for h = 0 also. Suppose
1 ≤ h ≤ 2r−1. We prove the result by induction on r. The result follows trivially
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for r = 1. Suppose r ≥ 2. Assume that the result holds for the product of r − 1
cycles. Let F be an h-edge cut of G. Then G − F is disconnected and every
component of it has minimum degree at least h.

Let Y be a subgraph of G−F consisting of at least one but not all components
of G−F and let Z be the subgraph consisting of the remaining components. Then
Y and Z are vertex disjoint subgraphs of G − F of minimum degree at least h
and their union is G−F. Note that F contains both edge sets EG(Y ) and EG(Z).
Hence |F | ≥ |EG(Y )| and |F | ≥ |EG(Z)|.

Write G as H�Ckr , where H = Ck1�Ck2� · · ·�Ckr−1
. Then G is obtained by

replacing vertex i of the cycle Ckr by a copyH i ofH and replacing the edge joining
i and i + 1 (mod kr) by the perfect matching Mi between the corresponding
vertices of H i and H i+1 (mod kr). Then Y intersects at least one H i. Similarly, Z
intersects at least one H i. Let Yi = Y ∩H i and Zi = Z ∩H i for i = 1, 2, . . . , kr.

For a subgraph K of G, let Mi(K) be the set of all edges in the matching Mi

each having exactly one end vertex in K.

Case 1. Suppose Yi 6= ∅ for only one value of i. Without loss of generality,
we may assume that Yi is non-empty for only i = 1. Then Y is contained in the
graph H1 and δH1(Y ) ≥ h. Since H1 is (2r−2)-regular, h ≤ 2r−2. If h = 2r−2,
then Y = H1 and so, |EG(Y )| = |M1| + |Mkr | = 2|V (H1)| = 2k1k2 · · · kr−1. As
4 ≤ kr−1, we have

arh(2r − h) = 2arh2(2
r−(r−2)k1k2 · · · kr−2) = 2(4k1k2 · · · kr−2)

≤ 2k1k2 · · · kr−2kr−1 = |EG(Y )| ≤ |F |.

Suppose h < 2r − 2. Then EG(Y ) ⊇ EH1(Y ) ∪M1(Y ) ∪Mkr(Y ). As |M1(Y )| =
|Mkr(Y )| = |V (Y )|, by Lemmas 2.4(3), 2.5 and 4.2, we have

|EG(Y )| ≥
(∣

∣EH1(Y )
∣

∣+ |V (Y )|
)

+ |V (Y )| ≥ ar−1
h (2r − h− 1) + ar−1

h

= ar−1
h (2r − h) ≥ arh(2r − h).

Case 2. Suppose Yi 6= ∅ for more than one but not all values of i. Without
loss of generality, we may assume that Y1 is non-empty but Ykr is empty. Let
t be the largest integer such that Yt is non-empty. Then 1 < t < kr. The
minimum degree of Yi in H i is at least h − 1 for i = 1, t. The graph Y1 has
|V (Y1)| neighbours inHkr and Yt has |V (Yt)| neighbours inHt+1. Hence EG(Y ) ⊇
EH1(Y1) ∪ EHt(Yt) ∪Mkr(Y1) ∪Mt(Yt).

Suppose h = 2r− 1. Then Yj = Hj for j = 1, t giving Mkr(Y1) = Mkr(H
1) =

Mkr and Mt(Yt) = Mt(H
t) = Mt. Hence

arh(2r − h) = arh = 2k1k2 · · · kr−1 = |V (H1)|+ |V (Ht)|

= |Mkr |+ |Mt| ≤ |EG(Y )| ≤ |F |.
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Suppose h ≤ 2r − 2. Then h− 1 ≤ 2r − 3 and so, by Lemmas 4.2 and 2.4(1),

|F | ≥ |EG(Y )| ≥
(∣

∣EH1(Y1)
∣

∣+ |V (Y1)|
)

+
(∣

∣EHt(Yt)
∣

∣+ |V (Yt)|
)

≥ 2ar−1
h−1(2r − h) = (2r − h)arh.

Case 3. Suppose Yi 6= ∅ for all i = 1, 2, . . . , kr. If the graph Z does not
intersect H i for some i, then the result follows easily by replacing Y by Z in Case
1 and Case 2. Suppose Z intersects H i for all i = 1, 2, . . . , kr. Suppose h = 1. As
r ≥ 2, δ(Yi) ≥ 0 and δ(Zi) ≥ 0, by induction, we have

|EG(Y )| =
kr
∑

i=1

|EHi(Yi)| ≥
kr
∑

i=1

(2r − 2) ≥ kr(2r − 2)

≥ 4(2r − 2) = 8(r − 1) > 2(2r − 1) = ar1(2r − 1).

Suppose h ≥ 2. The minimum degree of Yi and Zi is at least h−2 ≥ 0. Therefore
the edge set EHi(Yi) is an (h − 2)-edge cut of H i. By induction, |EHi(Yi)| ≥
ar−1
h−2(2r − h) for i = 1, 2, . . . , kr. By Lemma 2.4(2),

|F | ≥ |EG(Y )| =
kr
∑

i=1

|EHi(Yi)| ≥
kr
∑

i=1

ar−1
h−2(2r − h)

≥ kra
r−1
h−2(2r − h) ≥ arh(2r − h).

This completes the proof.

Corollary 4.4. For the graph G of Theorem 1.2, λh(G) = arh(2r − h) = κh(G).

Proof. By Proposition 4.3, λh(G) ≥ arh(2r − h) and by Lemma 4.1, λh(G) ≤
arh(2r − h). Hence λh(G) = arh(2r − h) = κh(G) by Corollary 3.4.

This completes the proof of Theorem 1.2.

It is worth mentioning that the edge connectivity part of Theorem 1.2 proves
that the following conjecture of Xu [7] holds for the classes of multidimensional
tori and k-ary r-cubes.

Conjecture 4.5. Let k, h be two non-negative integers and G be a connected

graph with minimum degree at least k and ah(G) be the minimum cardinality

of a vertex set of an h-regular subgraph of G. If λh(G) exists, then λh(G) ≤
ah(G)(k − h).

Concluding Remarks.

We determine the conditional h-vertex connectivity and the conditional h-edge
connectivity of a multidimensional torus G which is the Cartesian product of r
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cycles each of length at least four, for all possible values of h. We first characterize
the h-regular subgraph of G with minimum number of vertices and then establish
that both these conditional connectivities of G are equal to (2r − h) times the
number of vertices of this subgraph.
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