
Discussiones Mathematicae
Graph Theory 42 (2022) 1219–1235
https://doi.org/10.7151/dmgt.2342

ON SMALL BALANCEABLE, STRONGLY-BALANCEABLE

AND OMNITONAL GRAPHS

Yair Caro

Department of Mathematics
University of Haifa-Oranim, Israel

Josef Lauri and Christina Zarb

Department of Mathematics
University of Malta, Malta

e-mail: christina.zarb@um.edu.mt

Abstract

In Ramsey Theory for graphs we are given a graph G and we are required
to find the least n0 such that, for any n ≥ n0, any red/blue colouring of the
edges of Kn gives a subgraph G all of whose edges are blue or all are red.
Here we shall be requiring that, for any red/blue colouring of the edges of
Kn, there must be a copy of G such that its edges are partitioned equally as
red or blue (or the sizes of the colour classes differs by one in the case when
G has an odd number of edges). This introduces the notion of balanceable
graphs and the balance number of G which, if it exists, is the minimum
integer bal(n,G) such that, for any red/blue colouring of E(Kn) with more
than bal(n,G) edges of either colour, Kn will contain a balanced coloured
copy of G as described above. The strong balance number sbal(n,G) is
analogously defined when G has an odd number of edges, but in this case
we require that there are copies of G with both one more red edge and one
more blue edge.

These parameters were introduced by Caro, Hansberg and Montejano.
These authors also introduce the more general omnitonal number ot(n,G)
which requires copies of G containing a complete distribution of the number
of red and blue edges over E(G).

In this paper we shall catalogue bal(n,G), sbal(n,G) and ot(n,G) for all
graphs G on at most four edges. We shall be using some of the key results
of Caro et al. which we here reproduce in full, as well as some new results
which we prove here. For example, we shall prove that the union of two
bipartite graphs with the same number of edges is always balanceable.
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1. Introduction

The problem we consider here, introduced in [6], lies in the intersection of several
graph theory problems such as Ramsey Theory, extremal Graph Theory (Turan
numbers) and Zero-sum Ramsey Theory. It can be described as follows: we first
suppose that there is a 2-edge-colouring f : E(Kn) → {red, blue}, and we denote
by R = Rf and B = Bf the set of edges of Kn coloured red and blue, respectively.
For short we shall also denote by R and B the graphs induced by the edge sets R
and B, respectively. A subgraph G of such a coloured complete graph is said to
be (r, b)-coloured if r edges of G are coloured red and b edges are coloured blue
with r + b = e(G), where e(G) denotes the number of edges of G. We denote by
degred(v) the number of vertices adjacent to v by a red edge, Nred(v) = {u : uv
is a red edge} so that degred(v) = |Nred(v)|, while Nred[v] = Nred(v) ∪ {v}. For
other standard graph theoretic notation we refer to [19].

In Ramsey Theory for graphs, we require that one of R or B contains a
particular graph, say a complete graph of certain order, and we ask what is the
smallest value of n such that any 2-edge-colouring f gives us the graph we want
either as a subgraph of R or as a subgraph of B. In this paper, inspired by [6],
the graphs we are searching for will be required to have some particular mix of
colours on its edge-set. There are three main problems we consider.

Balanceable graphs

For a given graph G we say that the colouring contains a balanced copy of G if
f induces a coloured copy of G in which the number of edges in each colour is
equal (if G has an even number of edges) or differs by one in the other case.

We therefore let, for n ≥ |V (G)|, bal(n,G) be the minimum integer, if it
exists, such that any 2-edge-colouring of E(Kn) with min{|R|, |B|} > bal(n,G)
contains a balanced copy of G. If bal(n,G) exists for every sufficiently large n,
we say that G is balanceable.

If G has an odd number of edges we then introduce the notion of strong
balance. That is, for n ≥ |V (G)|, we let sbal(n,G) be the minimum integer, if it
exists, such that any 2-edge-colouring of E(Kn) with min{|R|, |B|} > sbal(n,G)

contains both a
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e(G)
2

⌋

,
⌈

e(G)
2
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-coloured and
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2
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,
⌊

e(G)
2
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-coloured copy

of G. If sbal(n,G) exists for every sufficiently large n, we say that G is strongly-
balanceable.

Omnitonal graphs

Omnitonal graphs are those graphs G for which different copies of G appear in
a 2-edge-coloured complete graph such that all the copies carry between them
all possible distributions of the two colours on the edges of G. More formally,
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we define, for a given graph G, and for n ≥ |V (G)|, ot(n,G) to be the minimum
integer, if it exists, such that any 2-edge-colouring of E(Kn) with min{|R|, |B|} >
ot(n,G) contains an (r, b)-coloured copy of G for any r ≥ 0 and b ≥ 0 such that
r + b = e(G). If ot(n,G) exists for every sufficiently large n, we say that G is
omnitonal.

