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Abstract

In this paper we use the classical notion of weak Mycielskian M ′(G)
of a graph G and the following sequence: M ′

0
(G) = G, M ′

1
(G) = M ′(G),

and M ′

n
(G) = M ′

(

M ′

n−1
(G)

)

, to show that if G is a complete graph of
order p, then the above sequence is a generator of the class of p-colorable
graphs. Similarly, using Mycielskian M(G) we show that analogously de-
fined sequence is a generator of the class consisting of graphs for which the
chromatic number of the subgraph induced by all vertices that belong to at
least one triangle is at most p. We also address the problem of characterizing
the latter class in terms of forbidden graphs.
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1. Introduction

The notion of the Mycielski graph (also called the Mycielskian of a graph) was
introduced in 1955 by Mycielski [17], which led to the famous construction of
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triangle-free graphs with arbitrarily large chromatic number. Since then Myciel-
ski’s graphs have been the subject of diverse studies. In particular, their prop-
erties have been investigated in relation to various coloring problems—vertex as
well as edge related invariants have been considered (see, e.g., [4, 5, 7, 8, 11, 13,
14, 16]). Other invariants like packing, domination and biclique partition num-
bers, not to mention some transformations and generalizations of Mycielskians
(see, e.g., [12, 15, 18, 19]), have also attracted much attention. Because of their
inherent lack of susceptibility to most coloring algorithms the Mycielski graphs
are well-known examples of the so-called benchmark graphs [6].

The Mycielskian of a graph G with the vertex set V = {v1, . . . , vn} is a
graph, denoted by M(G), obtained from G by adding an independent set of
vertices V ′ = {v′1, . . . , v

′
n} and joining each v′i ∈ V ′ with all neighbors of vi

in G, and adding a special vertex x with the edges making it adjacent to all
vertices in V ′. In what follows for vertices vi, v

′
i we say that vi is the parent of

v′i, which in turn is the child of vi. In a natural way Mycielskians can be used
to define a sequence

{

Mn(G)
}

n≥0
of graphs with M0(G) = G, M1(G) = M(G),

and Mn(G) = M
(

Mn−1(G)
)

for n ≥ 2. Obviously, by definition for every n ≥ 1,
it holds that Mn−1(G) is an induced subgraph of Mn(G); in symbols Mn−1(G) ≤
Mn(G). For every Mycielskian in the sequence we say that the graph G is its
initial graph.

One of the main topics of this paper is the embeddability of graphs in Myciel-
skians. We say that a graph H can be embedded in G if there exists an induced
subgraph H ′ of G such that H ′ is isomorphic to H. Along their investigations on
the Hall ratio of graphs Cropper et al. [8] gave a positive answer to the question
of whether for every triangle-free graph there exists n ≥ 0 such that G can be
embedded in Mn(K2).

Theorem 1 (Cropper et al. [8]). Every connected triangle-free graph with n

vertices is an induced subgraph of Mn(K2).

An analogous result for subgraphs of Mn(K2) was proved by Berger et al. [1]. In
fact, since every Mn(K2) is triangle-free, Theorem 1 leads to a characterization
of the class of graphs that can be embedded in Mn(K2) for some n ≥ 0. In what
follows, the class of such graphs and the class of triangle-free graphs is denoted
by M(K2) and I1, respectively, so the above characterization can be also written
as follows:

M(K2) = I1.

In this paper we ask about characterizations of classes of graphs that for some
n ≥ 0 can be embedded in Mn(Kp) and those embeddable in the so-called weak
Mycielskians M ′

n(Kp), where p ≥ 2 (for the definition of weak Mycielskian see
Section 2). The classes of such graphs we denote by M(Kp) and M′(Kp), re-
spectively.
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We prove that the class of graphs embeddable in M ′
n(Kp) is exactly the

class Op of p-colorable graphs—the sequence
{

M ′
n(Kp)

}

n≥0
is a generator of Op.

