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Abstract

A graph G of order n is arbitrarily partitionable (AP) if, for every se-
quence (n1, . . . , np) partitioning n, there is a partition (V1, . . . , Vp) of V (G)
such that G[Vi] is a connected ni-graph for i = 1, . . . , p. The property
of being AP is related to other well-known graph notions, such as perfect
matchings and Hamiltonian cycles, with which it shares several properties.
This work is dedicated to studying two aspects behind AP graphs.

On the one hand, we consider algorithmic aspects of AP graphs, which re-
ceived some attention in previous works. We first establish the NP-hardness
of the problem of partitioning a graph into connected subgraphs following
a given sequence, for various new graph classes of interest. We then prove
that the problem of deciding whether a graph is AP is in NP for several
classes of graphs, confirming a conjecture of Barth and Fournier for these.

On the other hand, we consider the weakening to APness of sufficient
conditions for Hamiltonicity. While previous works have suggested that such
conditions can sometimes indeed be weakened, we here point out cases where
this is not true. This is done by considering conditions for Hamiltonicity
involving squares of graphs, and claw- and net-free graphs.
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1. Introduction

1.1. Partitioning graphs into connected subgraphs

Throughout this work, we call a graph of order G an n-graph. By a graph partition

of an n-graph G, it is meant a vertex-partition (V1, . . . , Vp) of V (G) such that
each G[Vi] has particular properties. This work is about partitions into connected
subgraphs, which we deal with through the following terminology.

Consider a sequence π = (n1, . . . , np) being a partition of n, i.e., n1+· · ·+np =
n. We will sometimes call π an n-sequence to make clear which integer it is a
partition of. When writing |π|, we mean the size of π (i.e., p), while, by writing
‖π‖, we refer to the sum of its elements (i.e., n). The spectrum sp(π) of π is the
set of values appearing in π.

By a realization of π of G, we mean a partition (V1, . . . , Vp) of V (G) such
that G[Vi] has order ni and is connected for i = 1, . . . , p. In other words, π
indicates the number of connected subgraphs we want (p), and their respective
order (n1, . . . , np). In case G admits a realization of every n-sequence, and is
hence partitionable into arbitrarily many connected subgraphs with arbitrary
order, we call G arbitrarily partitionable (AP for short). AP graphs can also
be found in the literature under different names, such as “arbitrarily vertex-
decomposable graphs” [1, 2, 4] or “fully decomposable graphs” [10] (but these
terms might mislead the readers, as the term “decomposition” has multiple other
meanings in graph theory).

Although the notion of AP graphs is relatively recent (it was introduced in
2002 by Barth, Baudon and Puech, to deal with a practical resource allocation
problem [1]), the problem of partitioning graphs into connected subgraphs is much
older. Perhaps the most influential result is the one from the 70’s due to Lovász
and Győri [17, 21], who independently proved that an n-graph G is k-connected
if and only if every n-sequence with size k is realizable in G, even if the k parts
are imposed to contain any k vertices chosen beforehand. We refer the interested
reader to the literature (such as the Ph.D. thesis of the first author [5]) for many
more results of this kind.

As a warm up, let us start by raising notable properties of AP graphs. First,
it should be noted that, in every AP n-graph, any realization of the n-sequence
(2, . . . , 2) (or (2, . . . , 2, 1) if n is odd) corresponds to a perfect matching (respec-
tively, quasi-perfect matching). Note also that every AP graph being spanned by
an AP graph is also AP. Since paths are obviously AP, this implies that every
traceable graph (i.e., graph having a Hamiltonian path) is AP. So, in a sense,
the class of AP graphs lies in between the class of graphs with a (quasi-) per-
fect matching and the class of traceable graphs (which itself contains the class of
Hamiltonian graphs), which are well-studied classes of graphs.
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Several aspects of AP graphs have been investigated to date. In this work, we
focus on two such aspects, namely the algorithmic aspects and the Hamiltonian

aspects, which are to be developed below. Again, we refer the interested reader to
e.g. [5] for an in-depth overview of other aspects of interest (such as the structural
aspects of AP graphs).

1.2. Algorithmic aspects of AP graphs

From the previous definitions related to graph partitions into connected sub-
graphs, the following two decision problems naturally arise.

Realization

Instance: An n-graph G, and an n-sequence π.
Question: Is π realizable in G?

AP

Instance: A graph G.
Question: Is G AP?

The NPness of Realization is obvious. Its NP-hardness was investigated by
several authors, who established it for numerous restrictions on either G or π.
Concerning restrictions on π, Realization remains NP-hard for instances where
sp(π) = {k} for every k ≥ 3, as shown by Dyer and Frieze [12]. Note that finding
a realization of any sequence π with sp(π) ⊆ {1, 2} is equivalent to finding a
sufficiently large matching, which can be done in polynomial time using Edmonds’
Blossom Algorithm [13]; hence, such instances of Realization can be solved in
polynomial time. In [6], the first author showed that Realization remains NP-
hard for instances where |π| = k, for any k ≥ 2.

Concerning restrictions of Realization on G, Barth and Fournier proved, in
[2], thatRealization remains NP-hard for trees with maximum degree 3. In [10],
Broersma, Kratsch and Woeginger proved that Realization remains NP-hard
for split graphs. In [7], the first author proved that Realization remains NP-
hard when restricted to graphs with about a third universal vertices (i.e., vertices
neighbouring all other vertices).

The status of the AP problem is quite intriguing. A first important point
to raise is that, contrarily to what one could naively think, the NP-hardness of
Realization does not imply that of AP. That is, in all reductions imagined by
the authors above, the reduced n-graphG needs to have a very restricted structure
so that a particular n-sequence π is realizable under particular circumstances
only; this very restricted structure makes many other n-sequences not realizable
in G, implying that it is far from being AP.

It is actually not even clear whether the AP problem is in NP or co-NP. For
AP to be in NP, one would need to provide a polynomial certificate attesting that
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all n-sequences are realizable in G, while the number of such n-sequences is p(n),
the partition number of n, which is exponential in n. For AP to be in co-NP,
one would need to provide a polynomial-time algorithm for checking that a given
sequence is indeed not realizable in G, while the number of possible partitions of
G into connected subgraphs is clearly exponential.

On the other hand, though, as pointed out in [2, 6], the AP problem matches
the typical structure of Πp

2
problems (“for every sequence, is there a realiza-

tion?”), and thus belongs to Πp
2
(recall that Πp

2
problems are, simply put, those

decision problems where we are given two sets X,Y of elements, each of these
elements ranging in some respective sets of values, and the question is whether,
whatever the values of the elements in X are, the elements in Y can always be as-
signed values so that a particular property holds). However, it is still not known
whether AP is Πp

2
-hard. Also, we have no evidence that AP is NP-hard.