A source of motivation for [6], that belongs to the recent developments in
zero-sum extremal problems, is the close connection between the concepts of bal-
anceable and omnitonal graphs and zero-sum problems with weights over {−p, q}
and in particular over {−1, 1} (see Remark 1.3 in [6]) [1, 2, 4–9,14, 16–18].

There are two main goals as background to the present paper: the first one is
to compute the functions sbal(n,G), bal(n,G) and ot(n,G) for all the graphs
with up to 4 edges, checking which of the results already obtained in [6] can
be applied in this task. When no such result from [6] does the job we give our
complementary ad-hoc theorems that allow us to complete the various tables.

The second goal of this paper is to find out, while working on completing the
tables, whether we can gain some further insight not covered in [6]. In fact we
have found at least one such instance. It is mentioned in [6] that not all bipartite
graphs are balanceable (or strongly balanceable). Nevertheless we prove here that
if G and H are bipartite graphs with e(G) = e(H), then G ∪H is balanceable.
We remark that several theorems about the union of balanceable or omnitonal
graphs are known (and will probably appear in [3]), but all of them assume that
at least one of the graphs is balanceable or omnitonal.

Our paper is organized as follows.

In Section 2 we collect the theorems proved in [6] which we need here and
also give our complementary results that allow us to complete the first task —
namely to compute sbal(n,G), bal(n,G) and ot(n,G) for all the graphs on up to
four edges.

In Section 3 we prove the union theorem mentioned above, and give an ex-
ample to illustrate its use. We then introduce the triple property, and use this,
Theorem 3.1 and the fact that the graphs tK2 are amoebas (to be defined later), to
show that for n ≥ 7t−1, sbal(n, (2t−1)K2) = bal(n, 2tK2) = bal(n, (2t+1)K2) =
(t− 1)(n− t+ 1) +

(

t−1
2

)

.

Section 4 contains the tables with the results of our computations.

2. Theorems and Further Definitions

In this section we state those theorems from [6] which we shall use in the presen-
tation of our results, and some of the definitions required to state these theorems.
We shall also present a few results which do not appear in [6].
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For notation not defined here we refer the reader to [19]. We here note that
we shall oftern denote the edge {a, b} by ab.

2.1. Known results

The results presented here are taken from [5] and [6].

Theorem 2.1 (Theorem 2.8 in [6]). Omnitonal graphs are bipartite.

Theorem 2.2 (Theorem 2.10 in [6]). Every tree is omnitonal.

An edge replacement is defined as follows: given a graph G embedded in
a complete graph Kn where n ≥ |V (G)|, we say that H ≃ G (also embedded
in Kn) is obtained from G by an edge-replacement if there is some e1 ∈ E(G)
and e2 ∈ E(Kn)\E(G), such that H = (G − e1) + e2. A graph G is called
an amoeba if there exists n0 = n0(G) ≥ |V (G)|, such that for all n ≥ n0 and
any two copies F and H of G in Kn, there is a chain F = G0, G1, . . . , Gt = H
such that for every i ∈ {1, 2, . . . , t}, Gi ≃ G and Gi is obtained from Gi−1 by
an edge-replacement. For example, it is easy to see that tK2 is an amoeba for
t ≥ 1, and a little more effort reveals that Pk, the path on k vertices, is also an
amoeba. A paper developing in depth structures and properties of amoebas is
under preparation [5].

For a given graph G, we denote by R(G,G) the 2-colour Ramsey number,
that is, the minimum integer R(G,G) such that, whenever n ≥ R(G,G), any
2-edge-colouring of E(Kn) = E(R) ∪ E(B) contains either a red or a blue copy
of G. For a given graph G, we denote by ex(n,G) the Turan number for G, that
is, the maximum number of edges in a graph with n vertices containing no copy
of G [3, 13].

Theorem 2.3 (Theorem 2.14 in [6]). There is some n0 = n0(G) such that every
bipartite amoeba G on n ≥ n0(G) is omnitonal with ot(n,G) = ex(n,G).

Theorem 2.4 (Theorem 2.15 in [6]). Every amoeba G is balanceable/strongly
balanceable.

The final two results that we state consider stars.

Theorem 2.5 (Theorem 3.2 in [6]). Let k ≥ 2 and n be integers with k even and

such that n ≥ max
{

3, k
2

4 + 1
}

. Then

bal(n,K1,k) = n

(

k

2
− 1

)

−
k2

8
+

k

4
.
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Theorem 2.6 (Theorem 4.1 in [6]). Let n and k be positive integers such that
n ≥ 4k. Then

ot(n,K1,k) =







⌊

(k−1)
2 n

⌋

, for k ≤ 3,

(k − 2)n− k2

2 + 3
2k − 1, for k ≥ 4.