Moreover, we prove that the graphs embeddable in Mn(Kp) constitute the class
Bp, i.e., the class of graphs for which the chromatic number of the subgraph
induced by all vertices that belong to at least one triangle is at most p—the
sequence

{

Mn(Kp)
}

n≥0
is a generator of Bp. Our main contribution can be

roughly summarized as follows:

M′(Kp) = Op and M(Kp) = Bp.

In the last section we address the problem of characterizing the class Bp in terms
of forbidden graphs.

Our notation on graph classes follows Borowiecki et al. [2]. Any other unex-
plained notation is as found in Diestel [9] or West [20].

2. Preliminaries

For every Mycielskian Mn(G) in the sequence
{

Mn(G)
}

n≥0
by Xn we denote a

subset of V
(

Mn(G)
)

consisting of all special vertices and their ancestors resulting
from the recursive definition of Mycielskians. More formally, Xn can be defined
as follows: X0 = ∅, X1 = {x1}, and Xn = Xn−1 ∪X ′

n−1 ∪ {xn}, where xn is the
special vertex of Mn(G) and X ′

n−1 is the set of the children of vertices in Xn−1,
n ≥ 2. In what follows Xn is called the special set of Mn(G).

Property 2. If G is a graph and Xn is the special set of Mn(G), then the graph
induced by Xn is triangle-free and no vertex in Xn belongs to a triangle in Mn(G).

Besides special sets, we will also need the notions of level and generation.
Namely, referring to the definition of Mycielskian Mn(G) with the children set
V ′, for n ≥ 1 we say that the vertices in V ′ \Xn form a set called the n-th level
in Mn(G), denoted by Ln(G) (we write Ln for short, and for convenience we
assume that L0(G) = V (G)). Naturally, for all k < n by the k-th level of Mn(G)
we mean the k-th level of Mk(G). Note that each level is an independent set.
The generation of a vertex v of the initial graph G of Mn(G), denoted by [v], is
a set containing v and every vertex with the parent in [v]. As we will see later
on it is crucial to observe that generation is an independent set.

The graph Mn(G)−Xn, denoted by M ′
n(G), is called the weak Mycielskian.

Naturally, the sequence
{

M ′
n(G)

}

n≥0
based on weak Mycielskians is defined anal-

ogously to
{

Mn(G)
}

n≥0
. Similarly, it holds M ′

n−1(G) ≤ M ′
n(G) and it is not hard

to see that M ′
n(G) ≤ Mn(G).
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Since in this work we consider Mycielskians with initial graphs being com-
plete, with Kp as the initial graph we gain the ability of stating the following
property.

Property 3. Each vertex v of the initial graph Kp is adjacent to all vertices of
M ′

n(Kp) except the vertices in [v].

We conclude this section with another basic property of weak Mycielskians.

Property 4. For every p ≥ 2 and n ≥ 0 it holds χ
(

M ′
n(Kp)

)

= p.

Indeed, it is not hard to argue that if G′ is a graph obtained from G by adding a
vertex v′ such that in G′ the neighborhood of v′ and some vertex v 6= v′ are the
same, then χ(G′) = χ(G). Therefore, following the definition of weak Mycielskian
for every n ≥ 0 it holds χ

(

M ′
n+1(Kp)

)

= χ
(

M ′
n(Kp)

)

, and since M ′
0(Kp) = Kp,

it follows that weak Mycielskians M ′
n(Kp) are p-chromatic.

3. Generators

Theorem 5. Let p ≥ 2. A graph G can be embedded in M ′
n(Kp) for some n ≥ 1

if and only if χ(G) ≤ p.

Proof. Since by Property 4, M′(Kp) ⊆ Op, it remains to prove that every p-
colorable graph G of order n is an induced subgraph of M ′

m(Kp) for some m ≥ n.
Let V1, . . . , Vp be the color classes of G with cardinalities n1, . . . , np, respec-

tively. First, we will show that the complete p-partite graph K=Kn1,...,np
of order

n is an induced subgraph of M ′
n(Kp). For this purpose let V (Kp) = {v1, . . . , vp}.

