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Abstract

There is a long line of research in the literature dedicated to word-
representable graphs, which generalize several important classes of graphs.
However, not much is known about word-representability of split graphs,
another important class of graphs.

In this paper, we show that threshold graphs, a subclass of split graphs,
are word-representable. Further, we prove a number of general theorems
on word-representable split graphs, and use them to characterize computa-
tionally such graphs with cliques of size 5 in terms of nine forbidden sub-
graphs, thus extending the known characterization for word-representable
split graphs with cliques of size 4. Moreover, we use split graphs, and also
provide an alternative solution, to show that gluing two word-representable
graphs in any clique of size at least 2 may, or may not, result in a word-
representable graph. The two surprisingly simple solutions provided by us
answer a question that was open for about ten years.
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1. Introduction

A graph G = (V,E) is word-representable if there exists a word w over the alpha-
bet V such that letters x and y, x 6= y, alternate in w if and only if xy ∈ E. Here,
by alternation of x and y in w we mean that after removing all letters but the
copies of x and y we either obtain a word xyxy · · · , or a word yxyx · · · . For exam-
ple, the cycle graph C5 labeled by 1–5 in clock-wise direction can be represented
by the word 1521324354. It is easy to see that the class of word-representable
graphs is hereditary. That is, removing a vertex in a word-representable graph
results in a word-representable graph.

To date, many papers have been written on the subject [6], and the core of
the book [8] is devoted to the theory of word-representable graphs. It should also
be mentioned that the software produced by Marc Glen [3] is often of great help
in dealing with such graphs. Word-representable graphs are important as they
generalize several fundamental classes of graphs such as circle graphs, 3-colorable
graphs and comparability graphs [8].

An orientation of a graph is semi-transitive if it is acyclic, and for any directed
path u1 → u2 → · · · → uk either there is no edge between u1 and uk, or there is
an edge ui → uj for all 1 ≤ i < j ≤ k. A key result in the area is the following
theorem.

Theorem 1 [5]. A graph is word-representable if and only if it admits a semi-

transitive orientation.

In this paper, we will need the following simple lemma.

Lemma 2 [7]. Let Km be a clique in a graph G. Then any acyclic orientation

of G induces a transitive orientation on Km with a single source (a vertex with

no incoming edges) and a single sink (a vertex with no outgoing edges).

Even though much is known about word-representable graphs, there is only
one paper, namely [7], dedicated to the study of the word-representability of split
graphs (considered, e.g. in [1, 2, 4, 9]), that is, graphs in which the vertices can
be partitioned into a clique and an independent set. Section 2 overviews results
in [7] that are most relevant to this paper and can be summarised as follows.

• Split graphs with cliques of size at most 3 are word-representable.

• Split graphs in which the clique is of size 4 are characterized by avoiding the
four graphs in Figure 1 as induced subgraphs.

• Necessary and sufficient conditions for an orientation of a split graph to be
semi-transitive are given.

The major results in this paper can be summarized as follows.
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• The subclass of split graphs known as threshold graphs is shown to be word-
representable in Theorem 12. Threshold graphs were first introduced by
Chvátal and Hammer in [1]. A chapter on these graphs appears in [4], and
the book [9] is devoted to them.

• Split graphs in which the clique is of size m and the clique’s vertices are of
degree at most m are word-representable (see Theorem 13).

• An upper bound on the number of vertices in the independent set of any
given degree in a word-representable split graph is given (see Theorems 15
and 16).

• The upper bound is used to characterize computationally split graphs having
the clique of size 5 in terms of rednine forbidden subgraphs — those in
Figures 1 and 3 (see Section 5).

• Word-representability of split-graphs is used in Section 6 to show that glu-
ing two word-representable graphs in a clique of size at least 2 may result
in a non-word-representable graph, which answers a long standing, though
unpublished until [6], open question. We also give an alternative solution
to the problem, which is based on a generalization of a known result (see
Section 6.2).

T1 = A4 = T2 =

T3 =

T4 =

Figure 1. The minimal non-word-representable split graphs T1, T2, T3, T4.