Regarding these points, the main conjecture is due to Barth and Fournier [2].

Conjecture 1 (Barth, Fournier [2]). The AP problem is in NP.

Conjecture 1 relies on polynomial kernels of sequences, which are presumed to
exist for every graph. For an n-graph G, a kernel (of n-sequences) is a set K of
n-sequences such that G is AP if and only if all sequences of K are realizable in
G. That is, a kernel for G is a (preferably small) set of sequences attesting the
APness of G. We say that K is a polynomial kernel if its size is a polynomial
function of n.

Note that the existence of a polynomial kernel K for a given graph class in-
deed implies the NPness of the AP problem for that class. All results towards
Conjecture 1 so far are based on proving the existence of such kernels for par-
ticular graph classes. The first result of this kind was given by Barth, Baudon
and Puech [1], who proved that, for subdivided claws of order n (i.e., trees where
the unique vertex of degree more than 2 has degree 3), the set of all n-sequences
of the form (k, . . . , k, r) or (k, . . . , k, k + 1, . . . , k + 1, r) (where r < k) is a poly-
nomial kernel. Later in [24], Ravaux showed that, still for subdivided claws of
order n, the set of n-sequences π with |sp(π)| ≤ 7 is an alternative polynomial
kernel (although of bigger size, proving that this second set is indeed a kernel
for the considered graph class is much easier than proving that the first set is).
Concerning other polynomial kernels, Broersma, Kratsch and Woeginger proved
in [10] that the set of n-sequences π with sp(π) ⊆ {1, 2, 3} is a polynomial kernel
for split n-graphs. The first author also provided more examples of polynomial
kernels in [7]; in particular, for complete multipartite n-graphs, n-sequences π
with sp(π) ⊆ {1, 2} form a kernel.

An interesting side aspect is that, from the existence of these polynomial
kernels, some of the authors above also derived the polynomiality of the AP

problem in certain graph classes. In particular, Barth and Fournier proved that
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AP is polynomial-time solvable when restricted to subdivided stars [2], while
Broersma, Kratsch and Woeginger proved it is polynomial-time solvable when
restricted to split graphs [10].

1.3. Hamiltonian aspects of AP graphs

As mentioned in Section 1.1, the AP property can be regarded as a weakening of
traceability/Hamiltonicity. In particular, all sufficient conditions implying trace-
ability also imply APness. An interesting line of research is thus to investigate
whether such conditions can be weakened for the AP property.

To the best of our knowledge, only a few results of this sort can be found in
the literature. The first series of such results is related to the following parameter,
defined for any given graph G:

σk(G) = min{d(v1) + · · ·+ d(vk) : v1, . . . , vk are non-adjacent vertices of G}.

A well-known result of Ore [23] states that every n-graph G (n ≥ 3) with σ2(G) ≥
n−1 is traceable. In [22], Marczyk proved that every n-graph G (n ≥ 8) having a
(quasi-) perfect matching and verifying σ2(G) ≥ n−3 is AP. Later on, this result
was improved by Horňák, Marczyk, Schiermeyer and Woźniak [18], who proved
that every n-graph G (n ≥ 20) having a (quasi-) perfect matching and verifying
σ2(G) ≥ n − 5 is AP. A similar result for graphs G with large σ3(G) was also
claimed by Brandt [9].

The last weakening we are aware of, deals with the number of edges guar-
anteeing APness. From known results, it can be established that connected n-
graphs with more than

(

n−2

2

)

+ 2 edges are traceable (see [20], Proposition 19).
An analogous sufficient condition for APness was given by Kalinowski, Piĺsniak,
Schiermeyer and Woźniak [20], who proved that, a few exceptions apart, all n-
graphs (n ≥ 22) with more than

(

n−4

2

)

+ 12 edges are AP.

1.4. Our results

In this work, we establish more results on AP graphs regarding the two aspects
developed above. More precisely is written below.

• Regarding the algorithmic aspects, we provide, in Sections 2 and 3, both positive
and negative results. We start, in Section 2, by providing an easy NP-hardness re-
duction framework, for showing, through slight modifications, that Realization

is NP-hard when restricted to many graph classes (see, for instance, Theorems 4,
5 and 6). In Section 3, we provide more polynomial kernels for several graph
classes excluding particular patterns as induced subgraphs.

• In Section 4, we consider the weakening of more Hamiltonian conditions for AP
graphs. Although this line of research seems quite appealing, the results we get
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show that the distance between traceable graphs and AP graphs is more tenuous
than one could hope. This is done by considering the notions of squares of graphs,
and claw-free and net-free graphs. More precisely, we show that classical results
on Hamiltonicity and these notions do not weaken to the AP property (in the
obvious way, to the least).

We conclude this work with Section 5, in which we raise some open questions.

2. An NP-hardness Reduction Framework for Realization

In this section we introduce another yet natural reduction for showing the NP-
hardness of Realization. Via several modifications of this reduction, we will,
in the next sections, establish the NP-hardness of Realization for several of the
graph classes we consider. The reduction is from the 3-Partition problem, which
can be stated as follows (see [16], and [11] for more properties of 3-Partition).

3-Partition

Instance: A set A = {a1, . . . , a3m} of 3m elements, a bound B ∈ N
∗, and a size

s : A → N
∗ such that

• B
4
< s(a) < B

2
for every a ∈ A, and

•
∑

a∈A s(a) = mB.

Question: Can A be partitioned into m parts A1 ∪ · · · ∪ Am such that we have
∑

a∈Ai
s(a) = B for every i = 1, . . . ,m?

In some of our proofs, we will use the fact that 3-Partition remains NP-
complete in the contexts below, which obviously hold.

Observation 2. Let <A,B, s> be an instance of 3-Partition where

• B
4
< s(a) < B

2
for every a ∈ A, and

•
∑

a∈A s(a) = mB.

The following instances of 3-Partition are equivalent to <A,B, s>.

• <A,B′, s′>, where s′(a) = s(a) + 1 for every a ∈ A, and B′ = B + 3;

• <A,B′′, s′′>, where (for any α ≥ 1) s′′(a) = αs(a) for every a ∈ A, and

B′′ = αB.

Furthermore, we have

• B′

4
< s′(a) < B′

2
and B′′

4
< s′′(a) < B′′

2
for every a ∈ A, and

•
∑

a∈A s′(a) = mB′ and
∑

a∈A s′′(a) = mB′′.
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The key argument behind our NP-hardness reduction framework from 3-

Partition to Realization is the following straightforward equivalence between
the two problems.