Now, for the class V1 choose n1 children of the vertex v1 from levels L1, . . . , Ln1

(note that such a choice is unique). Next, for each class Vi with i ∈ {2, . . . , p}
choose ni children of the vertex vi from the levels Ln1+···+ni−1+1, . . . , Ln1+···+ni

.
Observe that each Vi obtained in this way is a subset of the generation [vi] and
hence an independent set. Moreover, each vertex in the set Vi is adjacent to all
vertices in each Vj with j 6= i. To see this we argue that if vertex v′i (vertex v′j) is
the child of the vertex vi (vertex vj) and i 6= j, then v′iv

′
j is an edge in M ′

n(Kp) if
and only if v′i and v′j belong to different levels. Let v′i ∈ Lk and let v′j ∈ Lt with
t > k. From Property 3 it follows that vjv

′
i is an edge in M ′

n(Kp) while by the
definition of weak Mycielskian the neighborhoods of vj and v′j in M ′

t−1(Kp) are
the same. Therefore, since v′i is a vertex in M ′

t−1(Kp), it follows that v′iv
′
j is an

edge in M ′
n(Kp). Clearly, the graph G is a spanning subgraph of K.

Now, we claim that for each edge ab of a subgraph H of M ′
n(Kp) there exists

an induced subgraph H ′ of M ′
n+1(Kp) such that H ′ = H − ab. Namely, let vertex

a′ (vertex b′) be the child of the vertex a (vertex b) such that a′ and b′ belong
to the level Ln+1 in M ′

n+1(Kp). Observe that by the definition of Mycielskian
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the neighborhoods of a and a′, as well as b and b′, in M ′
n+1(Kp) are the same.

Therefore a subgraph induced by
(

V (H)\{a, b}
)

∪{a′, b′} is isomorphic to H−ab.
Let X = E(K) \ E(G). Clearly, if X is empty, then G is isomorphic to K.

Otherwise, the existence of an embedding of G in M ′
n+|X|(Kp) follows by the

above argument applied to subsequent edges in X.

Corollary 6. For every p ≥ 2 it holds

M′(Kp) = Op.

Let
{

Gn

}

n≥0
denote a sequence of graphs such that Gn ≤ Gn+1. The class

consisting of all induced subgraphs of graphs in the above sequence is uniquely de-
termined and it is known to be closed with respect to taking induced subgraphs—
the sequence

{

Gn

}

n≥0
is called the generator of such a class.

Theorem 7. For every p ≥ 2 the sequence
{

M ′
n(Kp)

}

n≥0
is a generator of Op.

Having characterized the graphs embeddable in weak Mycielskians, in the
remaining part of this section we focus on embeddability in Mycielskians. As we
will see, in this context, the role of a certain subgraph that we call the base of
a graph cannot be overestimated. Namely, the base of a graph G is a subgraph
induced by the set consisting of all vertices of G such that each of them belongs
to at least one triangle in G. By β(G) we denote the chromatic number of the
base of a graph G. In this context, it is worth mentioning that 3-colorability is
NP-complete even for certain subclasses of planar graphs with vertex degree at
most 4 and each vertex in at least one triangle (see Borowiecki [3]). Interestingly,
our new invariant β turns out to be a decisive factor for embeddability of graphs
in Mycielskians Mn(Kp).

Theorem 8. Let p ≥ 3. A graph G can be embedded in Mn(Kp) for some n ≥ 1
if and only if β(G) ≤ p.

Proof. First, we prove that if β(G) ≥ p+ 1, then there does not exist n ≥ 1 for
which G could be embedded in Mn(Kp). Suppose that, to the contrary, for some
n ≥ 1 the graph G has been embedded inMn(Kp). Since by definition each vertex
of the base B of G belongs to a triangle and by Property 2 there is no triangle
containing a vertex in Xn, the base B is embedded in Mn(Kp) −Xn. However,
by Property 4 all subgraphs of Mn(Kp) −Xn, in particular those isomorphic to
B, are p-colorable, which contradicts β(G) ≥ p+ 1. Thus we have proved that if
G can be embedded in Mn(Kp) for some n ≥ 1, then β(G) ≤ p.