2. Split Graphs and Word-Representation

Let Sn = (En−m,Km) be a split graph on n vertices, where the vertices of Sn are
partitioned into a maximal clique Km and an independent set En−m (the vertices
in En−m are of degree at most m− 1).

In this section, we overview results in [7] most relevant to us.

Lemma 3 [7]. Let Sn = (En−m,Km) be a split graph, and a split graph Sn+1 is

obtained from Sn by either adding a vertex of degree 0 or 1, or by “copying” a
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vertex, that is, by adding a vertex whose neighbourhood is identical to the neigh-

bourhood of a vertex in Sn (if copying a vertex in Km, then the copy is connected

to the original vertex). Then Sn is word-representable if and only if Sn+1 is

word-representable.

Definition. For ℓ ≥ 3, the graph K
△
ℓ is obtained from the complete graph Kℓ

with the vertices labeled by 1, . . . , ℓ, by adding a vertex i′ of degree 2 connected
to vertices i and i+ 1 for each i ∈ {1, . . . , ℓ− 1}. Also, a vertex ℓ′ connected to
the vertices 1 and ℓ is added.

Theorem 4 [7]. K
△
ℓ is word-representable.

Definition. For ℓ ≥ 4, let Aℓ be the graph obtained from K
△
ℓ−1

by adding a
vertex ℓ connected to the vertices 1, . . . , ℓ − 1 and no other vertices. Note that
A4 = T1 in Figure 1.

Theorem 5 [7]. Aℓ is a minimal non-word-representable graph.

Theorem 6 [7]. Let Sn = (En−4,K4) be a split graph. Then Sn is word-repre-

sentable if and only if Sn does not contain the graphs T1, T2, T3 and T4 in Figure

1 as induced subgraphs.

Let Sn = (En−m,Km) be a word-representable split graph. Then, by Theo-
rem 1, Sn admits a semi-transitive orientation. Further, by Lemma 2 we know
that any such orientation induces a transitive orientation on Km with the longest
directed path ~P . Theorems 7 and 8 below describe the structure of semi-transitive
orientations in an arbitrary word-representable split graph.

Theorem 7 [7]. Any semi-transitive orientation of Sn = (En−m,Km) subdivides
the set of all vertices in En−m into three, possibly empty, groups corresponding

to each of the following types, where ~P = p1 → · · · → pm is the longest directed

path in Km.

• A vertex in En−m is of type A if it is a source and is connected to all vertices

in {pi, pi+1, . . . , pj} for some 1 ≤ i ≤ j ≤ m.

• A vertex in En−m is of type B if it is a sink and is connected to all vertices

in {pi, pi+1, . . . , pj} for some 1 ≤ i ≤ j ≤ m.

• A vertex v ∈ En−m is of type C if there is an edge x → v for each x ∈ Iv =
{p1, p2, . . . , pi} and there is an edge v → y for each y ∈ Ov = {pj , pj+1, . . . ,

pm} for some 1 ≤ i < j ≤ m.

There are additional restrictions, given by the next theorem, on relative
positions of the neighbours of vertices of types A, B and C.
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Theorem 8 [7]. Let Sn = (En−m,Km) be oriented semi-transitively with ~P =
p1 → · · · → pm. For a vertex x ∈ En−m of type C, there is no vertex y ∈ En−m

of type A or B, which is connected to both p|Ix| and pm−|Ox|+1. Also, there is

no vertex y ∈ En−m of type C such that either Iy, or Oy contains both p|Ix| and

pm−|Ox|+1.

One can now classify semi-transitive orientations on split graphs.

Theorem 9 [7]. An orientation of a split graph Sn = (En−m,Km) is semi-

transitive if and only if

• Km is oriented transitively,

• each vertex in En−m is of one of the three types in Theorem 7,

• the restrictions in Theorem 8 are satisfied.

The following corollary of Theorem 9 generalizes Theorem 4.

Corollary 10 [7]. Let the split graph Kk
ℓ be obtained from the complete graph

Kℓ, whose vertices are drawn on a circle, by adding ℓ vertices so that

• each such vertex is connected to k consecutive (on the circle) vertices in Kℓ;

• neighbourhoods of all these vertices are distinct; and

• ℓ ≥ 2k − 1.