The following is a simple lemma about amoebas that was observed in [5]. We
give the proof for completeness.

Lemma 2.7 (Lemma in [5]). Let G be an amoeba without isolated vertices. Then
δ(G) = 1 and, for every k, 1 ≤ k ≤ ∆(G), there is a vertex v in G with deg(v) = k.

Proof. Let G be an amoeba. Consider Kn where n sufficiently large and let H
be a copy of G such that H and G are vertex disjoint in Kn. Let v be a vertex in
G such that deg(v) = ∆(G). Suppose u is the vertex in H to which v is to arrive
via edge-replacement.

So initially deg(u) = 0 and clearly the first time an edge is replaced to be
incident with u, deg(u) = 1 — but that means that in G there is a vertex of
degree equal to 1. Now as the process of edge-replacements that carry v to u
continues, then every time the degree of u can only increase by 1. So all the
numbers between 1 and ∆(G) are present as degrees of u along the process, and
for each k, 1 ≤ k ≤ ∆, there must therefore be a vertex in G of degree k.

Finally, we require the following definitions as described in [6]. Let t and n
be integers with 1 ≤ t < n. A 2-edge-coloured complete graph Kn is said to be
of type-A(t) if the edges of one of the colours induce a complete graph Kt, and
it is of type-B(t) if the edges of one of the colours induce a complete bipartite
graph Kt,n−t. A type-A(t) colouring (respectively, type-B(t) colouring) of Kn is
called balanced if the number of red edges equals the number of blue edges. The
following lemma is used here when we consider whether the graph C4 is omnitonal
and K3 strongly balanceable.

Lemma 2.8 (Lemma 3.1 and Lemma 3.2 in [7], Lemma 2.3 in [6]).

1. For infinitely many positive integers n, we can choose t = t(n) in a way that
the type-A(t) colouring of Kn is balanced.

2. For infinitely many positive integers n, we can choose t = t(n) in a way that
the type-B(t) colouring of Kn is balanced.

We end this section with the following observations.

Observation 2.9. A type-B(t) balanced colouring prevents an (r, b)-colouring of
C4 = K2,2 where r + b = 4 and where both r and b are odd, showing that C4 is
not omnitonal.

A type-A(t) balanced colouring with red edges forming the induced Kt prevents
a (2, 1)-coloured K3, showing that K3 is not strongly balanced.
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Observation 2.10. It is a well-known simple fact that the only graphs on at
least three edges containing no two independent edges are K3 and K1,k for k ≥ 3.
Therefore if a graph on n ≥ 4 vertices has at least n edges then it must have at
least one pair of independent edges.

2.2. New results

We now give some direct proofs of results which were not covered by the above
theorems.

Theorem 2.11. For n ≥ 10, ot(n,K1,3 ∪K2) = n.

Proof. Lower bound. For n ≥ 10 we have to show a colouring with min{|R|, |B|}
= n and some r, b ≥ 0 such that r + b = 4 but no copy of K1,3 ∪ K2 has r red
edges and b blue edges.

So, for n ≥ 10, any colouring in which the red colour forms a 2-factor in
Kn avoids a red K1,3, hence avoids a red K1,3 ∪K2. Observe that, for n = 9, a
colouring in which the red edges form a clique K5 and the rest are blue avoids a
red K1,3 ∪K2 but has 10 red edges hence the restriction to n ≥ 10 is necessary.

Upper bound. We have to show that, for n ≥ 10, any colouring of E(Kn) in which
min{|R|, |B|} ≥ n+1 contains an (r, b)-coloured copy of K1,3 ∪K2 for any choice
of r, b ≥ 0 such that r + b = 4.

Case 1. The existence of a (4, 0)-coloured copy (the proof for a (0, 4)-colo-
ured copy follows by symmetry). Clearly as |R| ≥ n + 1 there is a vertex v
with degred(v) ≥ 3. Let X be the subgraph of Kn induced by the vertex-set
V (Kn)\Nred[v]. We consider three possible cases:

(i) degred(v) ≥ 5. If there is a red edge in V (Kn)\{v} then clearly we have
red K1,3 ∪K2, because we always have at least three vertices in Nred(v) disjoint
from the vertices of this red edge. Hence the only red edges in E(Kn) are those
incident with v and it follows that |R| ≤ n− 1, a contradiction.

(ii) degred(v) = 4. Clearly |X| ≥ 5. If there is a red edge from Nred(v) to X we
are done. So all red edges are contained in Nred[v]. But then, |Nred[v]| = 5 hence
|R| ≤ 10 < n+ 1 since n ≥ 10.