Next, we show that if β(G) ≤ p, then G can be embedded in Mn(Kp) for
some n ≥ 1. Since χ(B) ≤ p, from Theorem 5 it follows that the base B of G
can be embedded in M ′

m(Kp) for some m ≥ 1. Let S = {z1, . . . , zs} be defined as
V (G) \ V (B) and let B′ be an induced subgraph of M ′

m(Kp) that is isomorphic
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to B. Assuming M ′
m(Kp) ≤ Mn(Kp), where n > m, we define S′ = {x1, . . . , xs}

as a subset of V
(

Mn(Kp)
)

\ V (B′). In what follows we are going to argue that
S′ can be chosen such that the graph G′ induced by V (B′) ∪ S′ is isomorphic
to G, or in other words, we are interested in the existence of an isomorphism
f : V (G) → V (G′).

Let G0 = B and let Gi be a graph induced by V (Gi−1) ∪ {zi}, where i > 0.
The case s = 0 is obvious, so let us assume that s ≥ 1 and z1, . . . , zs is an
ordering of S under which NGi−1

(zi) 6= ∅ for each i ∈ {1, . . . , s}. Note that
since G is connected, such an ordering always exists. Let G′

i−1 with i ≤ s be
an embedding of Gi−1 in Mm+i−1(Kp) that is given by f |Gi−1

(we write fi−1

for short). For an inductive step we need to define fi (in what follows if fi(v)
is not specified explicitly, we assume fi(v) = fi−1(v)). Let Zi = NGi−1

(zi).
Naturally, Zi is independent, for otherwise zi would belong to a triangle and hence
to the base B of G, which is not the case. Consequently, the set Z ′

i = {u |u =
fi−1(v), where v ∈ Zi} is independent. By the definition of Mycielskian, the
following set Z ′′

i = {v ∈ Lm+i | v is the child of u ∈ Z ′
i} exists and is independent.

Moreover, for each u ∈ Z ′
i and its child v ∈ Z ′′

i it holds NG′

i−1
(u) = NG′

i−1
(v).

Hence the graph induced by V (G′
i−1)∪Z ′′

i \Z
′
i is isomorphic to Gi−1. Thus for all

w ∈ Zi we set fi(w) = v, where v ∈ Z ′′
i is a child of fi−1(w). Let fi(zi) = xm+i.

Since by the definition of Mycielskian the neighborhood of xm+i in Mm+i(Kp)
is Lm+i, the neighborhood of fi(zi) in G′

i is Z ′′
i . Thus the graph induced by

V (G′
i−1) ∪ Z ′′

i ∪ {xm+i} \ Z
′
i is an embedding of Gi. It remains to set f = fs.

Corollary 9. For every p ≥ 3 it holds

M(Kp) = Bp.

For the statement of the next theorem, we assume that for triangle-free graphs
β ≡ 2. This slightly alters the original definition of β thus allowing the following
extension of the result of Cropper et al. [8].

Theorem 10. For every p ≥ 2 the sequence
{

Mn(Kp)
}

n≥0
is a generator of Bp.

4. Forbidden Graphs

After determining the generator of the class Bp a natural direction is to consider
a characterization of this class in terms of minimal forbidden graphs, i.e., the
graphs G that do not belong to Bp but, independently of the choice of a vertex
v, the deletion of v from G results in a graph G− v in Bp.

In our investigation of minimal forbidden graphs we rely on the closely related
notion of critical graphs. Namely, for a positive integer k we say that a graph G

is (k, β)-critical if β(G) = k but for each vertex v the graph G − v belongs to
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Bk−1. This resembles the definition of (k, χ)-critical graph requiring χ(G) = k

and (k − 1)-colorability of G − v for each v. Recall that for every (k, χ)-critical
graph G a graph G−v is (k−1)-chromatic. Hence, for every p the class of graphs
for which χ(G) ≤ p is simply defined by forbidding all (k, χ)-critical graphs with
k = p + 1. Moreover, for distinct p1, p2 the sets of minimal forbidden graphs
characterizing the classes of p1- and p2-colorable graphs are disjoint. In this
context we ask if analogous properties hold for (k, β)-critical graphs.