Then Kk
ℓ is word-representable.

The following theorem allows us to treat vertices of types A or B in the same
way and to refer to them as vertices of type A&B.

Theorem 11 [7]. Let Sn = (En−m,Km) be semi-transitively oriented. Then, any

vertex in En−m of type A can be replaced by a vertex of type B, and vice versa,

keeping orientation semi-transitive.

3. Threshold Graphs and Split Graphs with Restricted Vertex

Degree in the Clique

A threshold graph is a graph that can be constructed from the one-vertex graph
by repeated applications of the following two operations.

(1) Addition of a single isolated vertex to the graph.

(2) Addition of a single dominating vertex to the graph, i.e., a single vertex that
is connected to all other vertices.

It is not difficult to see that any threshold graph is a split graph.
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Theorem 12. Any threshold graph Sn is word-representable.

Proof. Label the vertices in the order they were added to Sn: 1, 2, . . . , n. Note
that no matter which operation is applied, the vertices 1 and 2 will have the
same neighbourhood modulo the vertices 1 and 2 possibly being connected to each
other. Thus, by Lemma 3, removing vertex 1 does not affect word-representability
of the graph. But then, the vertices 2 and 3 will have the same neighbourhood
modulo them possibly being connected to each other. Thus, by Lemma 3, re-
moving vertex 2 does not affect word-representability of the graph. Continuing in
the same way, we see that Sn is word-representable if and only if the one-vertex
graph (labeled by n) is word-representable, which is trivially the case.

Theorem 13. Let Sn = (En−m,Km) be a split graph such that each vertex v

in Km is of degree at most m, i.e., the degree of v is m − 1 or m. Then Sn is

word-representable.

Proof. Orient Km in an arbitrary transitive way, which will result, by Lemma
2, in a longest directed path ~P = p1 → · · · → pm. Because each vertex in
Km can be connected to at most one vertex in En−m, we can clearly permute
the vertices in ~P (resulting in a different transitive orientation of Km) so that
the neighbourhood of each vertex in En−m consists of a number of consecutive
vertices in ~P , and these neighbourhoods do not overlap. Making each vertex in
En−m either of type A, or of type B, we can apply Theorem 9 to see that Sn is
semi-transitively oriented, and thus, by Theorem 1, Sn is word-representable.

Theorem 14. Let Sn = (En−m,Km) be a split graph, where the neighbourhoods

of all vertices in En−m are distinct. If Km has a vertex v connected to at least

d+ 1 vertices of degree d ≤ m− 2 in En−m, then Sn is not word-representable.

Proof. Supposed Sn is word-representable, so that Sn can be oriented semi-
transitively by Theorem 1. Let v1, v2, . . . , vd+1 ∈ En−m be vertices of degree d

connected to v. By Theorem 9, the distinct neighbourhoods of vi, 1 ≤ i ≤ d+ 1,
form consecutive cyclic intervals of d vertices on the directed path ~P , each of
which contains v. Contradiction with the fact that v can be covered by at most
d distinct intervals of d vertices.

4. Properties of Degrees in the Independent Sets in

Word-Representable Split Graphs

An immediate corollary of Lemma 3 is that in our studies of word-representable
split graphs Sn = (En−m,Km) we can assume that
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• no two vertices in Sn have the same set of neighbours modulo vertices being
connected to each other, so that

• at most one vertex in Km is not connected to any vertex in En−m, and each
vertex in En−m is of degree at least 2.

However, when studying minimal non-word-representable subgraphs of a split
graph, we can make other assumptions as well, which allow a reduction of the
space of possible solutions, e.g. when proceeding with a computer-aided search.
The following two theorems are very useful.

Theorem 15. Let Sn = (En−m,Km) be a word-representable graph, m ≥ 3,
and 2 ≤ d ≤ m+1

2
. Then, En−m contains at most m vertices of degree d whose

neighbourhoods are distinct. This bound is achievable.