(iii) degred(v) = 3. Clearly we may assume that all edges in X are blue otherwise
we are done. Also |X| = n− 4 ≥ 6. Since no vertex has red degree at least four
(otherwise we are back to Case (ii), it follows that the four vertices in Nred[v] are
incident with at most 9 red edges altogether, a contradiction since n ≥ 10.

Case 2. The existence of a (3, 1)-coloured copy (the proof for a (1, 3)-coloured
copy follows by symmetry). In fact we will show the existence of (3, 1)-coloured
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copy with a red K1,3 and a blue K2. As before, let v be a vertex with degred(v)
≥ 3.

(i) degred(v) ≥ 5. If there is a blue edge in the subgraph of Kn induced by
V (Kn)\{v}, then clearly we have a red K1,3 union a blue K2, because we always
have at least three vertices in Nred(v) disjoint from the vertices of this blue edge.

Hence the only blue edges in E(Kn) are those incident with v and it follows
|B| ≤ n− 6, a contradiction.

(ii) degred(v) = 4. Clearly, we can assume that all edges in X are red otherwise
we are done by taking a blue edge in X with a red K1,3 in Nred[v]. Moreover
|X| = n− 5 ≥ 5, implying X is a complete red graph on at least five vertices.

If there is a blue edge from Nred[v] to X we are done as we can take this blue
edge and a vertex-disjoint red K1,3 in X.

If there is a blue edge in Nred(v) we are done as we can take this blue edge
and a red K1,3 in X. So no blue edges are possible, a contradiction to |B| ≥ n+1.

(iii) degred(v) = 3. Clearly we may assume that all edges in X are red otherwise
we are done. Also |X| = n− 4 ≥ 6.

If there is a blue edge in Nred(v) we are done by taking it with the red K1,3

from X. If there is a blue edge e from Nred[v] to X we can still take a red K1,3

in X which is vertex-disjoint from the blue edge e and we are done. Hence no
blue edges are possible, a contradiction to |B| ≥ n+ 1.

Case 3. The existence of a (2, 2)-coloured copy. We will show the existence of
K1,3 with two red edges and one blue edge and a vertex-disjoint blue K2. Suppose
first that there is no vertex v incident with two red edges and a blue edge. Then
in each vertex, either all edges are blue, or all edges except one are blue, or all
edges are red.

Suppose there is a vertex v with degblue(v) = n − 1. Since there is a vertex
u with degred(v) ≥ 3, it follows that in u there is the required coloured K1,3.

Suppose there is a vertex v with degred(v) = n − 1. Then there must be
a red edge in the subgraph of Kn induced by V (Kn)\v, say e = yz. Then
degred(y) = n − 1, otherwise we are done. But that forces all vertices in V (Kn)
to have red-degree at least 2. Hence all edges are red, a contradiction.

The only case that remains is that all red edges are vertex disjoint but then
|R| ≤ n/2 a contradiction.

So assume that there is a coloured copy of K1,3 with two red edges va and
vb and a blue edge vc. Clearly all edges in Y , the subgraph of Kn induced by
V (Kn)\{v, a, b, c}, must be red otherwise we are done. Also Y has n − 4 ≥ 6
vertices.

If there is a blue edge e1 from a or from b to z ∈ V (Y ), we are done by taking
K1,2 centered on z with e1 and vc. So all blue edges are incident with c with at
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most one more possible blue edge ab, making the total number of blue edges at
most n a contradiction.

Theorem 2.12. For n ≥ 10, bal(n, 4K2) = n− 1.

Proof. Lower bound. Pick a vertex v in Kn and colour all the edges incident to
it red and the rest of the edges blue. Clearly (as there are no two independent
edges of red colour) there is no balanced 4K2 hence bal(n, 4K2) ≥ n − 1 always
holds.

Upper bound. We have to show that for n ≥ 10 and any 2-edge colouring of Kn

with min{R,B} ≥ n, there exists a balanced 4K2.
We may assume without loss of generality that we have Kn with its edges

coloured red and blue such that there are at least n edges of each colour. Hence
we may assume without loss of generality that there are two independent red
edges ab and cd. Let us remove the vertices a, b, c, d and all edges incident to
them to leave a graph X isomorphic to Kn−4 with its edges coloured red and
blue. If there are two independent blue edges in this remaining graph then we
are done. So we may assume that no such two edges exist in X, which implies
that there are at most n− 5 blue edges in X, and hence at least five blue edges
among the deleted edges. Therefore, there exists at least one blue edge joining a
vertex u in X to one of the vertices a, b, c or d, say a, without loss of generality.
We then have two cases.