Theorem 3. Realization is NP-hard when restricted to disconnected graphs.

Proof. Consider an instance <A,B, s> of 3-Partition, where |A| = 3m and
A = {a1, . . . , a3m}. We produce an instance<G, π >(withG being a disconnected
graph) of Realization such that <A,B, s> admits a solution if and only if π is
realizable in G.

Consider, as G, the disjoint union of m complete graphs KB on B vertices.
So, we have |V (G)| = mB =

∑

a∈A s(a). As π, consider the |V (G)|-sequence
(s(a1), . . . , s(a3m)). The equivalence between the two instances is then easy to
visualize. Consider any part Vi with size s(ai) from a realization of π in G. Then
Vi includes vertices from one connected component of G only since otherwise
G[Vi] would not be connected. Furthermore, since every connected component is
complete, actually Vi can be any subset (with the required size) of its vertices.
So, basically, in any realization of π in G, each of the connected components of
G is covered by three parts with size s(ai1), s(ai2) and s(ai3), and thus s(ai1) +
s(ai2) + s(ai3) = B. A solution to <A,B, s> can then be directly deduced from
a realization of π in G, and conversely by similar arguments.

Note that, in the reduction given in the proof of Theorem 3, we can replace
the disjoint union of m complete graphs KB by the disjoint union of any m AP
graphs on B vertices. For instance, one can consider any disjoint union of m
traceable graphs of order B.

In the current paper, most of our proofs for showing that Realization is NP-
hard for some graph class rely on implicitly getting the situation described in the
proof of Theorem 3. Namely, we use the fact that if, for some graph G and some
|V (G)|-sequence π, in any realization of π in G some particular parts V1, . . . , Vk

have to contain particular subgraphs in such a way that G− (V1 ∪ · · · ∪ Vk) is a
disjoint union of m AP graphs with the same order B, then we essentially get an
instance of Realization that is NP-hard.

We illustrate this fact with three easy examples. We start off by considering
the class of subdivided stars (trees with a unique vertex with degree at least 3).
In [2], Barth and Fournier proved that Realization is NP-hard for trees with
maximum degree 3 (but having many degree-3 vertices). Using our reduction
scheme, we provide an easier proof that Realization is NP-hard for subdivided
stars, hence for trees with unbounded maximum degree but only one large-degree
vertex.

In the context of AP graphs, subdivided stars, which played a central role
towards understanding the structure of AP trees, have been also called multipodes
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(see e.g. [1, 2, 4, 19]). In the next proof, when writing Pk(a1, . . . , ak), we refer to
the subdivided star with k branches where the ith branch has (not counting the
center vertex) order ai ≥ 1.

Theorem 4. Realization is NP-hard when restricted to subdivided stars.

Proof. The reduction is from 3-Partition. Given an instance <A,B, s> of
3-Partition, we construct a subdivided star G and a |V (G)|-sequence π such
that <A,B, s > admits a solution if and only if π is realizable in G.

By Observation 2, we may assume that s(a) > 1 for every a ∈ A. Let sm =
max{s(a) : a ∈ A}. Consider as G the subdivided star Psm+m(1, . . . , 1, B, . . . , B)
with sm branches of order 1 and m branches of order B. As π, consider π =
(sm + 1, s(a1), . . . , s(a3m)).

The keystone of the reduction is that, because no element of π is equal to 1, in
every realization of π in G the part containing the center vertex of G necessarily
also contains all vertices from the branches of order 1. Since there are sm branches
of order 1 in G, the part containing the center vertex must thus have size at least
sm +1. So basically the part with size sm +1 of every realization of π in G must
include the center vertex of G as well as all the vertices from its sm branches of
order 1.

Once this part is picked, what remains is a forest of m paths PB (on B
vertices) and the sequence (s(a1), . . . , s(a3m)). Hence, finding a realization of π
in G is equivalent to the problem of finding a realization of (s(a1), . . . , s(a3m))
in a forest of m paths PB, while this problem is equivalent to solving <A,B, s>
according to the arguments given in the proof of Theorem 3. The result then
follows.

In the next result, we consider series-parallel graphs, for which several NP-
hard problems are known to be polynomial-time solvable. These graphs, each of
which contains two special vertices (source and sink), can be defined inductively
as follows.

• K2 is a series-parallel graph, its two vertices being its source and sink, re-
spectively.

• Let G and H be two series-parallel graphs with sources sG and sH , respec-
tively, and sinks tG and tH , respectively. Then

– the series-composition of G and H, obtained by identifying tG and sH , is
a series-parallel graph with source sG and sink tH ;

– the parallel-composition of G and H, obtained by identifying sG and sH ,
and identifying tG and tH (with keeping the graph simple, i.e., omitting
all multiple edges, if any is created), is a series-parallel graph with source
sG = sH and sink tG = tH .
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In the context of AP graphs, a particular class of series-parallel graphs, called bal-

loons, has been investigated towards understanding the structure of 2-connected
AP graphs (see e.g. [3, 4]). The balloon (or k-balloon, to make the parameter k
clear) Bk(b1, . . . , bk) is the series-parallel graph obtained as follows. Start from
two vertices r1 and r2. Then, for every i = 1, . . . , k, we join r1 and r2 via a branch

being a new path with bi internal vertices having r1, r2 as end-vertices. By the
order of the ith branch, we mean bi.

Theorem 5. Realization is NP-hard when restricted to series-parallel graphs.

Proof. We use the same reduction scheme as that in the proof of Theorem 4.
This time, consider as G, the (2sm+m)-balloon B2sm+m(1, . . . , 1, B, . . . , B) with
2sm branches of order 1, and m branches of order B. As π, consider

π = (sm + 1, sm + 1, s(a1), . . . , s(a3m)).

Because every vertex from a branch of order 1 of G only neighbours r1 and
r2 (who have degree 2sm+m), it has to belong, in every realization of π in G, to
a same part as one of r1 or r2. Said differently, the at most two parts covering
r1 and r2 also have to cover all of the vertices from the branches of order 1.
Because there are 2sm branches of order 1, these at most two parts must cover
at least 2sm + 2 vertices. In view of the values in π, in every realization of π in
G we necessarily have to use the two parts with size sm + 1 to cover all these
vertices. Once these two parts have been picked, what remains is a forest of m
paths PB of order B and the sequence (s(a1), . . . , s(a3m)). We thus have the
desired equivalence.