Proof. By Theorem 1, Sn admits a semi-transitive orientation, in which the
neighbourhoods of the vertices in En−m, by Theorem 9, are consecutive on the
directed path ~P when read cyclicly. There are m distinct consecutive (cyclic)
intervals of length d, which gives the upper bound. Finally, since d ≤ m+1

2
, the

restrictions in Theorem 8 are satisfied, which makes the bound achievable (letting
ℓ = m and k = d in Corollary 10, we obtain the graph achieving the bound).

Theorem 16. Let Sn = (En−m,Km) be a word-representable graph, m ≥ 4, and
m+1

2
< d ≤ m− 1. Then, En−m contains at most m− d+ 1 vertices of degree d

whose neighbourhoods are distinct. This bound is achievable.

Proof. By Theorem 1, Sn admits a semi-transitive orientation. Note that m −
d+ 1 is the number of distinct non-cyclic consecutive intervals of vertices on the
path ~P . Any number of these intervals can be the neighbourhoods of type A&B
vertices by Theorem 9, so there exists the split graph Sn with the maximum
number of type A&B vertices showing that the bound is achievable.

Next we prove that the bound can never be exceeded. To do this, we use the
schematic way to represent consecutive cyclic intervals of vertices on ~P given in
Figure 2. In that figure, the vertices in Km are placed on a circle in clockwise
direction in the order they appear in the directed path ~P , and the chord ab

represents the (cyclic) interval of vertices of length d that starts at a and ends at
b. If such an interval corresponds to the neighbourhood of a vertex v in En−m,
then v is of type A&B if a is before b in ~P , and v is of type C if b is before a in ~P .

Our first observation is that no matter what the semi-transitive orientation
of S is, no two chords corresponding to the neighbourhoods of vertices in En−m

can share an endpoint. Indeed, suppose ab and bc are chords as in the leftmost
picture in Figure 2. But then, because d > m+1

2
, at least one of the cords ab and

bc corresponds to the neighbourhood of a vertex in En−m of type C. Suppose ab

corresponds to a vertex of type C (the second case is analogous). But then, the
interval given by bc covers both of a and b, which contradicts Theorem 8.
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Km Km Kmca

b

d

c
a

b

a b

Figure 2. A schematic representation of consecutive cyclic intervals of vertices on ~P using
chords to support the proof of Theorem 16.

Our second observation is that no matter what the semi-transitive orientation
of S is, any two chords corresponding to the neighbourhoods of vertices in En−m

must intersect each other, that is, the situation presented in the second picture
in Figure 2 is not possible. Indeed, if ab and dc do not intersect each other, then
at least one of them corresponds to a vertex in En−m of type C because d > m+1

2
.

But then, we obtain exactly the same contradiction with Theorem 8 as in the
first observation.

Finally, suppose ab represents the neighbourhood of a vertex in En−m as in
the rightmost picture in Figure 8. The chords representing any other neighbour-
hoods must have exactly one of their endpoints among the indicatedm−d vertices
in that picture by the second observation. However, by the first observation, each
of the m− d vertices can be connected to at most one chord, which results in the
maximum possible total amount of chords, and thus vertices in En−m of degree
d > m+1

2
, be m− d+ 1, as desired.

5. Characterizing Word-Representable Split Graphs with Cliques

of Size 5

Applying Theorems 15 and 16 we see that in a word-representable graph Sn =
(En−5,K5) we can have at most two vertices of degree 4, at most five vertices of
degree 3, and at most five vertices of degree 2 (recall that vertices of degree 1
never affect word-representability).

Clearly, the minimal non-word-representable graphs in Figure 1 must be
avoided when considering K5. Computational experiments for Sn = (En−5,K5),
which were possible due to the assumptions discussed above, reveal five more min-
imal non-word-representable graphs presented in Figure 3. One of these graphs
is A4 (see Definition 2) whose minimality and non-word-representability is given
by Theorem 5. We conclude the section by proving that the graphs T6–T9 in
Figure 3 are minimal non-word-representable graphs. Even though our proofs
follow the same structure, each of them requires ad hoc arguments.