Case 1. There are no blue edges in X. This implies that besides au there
are at least four other blue edges among the deleted edges. This gives us two
subcases. Either (i) there is another blue edge joining vertex u in X to one of
{b, c, d}; or (ii) there is a blue edge in the complete graph induced by {a, b, c, d}
and another independent edge joining u to one of these vertices. We consider
these two subcases separately.

Subcase (i) We may assume without loss of generality that v in X is joined
to b with a blue edge. If we remove u, v and all the edges incident to them in
X we are left with Kn−6 in which all the edges are red. This graph has two
independent red edges since

(

n−6
2

)

≥ n − 6 because (n − 7)/2 > 1 since we are
assuming that n ≥ 10. These two red edges, together with the two blue edges au
and bv form the required balanced 4K2.

Subcase (ii) If we remove u and its edges from X we have Kn−5 whose edges
are all red, and hence there are two independent red edges in this graph for
n ≥ 8, and again we can form the balanced 4K2 using these two edges and the
two independent blue edges.

Case 2. There is at least one blue edges, say ux, in X. Therefore there must
be a blue edge e among the deleted blue edges which is not incident to u, since



On Small Balanceable, Strongly-Balanceable and ... 1227

there are four such deleted edges incident to u, and at least another four blue
edges. If e is incident to x then there must be another edge among the deleted ones
not incident to x because again there are at most three remaining deleted edges
incident to x. So there are two independent blue edges, one of which may be ux.
Again, if we remove u, x and all edges incident to these vertices from X, then we
have two independent red edges in this remaining graph if

(

n−6
2

)

−(n−5) ≥ n−6,
that is, n2 − 15n + 52 ≥ 0, which is true when n ≥ 10. These two red edges,
together with the two independent blue edges, form the required balanced 4K2.

Theorem 2.13. For n ≥ 8, bal(n, 2K2 ∪K1,2) = 1.

Proof. Lower bound. Colour one edge of Kn red and the rest blue. Clearly no
copy of 2K2 ∪K1,2 can have two red edges.

Upper bound. Clearly there must be K2 ∪ K1,2 with the two edges of K1,2 of
distinct colour, say without loss of generality, there are 5 vertices a, b, c, d, e such
that ab, is red cd is red and de is blue (where the vertex d is the centre of K1,2).
Let X = V \{a, b, c, d, e}, where, since n ≥ 8, |X| ≥ 3. Let u1, . . . , un−5 be the
vertices of X.

If there is a blue edge in X then we are done. So let us assume all edges of
X are red.

If there is a blue edge from either a or b to X, say to u1, then we are done
by taking the edge au1 or bu1, the edge u2u3 and K1,2 on the vertices {c; d, e}
(where the notation {p; q, r, s, . . .} denotes a star with centre p). So let us assume
all edges from a and b to x are red.

If there is a blue edge from d to X, say to u1 we are done by the edges ab,
u2u3 and K1,2 on the vertices {e; d, u1}. So let us assume all edges from d to X
are red.

If there is a blue edge from c to X, say to u1 we are done by the edges ab, ed
and K1,2 on the vertices {c;u1, u2}. So let us assume all edges from c to X are
red.

If there is a blue edges from e to X say to u1 we are done by the edges ab,
u2u3 and K1,2 on the vertices {d; e, u1}. So let us assume all edges from e to X
are red.

If edge ce is blue we are done by the edges ab, u1u2 and K1,2 on the vertices
{d; e, c}. So assume edge ce is red.

If either edge ae or be is blue we are done by bu1, cu2 and K1,2 on the vertices
{a; e, d} in the case ae is blue, or au1, cu2 and K1,2 on the vertices {b; e, d} in the
case be is blue. So let us assume these two edges are red.

If there is a blue edge from c to either a or b, we are done by the edges ac,
de and K1,2 on the vertices {u1;u2, u3} or by bc, de and K1,2 on the vertices
{u1;u2, u3}. So let us assume both these edges are red.
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Then this implies that either da or db is blue, as there must be at least two
blue edges. If da is blue we are done by bu1, cu2 and K1,2 on the vertices {e; d, a},
while if db is blue we are done by au1, cu2 and K1,2 on the vertices {e; d, b}.

Theorem 2.14. For n ≥ 7, bal(n,K2 ∪K3) = 3.

Proof. Lower bound. Consider a coloring of Kn in which there is a red coloured
K3 and the rest of the edges are blue. Clearly there is no K2 ∪K3 with exactly
two red edges hence bal(n,K2 ∪K3) ≥ 3.

Upper bound. Suppose now n ≥ 7 and we have an (r, b)-colouring of Kn with
min{R,B} ≥ 4. We will show the existence of a balanced K2 ∪K3. Without loss
of generality, there must be a K3 on vertices {a, b, c} with two red edges ab and
bc and one blue edge ac.