As mentioned in the introductory section, recall that, by the result of Győri
and Lovász [17, 21], all k-connected graphs can always be partitioned into k con-
nected subgraphs with arbitrary orders. In the following result, we prove, gener-
alizing the arguments from the previous proofs, that partitioning a k-connected
graph into more than k connected subgraphs is an NP-hard problem.

Theorem 6. For every k ≥ 1, Realization is NP-hard when restricted to k-
connected graphs.

Proof. The reduction is similar to that used in the previous two proofs. Let
k ≥ 1 be fixed, and construct G as follows. Add k vertices r1, . . . , rk to G, as well
as ksm copies of K1 and m copies of KB. Finally, for every i = 1, . . . , k, add an
edge between ri and every vertex of V (G) \ {r1, . . . , rk}. Note that G is indeed
k-connected, and {r1, . . . , rk} is a k-cutset. As π, consider

π = (sm + 1, . . . , sm + 1, s(a1), . . . , s(a3m)),

where the value sm + 1 appears exactly k times at the beginning of π.
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Consider any realization of π in G. Because the s(ai)’s are strictly greater
than 1, and the ksm copies of K1 are joined to the ri’s only, every of these K1’s
has to belong to the same part as one of the ri’s. Following these arguments, the
k parts with size sm + 1 of a realization of π in G must each include one of the
ri’s and sm of the K1’s. What remains once these k parts have been picked is m
vertex-disjoint connected components isomorphic to KB, as well as the sequence
(s(a1), . . . , s(a3m)). This concludes the proof.

3. Polynomial Kernels for Graphs Without Forbidden Subgraphs

For two graphs G and H, we denote by G + H the disjoint union of G and
H, which is the disconnect graph with vertex set V (G) ∪ V (H) and edge set
E(G) ∪ E(H). When writing kG for some k ≥ 1, we refer to the disjoint union
G+ · · ·+G of k copies of G. If G is a family of graphs, we write by kG the class
of graphs that are the disjoint union of k members of G. That is, G ∈ kG if there
exist G1, . . . , Gk ∈ G such that G = G1 + · · ·+Gk.

We denote by G×H the complete join of G and H, which is the graph with
vertex set V (G)∪V (H) and edge set E(G)∪E(H)∪V (G)×V (H). For a family
(set) of graphs F , we say that a graph G is F-free if G has no member of F as
an induced subgraph.

For k ≥ 1, we denote by Gk the class of all connected k-graphs, while we
denote by G≤k the class of all connected graphs of order at most k.

In this section, we exhibit polynomial kernels of sequences for some families of
F-free graphs. We also discuss some consequences of the existence of these kernels
on the complexity of the Realization and AP problems for the considered
classes of graphs.

3.1. k-sequential graphs

Let k ≥ 1 be fixed, and F be a class of graphs. An F-sequential graph is a graph
that can be defined inductively as follows.

• Graphs in F are F-sequential graphs;

• For an F-sequential graph G and a graph H ∈ F , the graphs G + H and
G×H are F-sequential graphs.

The construction of such graphs can equivalently be seen as a sequence of steps,
at each of which a new graph of F is added, its vertices being possibly joined
to all vertices added during the previous steps. Following that analogy, for any
given vertex v of a sequential graph, we denote by level(v) the level of v, where
level(v) = i if v belongs to the graph that was added during the ith step. A
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vertex with level i is called a join vertex if a complete join was performed at the
end of the ith step.

In what follows, G≤k-sequential graphs are also called k-sequential graphs. It
is worthwhile noting that sequential graphs encapsulate known families of graphs;
for instance, threshold graphs ({P4, C4, 2K2}-free graphs) are precisely the 1-
sequential graphs.

We start by proving that, for every k-sequential n-graph, the set

Kk,n = {π : π is an n-sequence and sp(π) ⊆ {1, . . . , 2k + 1}}

is a kernel. When k is fixed, this provides a polynomial kernel of sequences for
k-sequential graphs, which implies that the AP problem is in NP for this class of
graphs.

Theorem 7. For every k, n, the set Kk,n is a kernel for k-sequential n-graphs.

Proof. Let G be a k-sequential n-graph. We need to show that G is AP if and
only if all sequences of Kk,n are realizable in G. If we assume that G is AP, then,
by definition, all sequences of Kk,n are realizable in G. We thus have to focus on
the converse direction only.

Assume that all sequences of Kk,n are realizable in G, and consider any n-
sequence π = (n1, . . . , np) 6∈ Kk,n. We have to prove that π admits a realization
in G. We build an n-sequence π′ ∈ Kk,n in the following way. We consider every
element ni of π in turn, and

• if ni ∈ {1, . . . , 2k + 1}, then we add ni to π′;

• otherwise, we add all elements of any ni-sequence (m1, . . . ,mx) where k+1 ≤
mi ≤ 2k + 1 for every i = 1, . . . , x (such exists since ni ≥ 2k + 2).

Note that indeed π′ is an n-sequence, and π′ ∈ Kk,n. Let thus R
′ be a realization

of π′ in G, which exists by assumption.

We obtain a realization R of π in G in the following way. We consider
every ni ∈ π in turn. If ni ≤ 2k + 1, then there is a corresponding element
with value ni in π′, and thus a connected subgraph of order ni in R′, which
we add to R. Now, if ni ∈ π ≥ 2k + 2, then there are corresponding elements
m1, . . . ,mx with value in {k + 1, . . . , 2k + 1} in π′ (such that m1 + · · · + mx =
ni), and thus connected subgraphs G1, . . . , Gx of order m1, . . . ,mx in R′. By
the definition of a k-sequential graph (in particular, because all graphs added
sequentially to construct G have order at most k), each of the Gi’s has to contain
a join vertex. The join vertex with maximum level implies that G1, . . . , Gx, in G,
form a connected subgraph of order ni; then we add it to R as the part of size ni.

Once every ni has been considered, R is a realization of π in G.
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Regarding Theorem 7, it is worth mentioning that, in general, the maximum
magnitude 2k+1 of the elements in Kk,n cannot be lowered. Rephrased differently,
there are cases where n-sequences π with sp(π) ⊆ {1, . . . , x} for some x < 2k+1
do not form a kernel for k-sequential graphs. A straight example is that of
K2 +K1: for this 1-sequential graph, the sequence (3) has no realization, while
all sequences with spectrum from {1, 2} are realizable. Hence, for 1-sequential
graphs, the APness follows from the realizability of sequences with elements in
{1, 2, 3}, and this is, in a sense, best possible.

There are cases, however, where better kernels can be obtained. For instance,
when k ≥ 2, the set

K′
k,n = {π : π is an n-sequence and sp(π) ⊆ {1, . . . , ⌊3k/2⌋+ 1}}

is a better kernel for k-sequential n-graphs.