Representing Split Graphs by Words 1271

T5 = A4 = T6 =

T7 = T8 =

T9 =

Figure 3. The minimal non-word-representable split graphs T5–T9.

Theorem 17. The graph T6 in Figure 3 is a minimal non-word-representable

graph.

Proof. We begin with proving non-word-representability of T6. Suppose T6 is
word-representable, and thus, by Theorem 1, it can be oriented semi-transitively.
Pick any such semi-transitive orientation of T6. Then, by Theorem 9, the neigh-
bourhood of a vertex of degree 2 must be two vertices staying next to each other,
possibly cyclicly (if they are the source and the sink), on the path ~P , as shown
in Figure 4 (where the five vertices of ~P are placed on a circle; note that in
our argument it is not important where the source and sink are). But then, the
neighbourhood of the vertex d of degree 3 is forced to be non-consecutive vertices
on ~P . Contradiction with Theorem 9.

For proving the minimality of T6, we consider removing each of the vertices
in T6 (one at a time) and, if necessary, describe a permutation of vertices of K5,
which results in all neighbourhoods of vertices in En−5 be consecutive intervals
on ~P , or on whatever remains from ~P (which is still transitively oriented). Then,
Theorem 9 can be used to obtain a semi-transitive orientation of the resulting
graph proving its word-representability by Theorem 1.
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K5

b

a

d

c

i j

x
y

z

Figure 4. Proving non-word-representability of T6.

• The vertices a and c are clearly symmetric, so we can consider removing a

and skip considering removing c. In the case of a removed, swap x and y to
obtain the desired result.

• If d is removed, all intervals become consecutive.

• If b is removed, place y between i and j to obtain the result.

• The vertices x and z are clearly symmetric, so we can consider removing x

and skip considering removing y. The vertex a becomes of degree 1 and can
be also removed by Lemma 3. All intervals become consecutive.

• If the vertex y is removed, then the vertices d and b have the same neighbour-
hoods, and one of them can be removed by Lemma 3. All intervals become
consecutive.

• The vertices i and j are clearly symmetric, so we can consider removing i

and skip considering removing j. If i is removed, a and b become of degree
1 and can be removed by Lemma 3. Swap x and y.

Our proof is completed.

Theorem 18. The graph T7 in Figure 3 is a minimal non-word-representable

graph.

K5

b

a

d

c

i j

x
y

z

Figure 5. Proving non-word-representability of T7.
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Proof. We begin with proving non-word-representability of T7. Suppose T7 is
word-representable, and thus, by Theorem 1, it can be oriented semi-transitively.
Pick any such semi-transitive orientation of T7. Then, by Theorem 9, the neigh-
bourhoods of vertices of degree 2 must be consecutive, so since they are also
disjoint, without loss of generality the degree 2 vertices are positioned as in Fig-
ure 5 (where the five vertices of ~P are placed on a circle; note that in our argument
it is not important where the source and sink are). But then, since the vertices
of degree 3 have symmetric properties (their neighbourhoods contain one vertex
from each of vertices a and c neighbourhoods and vertex y) we see that there is
no way for both neighbourhoods of b and d to be consecutive on ~P . Contradiction
with Theorem 9.

For proving the minimality of T7, we consider removing each of the vertices
in T7 (one at a time) and, if necessary, describe a permutation of vertices of K5,
which results in all neighbourhoods of vertices in En−5 be consecutive intervals
on ~P , or on whatever remains from ~P (which is still transitively oriented). Then,
Theorem 9 can be used to obtain a semi-transitive orientation of the resulting
graph proving its word-representability by Theorem 1.

• The vertices a and c are clearly symmetric, so we can consider removing a

and skip considering removing c. In the case of a removed, swap x and y to
obtain the desired result.

• If b is removed, all intervals become consecutive. If d is removed, then place
y between i and j to obtain the desired result.

• The vertices i and j are clearly symmetric, so we can consider removing i

and skip considering removing j. The vertex a becomes of degree 1 and can
be also removed by Lemma 3. The obtained graph is word-representable by
Theorem 6.