Let X = V \{a, b, c}. Then |X| ≥ 4 and let u1, . . . , un−3 be the vertices of X.

Now, if there is a blue edge in X we are done. So we may assume that all
edges in X are red.

Suppose there are at least two blue edges from b to X say to u1 and u2. Then
we are done by K3 induced on {b, u1, u2} and the edge u3u4.

If there is one blue edge from b to X say to u1 then we are done by K3

induced on {b, u1, u2} and the edge ac.

So we may assume b is connected to X by red edges only. Suppose there are
at least two blue edges from a to X, say to u1 and u2. Then we are done by K3

induced on {a, u1, u2} and the edge bc.

Finally suppose there are at least two blue edges from c to X, say to u1 and
u2. We are done by K3 induced on {c, u1, u2} and the edge ab.

So there is at most one blue edge from a to X and one from c to X. But
then the total number of blue edges is at most 3, a contradiction.

The colouring with {a, b, c} a blue triangle and all other edges red shows that
bal(n,K2 ∪K3) ≥ 3

Theorem 2.15. For n ≥ 9, bal(n,K1,3 ∪K2) = n− 1.

Proof. Lower bound. Clearly bal(n,K1,3 ∪K2) ≥ n− 1: consider Kn and choose
a vertex v. Colour all edges incident with v red and all other edges blue. No
balanced copy of K1,3 ∪K2 exists.

Upper bound. Suppose now that min{|R|, |B|} ≥ n. We have to show the exis-
tence of a balanced copy of K1,3 ∪K2 (two red edges and two blue edges). Since
n ≥ 9 and min{|R|, |B|} ≥ n, it follows that there are at least two independent
red, respectively blue, edges.

Clearly there is a vertex v incident to both red and blue edges. We assume,
without loss of generality, that degred(v) ≥ degblue(v) ≥ 1. Clearly degred(v) ≥
(n− 1)/2 ≥ 4. We consider the following cases:
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Case 1. degblue(v) = 1 with the blue edge e = vw. If there is a blue edge
e∗ = xy where both x and y are in Nred(v) then since degred(v) ≥ 4, we can take
e = vw and two red edges incident with v but vertex-disjoint from x and y, and
add e∗ to get a balanced K1,3 ∪ K2. Otherwise, if there is no such edge as e∗

then all blue edges are incident with w, which would imply that |B| ≤ n − 1, a
contradiction.

Case 2. degblue(v) ≥ 2 — this forces all edges induced in Nred(v) to be blue,
for otherwise there is a red edge say e = xy in Nred(v) and a red edge e∗ incident
with v but not with x nor y, and we take two blue edges incident to v together
with e and e∗ to get a balanced K1,3 ∪K2. So, all edges induced in Nred(v) are
blue. We take e = xy to be such a blue edge and since degred(v) ≥ 4 we have two
red edges va and vb which are vertex disjoint from x and y. We now take one
blue edge incident with v and the edges va and vb together with the edge e = xy
to get a balanced K1,3 ∪K2.

Theorem 2.16. For n ≥ 5, sbal(n,K1,3) = n− 1.

Proof. Lower bound. We consider Kn and fix a vertex v in it, colouring all edges
incident with v blue and all other edges red. Clearly no K1,3 with two blue edges
and one red edge exists, and hence sbal(n,K1,3) ≥ n− 1.

Upper bound. We now prove that if min{|R|, |B|} ≥ n (which is possible as
n ≥ 5), there must be a K1,3 with two blue edges and one red edge, as well as
one with two red edges and one blue edge.

So let n ≥ 4 and consider the blue edges. Since there are at least n blue
edges there must be a vertex v incident with at least two blue edges. Now if v is
also incident to a red edge we have a copy of K1,3 with two blue edges and one
red edge.

Hence all edges incident with v are blue and hence all vertices of Kn are
incident to at least one blue edge. But as there are at least n blue edges there
must be another vertex u already incident to v such that uv is blue, but also
incident with another vertex w with uw coloured blue. Now if u is also incident
to a red edge we are done with K1,3 centered at u having two blue edges and
one red edge. Otherwise all edges incident to u are blue and it follows that all
vertices of Kn have degree at least 2 in the blue graph. But there must be a red
edge incident with some vertex z, and we have K1,3 centred at z with two blue
edges and one red edge. The case for K1,3 with two red and one blue edge follows
by symmetry atrting with a K1,3 with at least two red edges.

Finally we shall find this simple observation about graphs on three edges
useful for results given in the tables.