Problem 1. Given k ≥ 3, what is the minimum integer p such that there is a
(k, β)-critical graph for which G− v ∈ Bp for every vertex v?

As we will see, though β strongly depends on the chromatic number of certain
subgraphs, its properties seem different from that of the chromatic number. In
this section we present some approach to the solution of Problem 1. Observe that
there is only one (3, β)-critical graph, namely K3. Hence the solution of Problem
1 for k = 3 is p = 0. We show that for every k ≥ 4 it holds p ≥ k − 2.

Let us start with two simple properties leaving their routine proofs to the
reader. First, we observe that every (k, β)-critical graph is the base of itself.

Proposition 11. If k ≥ 4 and G is a (k, β)-critical graph, then each vertex of G
belongs to some triangle.

We also note that in some cases χ-criticality of a graph yields its β-criticality.

Proposition 12. Let k≥4. If G is a (k, χ)-critical graph and every vertex of G
belongs to some triangle, then G is (k, β)-critical.

A well known fact is that every vertex of a (k, χ)-critical graph has degree at
least k−1. In contrast, we shall show that (k, β)-critical graphs can have vertices
of degrees smaller than k − 1. For this purpose, let the t-core of a graph G be
defined as a graph resulting from G by successive deletion of vertices of degrees
less than t. Also observe that every (k, χ)-critical graph is the (k − 1)-core of
itself.

In our next theorem we use (k, χ)-critical graphs to gain a slightly deeper
insight into the structure of (k, β)-critical graphs.

Theorem 13. Let k ≥ 4 and let the (k−1)-core H of a graph G be (k, χ)-critical.
Moreover, let A(H) = V (H) \ V (B), where B is the base of H. A graph G is
(k, β)-critical if and only if every vertex of G belongs to some triangle and for
each v ∈ V (G) \ V (H) there is a vertex w ∈ A(H) such that all triangles of G
containing w also contain v.

Proof. First, suppose that G is (k, β)-critical. By Proposition 11, every vertex of
G belongs to some triangle. Suppose that there exists a vertex v ∈ V (G) \ V (H)
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such that each vertex w ∈ A(H) belongs to some triangle in G − v. Since each
vertex in V (H) \ A(H) belongs to a triangle in H, we conclude that H is a
subgraph of the base of G− v, contradicting the (k, β)-criticality of G.

Now, assume that every vertex of G belongs to a triangle and for each v ∈
V (G) \ V (H) there is a vertex w ∈ A(H) such that all triangles of G containing
w also contain v. Observe that A(H) is empty if and only if V (G) \ V (H) is
empty, i.e., in this case G = H and hence the assertion holds by Proposition 12.
Suppose that A(H) 6= ∅. We would like to prove (k, β)-criticality of G. Since G

is the base of itself and H is its induced subgraph with χ(H) = k and because
each k-coloring of H can be extended to G (by the definition of (k − 1)-core),
we have β(G) = k. Thus, we must show that β(G − v) ≤ k − 1 for every vertex
of G. If v ∈ V (H), then H − v is (k − 1)-colorable and consequently G − v is
(k − 1)-colorable. Thus β(G− v) ≤ k − 1 in this case. If v ∈ V (G) \ V (H), then
there is a vertex w ∈ A(H) such that w does not belong to the base of G − v.
Clearly, H − w has a (k − 1)-coloring, by (k, χ)-criticality of H. We construct a
(k − 1)-coloring of the base of G − v extending a (k − 1)-coloring of the graph
induced by those vertices of H − w that belong to the base of G− v.

In the next part of this section we prove that for k ≥ 4 every (k, β)-critical
graph G has a vertex v for which β(G−v) ≥ k−2. This shows that the integer p
in Problem 1 is at least k− 2. To prove this fact we need the following property.