• The vertices x and z are clearly symmetric, so we can consider removing x

and skip considering removing z. The vertex a becomes of degree 1 and can
be also removed by Lemma 3. The obtained graph is word-representable by
Theorem 6.

• If y is removed, then the graph is isomorphic to K
△
4

and it is word-represen-
table by Theorem 4.

Our proof is completed.

Theorem 19. The graph T8 in Figure 3 is a minimal non-word-representable

graph.

Proof. We begin with proving non-word-representability of T8. Suppose T8 is
word-representable, and thus, by Theorem 1, it can be oriented semi-transitively.
Pick any such semi-transitive orientation of T8. Then, by Theorem 9, the neigh-
bourhoods of all vertices in the independent set must be consecutive intervals,
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and the only way to arrange this is shown in Figure 6 (where the five vertices of
~P are placed on a circle and the orientation of the longest path is assumed to
be in clockwise direction). But then we obtain a contradiction with Theorem 8.
Indeed, if b is of type C then d must be of type A&B, but x and z are in the neigh-
bourhood of d. On the other hand, if d is of type C then b must be of type A&B,
but x and z are in the neighbourhood of b. Thus, T8 is not word-representable.

K5

b

a

d

c

i j

x
y

z

Figure 6. Proving non-word-representability of T8.

For proving the minimality of T8, we consider removing each of the vertices
in T8 (one at a time) and, if necessary, describe a permutation of vertices of K5,
which results in all neighbourhoods of vertices in En−5 be consecutive intervals
on ~P , or on whatever remains from ~P (which is still transitively oriented). Then,
Theorem 9 can be used to obtain a semi-transitive orientation of the resulting
graph proving its word-representability by Theorem 1.

• The vertices a and c are clearly symmetric, so we can consider removing a

and skip considering removing c. If a is removed, swap x and y and note that
making x in the new position the source, both b and d become of type C, so
there is no conflict with Theorem 8 (the neighbourhoods in question are still
consecutive).

• If b is removed, or if d is removed, then clearly there is no conflict with
Theorem 8, and the neighbourhoods in question are still consecutive.

• The vertices i and j are clearly symmetric, so we can consider removing i

and skip considering removing j. The vertex a becomes of degree 1 and can
be also removed by Lemma 3. The obtained graph is word-representable by
Theorem 6.

• The vertices x and z are clearly symmetric, so we can consider removing x

and skip considering removing z. The vertex a becomes of degree 1 and can
be also removed by Lemma 3. The obtained graph is word-representable by
Theorem 6.

• If y is removed, then the obtained graph is a subgraph of K
△
5

and it is
word-representable by Theorem 4.

Our proof is completed.
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Theorem 20. The graph T9 in Figure 3 is a minimal non-word-representable

graph.

K5

b

a

d

c

e

i j

x
y

z

Figure 7. Proving non-word-representability of T9.

Proof. We begin with proving non-word-representability of T9. Suppose T9 is
word-representable, and thus, by Theorem 1, it can be oriented semi-transitively.
Pick any such semi-transitive orientation of T9. Then, by Theorem 9, the neigh-
bourhoods of all vertices in the independent set must be consecutive intervals,
and the only way to arrange this is shown in Figure 7 (where the five vertices of
~P are placed on a circle and the orientation of the longest path is assumed to
be in clockwise direction). But then we obtain a contradiction with Theorem 8
given by vertices d and e. Indeed,

• if y is the source, or j is the source, or z is the source, then d is of type A&B
and e is of type C; the problem is then with d being connected to y and i.

• if x is the source, or i is the source, then e is of type A&B and d is of type
C; the problem is then with e being connected to j and y.

For proving the minimality of T9, we consider removing each of the vertices in
T9 (one at a time) and, if necessary, describe a permutation of vertices of K5,
which results in all neighbourhoods of vertices in En−5 be consecutive intervals
on ~P , or on whatever remains from ~P (which is still transitively oriented). Then,
Theorem 9 can be used to obtain a semi-transitive orientation of the resulting
graph proving its word-representability by Theorem 1.