Observation 2.17. If G has three edges, then G is balanceable.
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Proof. Suppose min{|R|, |B|} ≥ 1 then clearly there is a vertex v in Kn incident
with a red edge say vx and blue edge say vy. So no matter how we complete this
red and blue coloured K1,2 to any of the graphs on 3 edges except for 3K2, we
have a balanced copy of G. If G = 3K2 and n ≥ 6 then as before there is red
and blue coloured K1,2 with vertices {v;x, y}. Since n ≥ 6 there is an edge ab
disjoint from {v, x, y} hence without loss of generality we may assume that edge
vx is red and edge ab is blue. Since n ≥ 6, every edge disjoint from {a, b, v, x}
gives a balanced 3K2. Hence G is balanceable with bal(n,G) = 0 for n ≥ 6.

3. The Triple Property and Union of Bipartite Graphs

It is well known [6] that there are bipartite graphs which are not balanceable
however the following theorem shows an interesting property: if G and H are
any bipartite graphs with e(G) = e(H) then G ∪H is balanceable. The example
following this theorem shows a direct use of it in the case where G = 2C4t+2,
while it is known that C4t+2 is not a balanceable graph [6].

We next develop the triple property which together with Theorem 3.1 allows
us to compute sbal(n, (2t − 1)K2), bal(n, 2tK2) and bal(n, (2t + 1)K2) in one
stroke.

Theorem 3.1. Suppose G and H are bipartite graphs such that e(G) = e(H)
and that n ≥ |G| + |H| + R(G,H) where R(G,H) is the Ramsey number for a
red copy of G or a blue copy of H. Then there exists n0 such that for n ≥ n0,
bal(n,G ∪H) ≤ max{ex(n,G), ex(n,H)}.

Proof. SinceG andH are bipartite graphs and it is well-known that ex(n,G) and
ex(n,H) are sub-quadratic [13], it follows that, for n large enough, if min{|R|, |B|}
> max{ex(n,G), ex(n,H)} then a 2-edge-coloured copy of Kn contains both a red
copy of G and a blue copy of H, [4, 6, 14].

Let G1 be the red copy of G and H1 be the blue copy of H. If G1 and H1

are vertex-disjoint we are done, having a balanced G ∪H since e(G) = e(H).

Otherwise let S = V (G1) ∪ V (H1). Clearly |S| < |V (G)| + |V (H)|. Let
X = V (Kn)\S. Then |X| ≥ R(G,H) and hence in the induced colouring on X
there is either a red copy of G or a blue copy of H (or both).

If there is a blue copy of H take it with G1, and if there is a red copy of G
take it with H1 and in both cases we get a balanced G ∪H.

We now give an example of the applicability of this theorem.

Example 3.2. An illustration of Theorem 3.1.
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It is known that C4n+2 is not balanceable by Remark 2.9 in [6]. Also R(C4t+2,
C4t+2) = 6t+2 by a result in [12]. Also Turan numbers for even cycles are bounded
above by ex(n,C2k) ≤ (k − 1)n1+1/k + 16(k − 1)n, a result proved in [15].

So applying Theorem 3.1, together with these facts, we get the following.

Let G = 2C4t+2. Then G is balanceable and for n ≥ 14t+ 6,

bal(n,G) ≤ ex(n,C4t+2) ≤ (4t+ 1)n1+1/(4t+2) + 16(4t+ 1)n.

We define the following property. Let G, H and F be three graphs such that
e(G) is odd, H is obtained from G by adding a new edge, and F is obtained from
H by adding another new edge. We say that (G,H,F ) has the triple property if
there is some n0 such that for n ≥ n0, sbal(n,G) = bal(n,H) = bal(F, n).

Theorem 3.3. Let G = (2t−1)K2, H = 2tK2 and F = (2t+1)K2. Then (G,H,
F ) has the triple property.

Proof. Clearly bal(n, F ) ≥ bal(n,H), for suppose we have a colouring of E(Kn)
with min{|R|, |B|} ≥ bal(n, F ) + 1. Then by definition there is a balanced (r, b)-
coloured copy of F with either r = t+1 and b = t or r = t and b = t+1. Ignoring
an edge with the most frequent colour gives a balanced colouring of H.

Conversely, suppose we have a colouring of E(Kn) with min{|R|, |B|} ≥
bal(n,H) + 1. Then by definition there is a balance (r, b)-coloured copy of H
with r = b = t. If we take n > n0 = 4t + 2, the edges of the balanced copy of
H cover 4t vertices, but there is at least one further edge independent from all
these 2t edges, and no matter what the colour of this edge is, we can add it to H
to get a balanced F . Therefore bal(n, F ) ≤ bal(n,H).

We now need to show that bal(n,H) ≥ sbal(n,G). Suppose we have a colour-
ing of E(Kn) with min{|R|, |B|} ≥ bal(n,H) + 1. Then by definition there is a
balanced copy of H, and we can drop either a red or a blue edge to get a balanced
copy of G.