Property 14. Let χ(G) = k and let K be an r-clique of G such that χ(G−K) =
k−r. For each color i ∈ {1, . . . , k−r}, in an arbitrary (k−r)-coloring of G−K,
there exists a vertex wi adjacent to all vertices of K, i.e., V (K) ⊆ NG(wi).

The above property can be simply proved by observing that if there existed in
G − K a color class Ci with i ∈ {1, . . . , k − r} such that each vertex colored i

is non-adjacent to some vertex of K, then it would be possible to recolor each
vertex v in Ci with a color of a vertex in K to which v is not adjacent. Note that
such recoloring is always possible since Ci is an independent set, all colors in K

are distinct and different from that in G−K. Since in the new coloring there are
no vertices colored i, we get a (k− 1)-coloring of G, which contradicts χ(G) = k.

Theorem 15. For k ≥ 4 there does not exist a (k, β)-critical graph G such that
G− v belongs to Bk−3 for every v ∈ V (G).

Proof. Suppose that there exists a (k, β)-critical graph G such that G−v belongs
to Bk−3 for every v ∈ V (G) (i.e., β(G − v) ≤ k − 3 for every v ∈ V (G)). By
Proposition 11, every vertex v of G belongs to some triangle. Thus, using the
fact that β(G− v) ≤ 3, we get that G− v has at least two vertices which are not
in the base of G− v (they do not belong to any triangle in G− v).

First, we claim that in G there exists a vertex that is in exactly one triangle.
Suppose this is not true. By our assumption in G − v there is a vertex that
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does not belong to a triangle. Let u be such a vertex. Thus all the triangles in
G, containing u, must contain the edge vu. Let w1, . . . , wt be vertices such that
v, u, wi form a triangle for i ∈ {1, . . . , t}. Observe that for every wi the triangle
formed by v, u, wi is the only one that contains uwi. Again by our assumption
in G − u there is a vertex that does not belong to a triangle. If wi is such a
vertex, then wi is in exactly one triangle, a contradiction. Otherwise there is no
triangle in G−u containing v, because also in G−u must be a vertex that is in no
triangle. Thus, for every wi the triangle v, u, wi is the only triangle that contains
vwi. Since every wi is in some triangle in G − u, every wi is in the triangle in
G−{v, u} and consequently G−{v, u} is the base of itself. Thus G−v and G−u

have only one vertex which is not in the base, a contradiction.
Let v ∈ V (G) be a vertex belonging to exactly one triangle T in G, and let

u,w be its neighbors such that uw ∈ E(G). We see that also u and w are in
exactly one triangle. Namely, they belong to the triangle T , because, as we have
already observed G−v has at least two vertices which do not belong to a triangle
in G− v. Thus G− T is the base of itself. By our assumption G− T ∈ Bk−3, so
χ(G−T ) ≤ k−3. On the other hand, since χ(G) = k, we have χ(G−T ) ≥ k−3.
Thus χ(G−T ) = k−3 and hence by Property 14 in each color class of each (k−3)-
coloring of G− T there is a vertex adjacent to v, u and w, which contradicts the
assumption that there is only one triangle containing v.

As we mentioned earlier, the class Bp can be characterized by the family
of forbidden graphs. Let C(Bp) denote the family of forbidden graphs for Bp.
Comparing the notions of forbidden graphs and β-critical graphs and due to
Theorem 15 we see that C(Bp) may only consist of (p+1, β)-critical or (p+2, β)-
critical graphs. Observe that if a graph is (p + 2, β)-critical and belongs to
C(Bp), then it also belongs to C(Bp+1). Theorem 15 shows that

⋂

i∈J C(Bi) can
be nonempty only if J = {p, p+ 1}. However, we do not know any graph that is
(p+ 2, β)-critical and belongs to C(Bp).

Problem 2. Is there an integer p such that C(Bp) ∩ C(Bp+1) 6= ∅?
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