• The vertices a and c are clearly symmetric, so we can consider removing a

and skip considering removing c. In the case of a removed, swap x and y

and note that making x in the new position the source, both d and e become
of type A&B, so there is no conflict with Theorem 8 (all neighbourhoods in
question are still consecutive).

• If d (respectively, e) is removed, we can make x (respectivley, z) the source
and there will be no conflict with Theorem 8.

• If b is removed, then swapping x and i, as well as z and j, and making z the
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source, we obtain both d and e being of type A&B, so there is no conflict
with Theorem 8.

• The vertices i and j are clearly symmetric, so we can consider removing i

and skip considering removing j. The vertex a becomes of degree 1 and can
be also removed by Lemma 3. The obtained graph is word-representable by
Theorem 6.

• The vertices x and z are clearly symmetric, so we can consider removing x

and skip considering removing z. The vertex a becomes of degree 1 and can
be also removed by Lemma 3. The obtained graph is word-representable by
Theorem 6.

• If y is removed, then the obtained graph is word-representable by Theorem 6.

Our proof is completed.

6. Word-Representability of Graphs Obtained by Gluing in a

Clique

By gluing two graphs in a clique, we mean the following operation. Suppose
a1, . . . , ak and b1, . . . , bk are cliques of size k in graphs G1 and G2, respectively.
Then, gluing G1 and G2 in a clique of size k means identifying each ai with one
bj , for i, j ∈ {1, . . . , k} so that the neighbourhood of the obtained vertex ci,j is
the union of the neighbourhoods of ai and bj .

By the hereditary nature of word-representability, if at least one of two graphs
is non-word-representable, then gluing the graphs in a clique will result in a
non-word-representable graph. Moreover, it is known that gluing two word-
representable graphs in a vertex (a clique of size 1) always results in a word-
representable graph (e.g. see [6, Section 7.3] or [8, Section 5.4.3]). Further, it
is not difficult to come up with examples when gluing two word-representable
graphs in an arbitrary clique results in a word-representable graph; for a trivial
such example, take two copies of a complete graph Kn, gluing which gives Kn,
and Kn can be represented by any permutation of length n. However, there are
examples of word-representable graphs gluing which in an edge (a clique of size
2), or a triangle (a clique of size 3), results in a non-word-representable graph.
The respective examples can be found in [8, Section 5.4.3], and they are presented
in Figures 8 and 9, respectively. Thus, the rightmost graphs in these pictures are
non-word-representable, while the other graphs are word-representable.

The question on whether gluing two word-representable graphs in a clique of
size 4, or more, may result in a non-word-representable graph was open, though
unpublished until [6], for about ten years. In Subsection 6.1 we use split graphs
to show that gluing two word-representable graphs in a clique of size 4, or more,
may result in a non-word-representable graph. A significance of our solution
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to the problem is in showing that gluing two cliques may be sensitive to which
vertices are glued to which vertices, as the word-representability of the resulting
graph may depend on it. In either case, in Subsection 6.2, we give another,
surprisingly simple solution to the problem, which is based on a generalization of
the construction in Figure 9.
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Figure 8. Gluing two word-representable graphs in an edge.
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Figure 9. Gluing two word-representable graphs in a triangle.

6.1. Solving the problem via split graphs

Recall the definition of K△
ℓ in Section 2 (Definition 2) and the fact that K

△
ℓ

is word-representable by Theorem 4. Further, for 2 ≤ i ≤ ℓ, let Ki
ℓ be the

graph obtained from the complete graph Kℓ labeled by 1, 2, . . . , ℓ, by adding a
new vertex x of degree 2 connected to the vertices 1 and i. Clearly, any Ki

ℓ

is isomorphic to K2
ℓ , which is an induced subgraph of K△

ℓ , and thus is word-
representable.

Recall the definition of Aℓ in Section 2 (Definition 2) and the fact that Aℓ is
not word-representable by Theorem 5.

We observe that, for ℓ ≥ 4, gluing two word-representable graphsK△
ℓ andKi

ℓ,
where 2 < i < ℓ, in the ℓ-clique so that a vertex j is glued with the vertex j for 1 ≤
j ≤ ℓ, results in a non-word-representable graph Gi. Indeed, Gi contains the non-
word-representable Ai induced by the vertices 1, 2, . . . , (i+1), 1′, 2′, . . . , (i−1)′, x.