Theorem 8. For every k ≥ 2 and n, the set K′
k,n is a kernel for k-sequential

n-graphs.

Proof. Let G be a k-sequential n-graph. First assume that G is not connected,
i.e., the last connected component added during the construction of G was not
joined to the rest of the graph. Let H be a connected component of G with
smallest order h. By definition, k ≥ h. Also, n ≥ 2h since G is not connected.

Suppose first that h ≥ 5. If h is odd, then let

A =

{

h+ 1

2
,
h+ 3

2
, . . . , h− 1

}

.

If h is even, then let

A =

{

h

2
+ 1,

h

2
+ 2, . . . , h− 1

}

.

Note that every integer at least 2h can be expressed as the sum of elements in
A. Let thus π ∈ K′

k,n be an n-sequence taking values from A. It can easily be
seen that h cannot be expressed as the sum of elements in A; therefore, there is
no realization of π in G.

Now assume that h ≤ 4. As above, we consider some set A of elements,
depending on the value of h.

• If h = 4, then consider A = {3, 5};

• If h = 3, then consider A = {2, 5};

• If h = 2, then consider:

– A = {3, 4} if n ≥ 6;

– A = {1, 4} if n = 5;
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– A = {1, 3} if n = 4;

• If h = 1, then consider A = {2, 3}.

In every case, it can be noted that every integer at least 2h can be expressed as
the sum of elements in A, while h cannot. Thus, as in the previous case, there
exists an n-sequence of K′

k,n that is not realizable in G. So G has to be connected.

So now assume that G is connected, and that G is not AP. According to
Theorem 7, graphG is AP if and only if all n-sequences ofKk,n, i.e., with spectrum
from {1, . . . , 2k + 1}, are realizable in G. To prove the claim, it is sufficient to
prove that, under the assumption that all n-sequences of K′

k,n are realizable in
G, all n-sequences of Kk,n also are.

Let π 6∈ K′
k,n be an n-sequence of Kk,n not realizable in G. Our goal is to

show that there is another n-sequence π′ ∈ K′
k,n that is also not realizable in G.

Among all possible sequences as π, we choose one that minimizes the maximum
element value t appearing in it. Subject to that condition, we also choose such
sequence π that minimizes the number of occurrences of t. So 3k+3

2
≤ t ≤ 2k+1,

and every n-sequence with maximum element value at most t − 1 is realizable
in G.

First assume that the value t appears at least twice in π. Clearly, 3k +
3 ≤ 2t ≤ 3t − 3. Let thus π′ be an n-sequence obtained from π by removing
two elements with value t and adding three new elements r1, r2, r3 such that
k + 1 ≤ r1, r2, r3 ≤ t − 1 and r1 + r2 + r3 = 2t. By our choice of π, there is
a realization R of π′ in G. Since r1, r2, r3 ≥ k + 1 note that each of the three
parts V1, V2, V3 with size r1, r2, r3 of R contains a join vertex. From this, we can
partition G[V1 ∪ V2 ∪ V3] into two connected subgraphs of order t, which yields a
realization of π in G, a contradiction. More precisely, denote by a, b, c the vertices
with maximum level of V1, V2, V3. If, say, level(a) < level(b) ≤ level(c), then it
suffices to move vertices from V1 to V2, V3 so that two connected parts with size t
are obtained. Now assume level(a) = level(b) = level(c). Note that V1 has to
contain two vertices u′, u′′ being not of maximum level. Then we can partition
G[V1] into two convenient subgraphs V ′

1 , V
′′
1 having the number of vertices we

would like to move to V2 and V3: start from V ′
1 and V ′′

1 containing u′ and u′′,
respectively, add at least one vertex with level level(a) to V ′

1 and V ′′
1 if possible

(there might be only one such vertex, but this is not an issue), and add the
remaining vertices of V1 to V ′

1 , V
′′
1 arbitrarily. Note that G[V ′

1 ] and G[V ′′
1 ] might

be not connected, but, due to the vertices they and V2, V3 include, G[V2∪V ′
1 ] and

G[V3 ∪ V ′′
1 ] are connected.

So now assume that the value t appears exactly once in π. Here, consider,
as π′, the n-sequence obtained by removing the value t from π, and adding two
elements with value 1 and t − 1, respectively. Again, π′ has a realization R in
G. Since t − 1 is the maximum value appearing in π′, we may assume that the
part V1 of R with size t − 1 contains a vertex with maximum level. Indeed, if
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this is not the case, then we can consider a part V2 containing such a vertex,
and move any |V1| − |V2| vertices from V1 to V2 in such a way that the vertices
remaining in V1 still induce a connected subgraph. This is possible because, by
the connectedness of G, the vertices of maximum level are join vertices. We now
claim that a part V1 with size t− 1 and a part V2 with size 1 of R are adjacent,
hence yielding a part with size t, and a realization of π in G, a contradiction.
This is because t − 1 > k and V1 includes a join vertex v with maximum level;
either the vertex u of V2 does not have maximum level and is thus adjacent to
v, or u has maximum level and is thus adjacent of a vertex in V1 being not of
maximum level.

We note that the requirement k ≥ 2 in Theorem 8 is best possible, as stars
with an even number of vertices are 1-sequential graphs, but they cannot be
partitioned following (2, . . . , 2). On the other hand, the value ⌊3k/2⌋+ 1 is best
possible for some values of k. Namely, K2 +K3 is a 2-sequential graph such that
all 5-sequences with spectrum from {1, 2, 3} are realizable, while (1, 4) is not.
Also, K3 + K4 is a 3-sequential graph such that all 7-sequences with spectrum
from {1, 2, 3, 4} are realizable, while (2, 5) is not. For k ≥ 4, we do not know
whether the value ⌊3k/2⌋+1 can be lowered in Theorem 8; we believe this would
be an interesting aspect to study further on.

In general, it is worth mentioning that Realization is NP-hard when re-
stricted to k-sequential n-graphs and sequences of Kk,n and K′

k,n. Thus, Theo-
rems 7 and 8 do not imply the polynomiality of the AP problem when restricted
to k-sequential graphs. Note, though, that this does not imply the NP-hardness of
AP when restricted to those graphs, as there may exist other polynomial kernels
for k-sequential n-graphs whose realizability is easy to check.

Theorem 9. Realization is NP-hard when restricted to k-sequential n-graphs
and sequences of Kk,n and K′

k,n.

Proof. The proof is similar to that of Theorem 6; we prove the result for k = B
(where B is part of the input of the given instance of 3-Partition). As G, we
consider the k-sequential graph constructed, through sm+m+1 steps, as follows.

• At step i with i ∈ {1, . . . , sm + 1}, we add a new isolated vertex ui to G;

• At step i with i ∈ {sm + 2, . . . , sm +m}, we add a new isolated copy of KB;

• At step sm +m + 1, we add a new vertex v∗ joined to all previously-added
ones.

Note that indeed G is a k-sequential graph for k = B. The sequence π we
consider is (sm + 1, s(a1), . . . , s(a3m)) ∈ Kk,n,K

′
k,n. The result follows from the

same arguments as earlier; because the s(ai)’s are strictly greater than 1, each
ui has to belong to the same connected part as v∗, which must thus be of size
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sm + 1. Once this part has been picked, what remains is a disjoint union of m
copies of KB, and the sequence (s(a1), . . . , s(a3m)).

3.2. 2Gk-free graphs

Recall that 2Gk-free graphs are
{
⋃

G,H∈Gk
G+H

}

-free graphs. So, in every 2Gk-
free graph G, for every two disjoint subsets V1, V2 of k vertices we take, the
graph G[V1 ∪ V2] is connected as soon as G[V1] and G[V2] are. Note, in particu-
lar, that 2G1-free graphs are exactly complete graphs (graphs with independence
number 1), while 2G2-free graphs are split graphs ({2K2}-free graphs).

In what follows, we prove that the set

Qk,n = {π : π is an n-sequence and sp(π) ⊆ {1, . . . , 2k − 1}}

is a kernel for 2Gk-free n-graphs, which proves that the AP problem is in NP for
these graphs (for fixed k). The proof is essentially a generalization of the proof
that a split graph is AP if and only if all sequences with 1’s, 2’s and 3’s are
realizable.

Theorem 10. For every k, n, the set Qk,n is a kernel for 2Gk-free n-graphs.

Proof. The proof goes the same way as that of Theorem 7. Consider any n-
sequence π = (n1, . . . , np) 6∈ Qk,n. We prove that π is realizable in G. This
time, we consider an n-sequence π′ ∈ Qk,n obtained from π as follows. For every
element ni of π

• if ni ∈ {1, . . . , 2k − 1}, then we add ni to π′;

• otherwise, we add all elements of any ni-sequence (m1, . . . ,mx) where k ≤
mi ≤ 2k − 1 for every i = 1, . . . , x (such exists since ni ≥ 2k).

We obtain a realization R of π in G in the following way. Let R′ be a
realization of π′ in G. Consider every ni ∈ π. If ni ≤ 2k− 1, then we directly get
a connected subgraph of order ni in R′, which we add to R. Otherwise, ni ≥ 2k,
and there are corresponding elements m1, . . . ,mx with value in {k, .., 2k−1} in π′

(that is, m1 + · · ·+mx = ni), and thus connected subgraphs G1, . . . , Gx of order
m1, . . . ,mx in R′. Since all Gi’s include a connected subgraph of order k, and
G is 2Gk-free, necessarily every set V (Gi) ∪ V (Gj) for i 6= j induces a connected
subgraph in G. So V (G1) ∪ · · · ∪ V (Gx) induces a connected subgraph of order
ni of G, which we add to R as the part of size ni.

Once every ni has been considered, R is a realization of π in G.

The value 2k− 1 in the statement of Theorem 10 is best possible for k = 1, 2
(consider the graph K1+K2). However, it might be not optimal for larger values
of k. Let us further mention that the NP-hardness of Realization for 2Gk-free
n-graphs and sequences of Qk,n might also be established from the reduction in
the proof of Theorem 9.
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4. Weakening Hamiltonian properties

In this section, we consider two graph notions behind some known sufficient
conditions for Hamiltonicity. Namely, we consider squares of graphs and graphs
that are claw-free and net-free. We show that the most obvious way for weakening
these sufficient conditions for Hamiltonicity does not yield sufficient conditions
for the AP property.

4.1. Fleischner’s theorem

The square G2 of a given graph G is the graph on vertex set V (G) obtained by
adding an edge between every two vertices at distance at most 2 in G. We also
say that G2 was obtained by squaring G (i.e., applying the square operation on
G).

In this section, we consider a well-known result of Fleischner on squares of
graphs [15].

Theorem 11 (Fleischner’s Theorem). If G is a 2-connected graph, then G2 is

Hamiltonian.

Naturally, Fleischner’s Theorem yields that the square of every 2-connected graph
is AP. Let us point out, however, that this result cannot be weakened to traceabil-
ity; namely, one can easily come up with connected graphs G such that G2 is not
traceable. Due to the connection between AP graphs and traceable graphs, one
could nevertheless wonder whether such a statement holds for the AP property.
We here prove that this is not the case. In particular, we show that Realization

remains NP-hard when restricted to squared graphs.

y1 y2

x1 x2

w1

y3 y4

x3 x4

w2

v

u

Figure 1. The gadget H needed for the proof of Theorem 13.

To establish that result, we will make use of copies of the gadgetH depicted in
Figure 1, which will be attached to other graphs in a particular fashion. Namely,
let G be a graph with a vertex z. Add a disjoint copy of H to G, and identify z
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and the (white) vertex u of H. In the resulting graph, we say that there is a copy

of H rooted in z. Equivalently, we say that the graph was obtained by rooting a
copy of H at z.

The property of interest of this rooting operation is the following.

Lemma 12. Let G be a graph of order 3n having a copy of H rooted at u. Then,

in any realization R of π = (3, . . . , 3) in G2, the 12 vertices of H are covered by

exactly four distinct parts.

Proof. We deal with the vertices of the copy of H following the terminology
indicated in Figure 1. First off, let us note that H2 itself admits a realization of
(3, . . . , 3); for instance,

({y1, x1, x2}, {y2, w1, v}, {y3, x3, x4}, {y4, w2, u})

is one such.
Assume now the claim is wrong, and assume there exists a realization R

of π in G2 such that (at least) one of the parts containing u or v contains a
vertex of V (G) \ V (H) (only these parts can have this property). Note that
there cannot be only one such part as it would otherwise cover only one or two
vertices of H, while it has order 12 (hence the remaining subgraph of H2 cannot
be partitioned into connected subgraphs of order 3). So there are exactly two
parts of R that contain both vertices in V (H) and vertices in V (G)\V (H). Since
H2 is connected, in G2, to the rest of the graph only through u and v, one of these
two parts includes u, w1 (without loss of generality) and a vertex of V (G)\V (H),
while the second part includes v and two vertices of V (G)\V (H) (as otherwise the
remaining subgraph of H2 would have order 8 and thus could not be partitioned
into connected subgraphs of order 3). But then we reach a contradiction, as it
can easily be checked that H2 − {u, v, w1} admits no realization of (3, 3, 3).