Note that even though K2
ℓ (respectively, Kℓ

ℓ ) is isomorphic to Ki
ℓ for 2 <

i < ℓ, gluing the ℓ-cliques in K
△
ℓ and K2

ℓ (respectively, Kℓ
ℓ ) as above results
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in a word-representable graph G1 (respectively, Gℓ). Indeed, both G1 and Gℓ

are the graph K
△
ℓ with the additional vertex x having the same neighbourhood

as another vertex in K
△
ℓ of degree 2. It is a direct corollary of Lemma 3 that

word-representability of K
△
ℓ implies word-representability of G1. Thus, when

gluing two word-representable graphs in a clique, the word-representability of
the resulting graph may depend on how exactly we glue.

6.2. Generalizing the known construction

Here we present an alternative solution to the problem of gluing two graphs by
generalizing the construction in Figure 9.

Let n ≥ 2 and K ′
n be the graph obtained from the complete graph Kn on

the vertex set {1, 2, . . . , n} by adding a vertex x connected to the vertices 1 and
2. For example, the leftmost graphs in Figures 8, 9, 10 and 11 are K ′

2, K
′
3, K

′
4

and K ′
5, respectively. It is straightforward to check that the word x12x34 · · ·n

represents K ′
n for any n ≥ 2.
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Figure 10. Gluing two word-representable graphs in K4.

Let the middle graph in Figure 9 be denoted by M4, and for n ≥ 5, Mn is
obtained by enlarging the clique formed by the vertices 1, 2, 3, 4 in M4. That is,
Mn is obtained from Mn−1 by adding the vertex n connected to all the vertices
in {1, 2, . . . , n− 1} but not the vertices y and z. For example, M5 is the middle
graph in Figure 11. It is straightforward to check that the word y1z4y2z3567 · · ·n
represents Mn for any n ≥ 4.
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Figure 11. Gluing two word-representable graphs in K5.
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Finally, for n ≥ 4, let Bn be obtained fromMn by adding a vertex x connected
just to the vertices 1 and 2. For example, B4 is the rightmost graph in Figures 9
and 10, and B5 is the rightmost graph in Figure 11. Note that using the hereditary
nature of word-representable graphs, Bn is not word-representable for any n ≥ 4
since B4 is not word-representable [6, 8].

Thus, for n ≥ 4, gluing word-representable graphs K ′
n and Mn in the clique

formed by the vertices 1, 2, . . . , n gives the non-word-representable graph Bn, as
desired. See Figures 10 and 11 for the cases of n = 4 and n = 5, respectively.

7. Concluding Remarks

This paper extends our knowledge [7] on word-representable split graphs, and the
general theorems we prove, Theorems 15 and 16, allow computational character-
ization of word-representable split graphs with cliques of size 5 in terms of nine
forbidden subgraphs. Taking into account that tackling the general case seems
to be not feasible for the moment, a natural next step is in using our general
theorems in (computational) characterization of word-representable split graphs
with cliques of size 6, which we leave as an open research direction.
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[1] V. Chvátal and P.L. Hammer, Aggregation of inequalities in integer programming ,
in: Ann. Discrete Math. 1 (1977), P.L. Hammer, E.L. Johnson, B.H. Korte and G.L.
Nemhauser (Ed(s)), (Studies in Integer Programming (Proc. Worksh. Bonn, 1975)
145–162.
https://doi.org/10.1016/S0167-5060(08)70731-3

[2] S. Foldes and P.L. Hammer, Split graphs , in: Proc. Eighth Southeastern Conference
on Combinatorics, Graph Theory and Computing, Congr. Numer. XIX (1977),
(Louisiana State Univ., Baton Rouge, 1977) 311–315.

[3] M. Glen, Software.
http://personal.strath.ac.uk/sergey.kitaev/word-representable-graphs.html

[4] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Elsevier Inc., 1980).
https://doi.org/10.1016/B978-0-12-289260-8.50010-8
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