We are now ready to prove the following result, which, in a sense, indicates
that the natural weakening of Fleischner’s Theorem to the AP property does not
hold in general.

Theorem 13. Realization is NP-hard when restricted to squared bipartite

graphs.

Proof. The proof is by reduction fromRealization when restricted to instances
where π = (3, . . . , 3), which was proved to be NP-hard by Dyer and Frieze [12].
From a given graph G, we construct, in polynomial time, another graph G′ such
that π is realizable in G if and only if π′ = (3, . . . , 3) is realizable in G′2. Fur-
thermore, the graph G′ we construct is bipartite.

We start from G′ being exactly G. We then consider every edge e of G, and
subdivide it in G′; we call ve the resulting vertex in G′. Finally, for every such
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vertex ve in G′, we add a copy of the gadget H from Figure 1, and root it at ve.
Note that G′ is indeed bipartite (due to the subdivision process and because H
is a tree), and, because both G and H have order divisible by 3, so does G′.

The equivalence between partitioning G and G′2 (following (3, . . . , 3)) follows
from the fact that, according to Lemma 12, in every realization R′ of (3, . . . , 3)
in G′2, the 12 vertices from any copy of H are included in exactly four parts. By
construction, when removing the copies of H from G′2, the graph we obtain is
exactly G. Hence, when removing from R′ the parts covering the copies of H,
what remains are parts covering the vertices of G only, and inducing connected
subgraphs. These parts thus form a realization of π in G. Hence, a realization of
π in G exists if and only if G′2 admits one of (3, . . . , 3).

We proved Theorem 13 for squared bipartite graphs, but we do think it would
be interesting knowing whether Realization remains NP-hard when restricted
to squared trees. We leave this question open for now.

Question 14. Is Realization NP-hard when restricted to squared trees?

It is worthwhile pointing out that squared trees without the AP property do
exist, which makes Question 14 legitimate.

Theorem 15. There exist trees T with ∆(T ) = 3 such that T 2 is not AP.

Proof. We give a single example illustrating the claim, but it naturally gen-
eralizes to an infinite family of such trees. Also, considering trees with larger
maximum degree might simplify the proof a lot, but we think having the result
for subcubic trees is more significant.

Consider, as T , the following tree (see Figure 2).

y1 y2

x1 x2

w1

y3 y4

x3 x4

w2

v1

y5 y6

x5 x6

w3

y7 y8

x7 x8

w4

v2

y9 y10

x9 x10

w5

y11 y12

x11 x12

w6

v3

u

Figure 2. The tree T described in the proof of Theorem 15.

• T has a degree-3 vertex u with neighbours v1, v2, v3;

• Each of v1, v2, v3 has two other degree-3 neighbours, w1, . . . , w6;

• Each of w1, . . . , w6 has two other degree-2 neighbours, call these x1, . . . , x12;
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• Each of x1, . . . , x12 has another degree-1 neighbour, call these y1, . . . , y12.

In what follows, we deal with the vertices of T labelled as depicted in Figure 2.
Note that n = |V (T )| = 34. To prove the claim, we show that T 2 has not
realization of the n-sequence π = (1, 3, . . . , 3). Towards a contradiction, assume
this is not true, and consider a realization R = (V1, . . . , Vp) of π in T 2, where V1

is the unique part with size 1.
First, we note that it is not possible that V1 = {u}. Indeed, in that case,

because T − {u} has three connected components of order 11, necessarily, in R,
one of the parts with size 3, say V2, has to contain at least two of v1, v2, v3. No
matter which three vertices are contained in V2, we note that, in all cases, the
graph T 2−V1−V2 has at least one connected component of order 10, which thus
cannot be partitioned into connected subgraphs of order 3.

So we may assume that u belongs to a part of R with size 3. Then V1 6= {u}
includes a vertex from one of the three connected components of G − {u}. The
other two connected components, together with u, induce two copies, both rooted
at u, of the gadget depicted in Figure 1. According to Lemma 12, each of these
two gadgets must entirely be covered by parts of size 3 of R. This is not possible,
since they share the same root u, a contradiction.

4.2. Forbidding claws and nets

Another condition guaranteeing Hamiltonicity of graphs is the absence of two
induced subgraphs, the claw and the net. The claw is the complete bipartite
graph K1,3, while the net Z1 is the graph obtained by attaching a pendant vertex
to every vertex of a triangle.

Theorem 16 (e.g. [14]). Every 2-connected (respectively, connected) {K1,3, Z1}-
free graph is Hamiltonian (respectively, traceable).

One could again wonder how Theorem 16 could be weakened to the AP property.
In this section, we point out that such a sufficient condition for APness cannot
be obtained by just dropping any of K1,3 or Z1 from the equation.

Let us first point out that the reduction in the proof of Theorem 3 yields
disconnected graphs that are {K1,3, Z1}-free. From this, we directly get that
Realization is NP-hard for such disconnected graphs. This is not satisfactory,
however, as, in the context of AP graphs, it makes more sense considering con-
nected graphs.

The counterpart of that result for connected net-free graphs, though, follows
directly from the proof of Theorem 4, as subdivided stars are clearly net-free
graphs.

Theorem 17. Realization is NP-hard when restricted to connected net-free

graphs.
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Unfortunately, the similar result for claw-free graphs does not follow immedi-
ately from another of the reductions we have introduced in the previous sections.
Below, we thus provide another reduction for establishing such a claim (upcoming
Theorem 19). We actually even establish the NPness of Realization for line

graphs (graphs of edge adjacencies), a well-known subclass of claw-free graphs.

r

u1 u2

u1 u2

r

u1 u2

r

Figure 3. The graphs S1 (left), S2 (middle) and S3 (right).

The proof is another implementation of the reduction framework introduced
in Section 2, which relies on the use of the following infinite family S of claw-free
gadgets. S contains graphs S1, S2, . . . defined inductively as follows (see Figure
3 for an illustration). Each Si contains a unique degree-2 vertex which we call
the root of Si. S1 is the graph obtained by considering a triangle ru1u2r, then
joining u1 to a pendant vertex, and then joining u2 to a pendant vertex. The
root of S1 is r. Now consider any i ≥ 2 such that Si−1 can be constructed. Then
Si is obtained from a triangle ru1u2r by adding two disjoint copies S′ and S′′ of
Si−1, identifying the root of S′ and u1, and similarly identifying the root of S′′

and u2. The root of Si is r.
For every i ≥ 1, let ni denote the number of vertices of Si. So n1 = 5,

and, for every i ≥ 2, we have ni = 2ni−1 + 1. More precisely, we have ni =
5 × 2i−1 + 2i−1 − 1. To every member Si ∈ S, we associate a set Ii of integers
defined as follows.

• I1 = {3}, and

• Ii = {ni−1 + 1, . . . , 2ni−1 − 1} of integers, for every i ≥ 2.

Note that |I1| < |I2| < · · · . Furthermore, every Si has the following property
regarding Ii.

Observation 18. Let i ≥ 1 be fixed. For every α ∈ Ii, the graph Si has no subset

Vα ⊂ V (Si) such that Si[Vα] is a connected α-graph and Si − Vα is a connected

graph containing the root of Si.

Proof. Assume such a part Vα exists. Let r denote the root of Si. Note that
every non-leaf vertex of Si different from r is a cut-vertex. Under all assumptions,
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this yields that, by the value of α, necessarily the two neighbours r′ and r′′ of r
belong to Vα. Since r′r′′ is a cut-edge of Si, this means that Vα has to cover all
vertices different from r; but this is not possible due to the value of α. This is a
contradiction.

We are now ready to prove the NP-hardness of Realization for claw-free
graphs.

Theorem 19. Realization is NP-hard when restricted to connected claw-free

graphs.

Proof. We follow the lines of the proofs of Theorems 4, 5 and 6. Let<A,B, s> be
an instance of 3-Partition, where we use the same terminology as in these
proofs. We may assume that s(a1) ≤ · · · ≤ s(a3m). Free to modify this in-
stance following Observation 2, we can assume that there is an α such that
s(a1), . . . , s(a3m) ∈ Iα.

a1

b1

c1

d1, a2

b2

c2

d2, a3

b3

c3

d3

Sα Sα Sα

KB−2 KB−1 KB−2

Figure 4. Illustration of the reduced graph constructed in the proof of Theorem 19, for
m = 3.

We construct G as follows (see Figure 4 for an illustration). We add m
disjoint copies of K4 to the graph, where the vertices of the ith copy are denoted
by ai, bi, ci, di. For every i = 1, . . . ,m − 1, we then identify the vertices di and
ai+1, so that the K4’s form a kind of path connected via cut-vertices. For every
i = 1, . . . ,m− 1, we then add a copy of Sα to the graph, and we identify its root
with bi. Finally, we consider every i = 1, . . . ,m, and

• for i = 1 or i = m, we add a complete graph KB−2 to the graph, and we
identify one of its vertices and ci;

• for i ∈ {2, . . . ,m− 1}, we add a complete graph KB−1 to the graph, and we
identify one of its vertices and ci.
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Note that G is claw-free (it is actually a line graph). The |V (G)|-sequence π we
consider for the reduction is π = (mnα +m− 1, s(a1), . . . , s(a3m)).

Recall that nα > s(a3m), and that α was chosen so that s(a1), . . . , s(a3m) ∈
Iα. For this reason, by Observation 18, in any realization of π in G, the part V1

with size mnα + m − 1 has to contain the vertices of all Sα’s added to G, and,
because G[V1] must be connected, also all vertices d1, . . . , dm−1. Then G − V1

is a disjoint union of traceable B-graphs, and we have to find a realization of
(s(a1), . . . , s(a3m)) in it. This is equivalent to finding a solution to <A,B, s>.

5. Conclusion

In this work, we have first considered the algorithmic complexity of the Real-

ization and AP problems. On the one hand, we have mainly established, along
all sections, the NP-hardness of Realization for more classes of graphs with
various structure. On the other hand, we have provided, in Section 3, new ker-
nels of sequences showing that the AP problem is in NP for a few more classes
of graphs. However, we are still far from a proof that 1) every graph has a poly-
nomial kernel of sequences (which would establish the full NPness of AP), and
that 2) the AP problem is complete for some complexity class (NP or Πp

2
being

candidate classes). More efforts should thus be dedicated to these points.

One particular appealing case is the one of cographs ({P4}-free graphs), which
was mentioned in [10] by Broersma, Kratsch and Woeginger. It can easily be
noted that the reduction in our proof of Theorem 9 yields cographs, so Real-

ization is NP-hard for these graphs. It is still open, though, whether there is a
polynomial kernel of sequences for cographs. Note that Theorem 7 makes a step
in that direction, as 1-sequential graphs (threshold graphs) form a subclass of
cographs.

The second line of research we have considered in this work is the weakening,
to APness, of well-known sufficient conditions for Hamiltonicity (or traceability).
It would be interesting if there were such a weakening for every condition for
Hamiltonicity, as it would emphasize the relationship between Hamiltonicity and
APness. However, previous investigations and some of our results seem to indicate
that this connection is not as tight as one could expect.

We believe, however, that it would be nice dedicating more attention to this
direction; let us thus raise an open question which might be interesting. As men-
tioned in the introductory section, Ore’s well-known condition for Hamiltonicity
can be weakened to APness. In particular, all n-graphs G with σ2(G) ≥ n − 2
having a (quasi-) perfect matching are AP. This result implies one direction of
upcoming Question 20, which, if true, would stand as a result a la Bondy-Chvátal.

Namely, for a graph G, the k-closure of G is the (unique) graph obtained by
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repeatedly adding an edge between two non-adjacent vertices with degree sum
at least k. A celebrated result of Bondy and Chvátal states that an n-graph
is Hamiltonian if and only if its n-closure is Hamiltonian [8]. Analogously, an
n-graph is traceable if and only if its (n − 1)-closure is traceable. However, it
is not true that every n-graph is AP if and only if its (n − 2)-closure is AP. In
the complete bipartite graph Kn/2−1,n/2+1, every two non-adjacent vertices have
degree sum at least n−2, so its (n−2)-closure is complete and thus AP; however,
note that Kn/2−1,n/2+1 has no perfect matching (realization of (2, . . . , 2)) and is
thus no AP. This is actually not the only exception. Indeed, let G be a graph of
order n = 4k + 2 consisting of two complete graphs Kn/2 with a common vertex
and a pendant edge attached to this vertex. Then the (n − 2)-closure of this
graph is complete, but G has not realization of (n/2, n/2). We wonder whether
there are many such exceptions, in the following sense.

Question 20. Is there an “easy” class of graphs G, such that if G 6∈ G is an

n-graph, then G is AP if and only if the (n− 2)-closure of G is AP?
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[18] M. Horňák, A. Marczyk, I. Schiermeyer and M. Woźniak, Dense arbitrarily vertex
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