For the converse consider n0 = 5t + 2 = n(G) + t + 4. Suppose we have a
colouring of E(Kn) with min{|R|, |B|} ≥ sbal(n,G)+1. Then by definition there
is either a (t, t− 1)-coloured copy of G or a (t− 1, t)-coloured copy of G.

Consider a (t, t − 1)-coloured copy of G. Let the t red edges be e1, . . . , et
and the t − 1 blue edges be f1, . . . , ft−1. Let S be the complete graph induced
by V (Kn)\V (G); clearly |V (S)| ≥ t+ 4 since n0 ≥ 5t+ 2. Clearly all edges in S
must be red for otherwise we can add a blue edge to get a balanced copy of H.

If there is a blue edge not incident with any of f1, . . . , ft−1, then either it
is adjacent to two red edges of e1, . . . , et, or there is a blue edge adjacent with
an edge from e1, . . . , et and an edge from S. In the first case we drop these two
red edges and add the blue edge and two independent red edges from S since
|S)| ≥ t + 4. In the second case we drop the red edge and replace it by a red
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edge from S not incident with the blue edge and add also the blue edge to get
balanced H.

So we know that S contains only red edges, therefore together with e1, . . . , et,
we have a graph L on at least 3t+ 4 vertices, all of whose edges are red.

So we may conclude that there are remaining blue edges and that each is
adjacent to at least one blue edge from f1, . . . , ft−1.

Now take an (t − 1, t)-coloured copy of G. The t blue edges are incident
with at most t vertices from L, leaving in L at least 2t + 4 vertices from which
we can choose t red edges not adjacent with the t blue edges of G and we get a
balanced H.

Theorem 3.4. For n ≥ 7t− 1, sbal(n, (2t− 1)K2) = bal(n, 2tK2) = bal(n, (2t+
1)K2) = ex(n, tK2) =

(

t−1
2

)

+ (t− 1)(n− t+ 1).

Proof. It suffices to prove that bal(n, 2tK2) = ex(n, tK2) for n = 7t− 1 (by the
former triple property all other equality signs were proved).

From the theorem above we know that bal(n, 2tK2) ≤ ex(n, tK2). However
in this case the reverse inequality holds as well because we take Kn and colour
its edges with |R| = ex(n, tK2) forming the extremal graph for tK2 (not having
tK2).

If there is a balanced 2tK2 it must contains a red tK2 which is a contradiction.
We observe an old result of Erdős and Gallai [11]

ex(n, tK2) = max

{(

2t− 1

2

)

,

(

t− 1

2

)

+ (t− 1)(n− t+ 1)

}

=

(

t− 1

2

)

+ (t− 1)(n− t+ 1)

for n ≥ 7t−6
2 .

Also, we observe that R(tK2, tK2) = 3t− 1 by the classical result in [10].
Hence putting all these facts together we got the last required equality for

n ≥ 2|V (G)|+R(G,G) = 4t+ 3t− 1 = 7t− 1.

One question which this proof raises is whether these equalities hold for n
much less that 7t− 1.

4. Tables

We can now give, in this section, the values of ot(n,G), bal(n,G) and sbal(n,G),
when they exist, for all graphs G on at most four edges.
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Graphs Amoeba Omnitonal ot(n,G) Valid n Comments
4K2 Y Y ex(n,G) n ≥ n0 Theorem 2.3
2K2 ∪K1,2 Y Y ex(n,G) n ≥ n0 Theorem 2.3
2K1,2 Y Y ex(n,G) n ≥ n0 Theorem 2.3
K2 ∪ P4 Y Y ex(n,G) n ≥ n0 Theorem 2.3
P5 Y Y ex(n,G) n ≥ n0 Theorem 2.3
K1,3 with extended leaf Y Y ex(n,G) n ≥ n0 Theorem 2.3
K2 ∪K3 N N — Theorem 2.1
C4 N 1 N — Lemma 2.8
K1,3 ∪K2 N 1 Y n n ≥ 10 Theorem 2.11
K1,4 N 1 Y 2n− 3 n ≥ 16 Theorem 2.6
K3 + e Y N — Theorem 2.1
K1,3 N 1 Y n n ≥ 12 Theorem 2.6
P4 Y Y ex(n,G) n ≥ n0 Theorem 2.3
K3 N 1 N — Theorem 2.1
3K2 Y Y ex(n,G) n ≥ n0 Theorem 2.3
P3 ∪K2 Y Y ex(n,G) n ≥ n0 Theorem 2.3
P3 Y Y ex(n,G) n ≥ 3 Theorem 2.3
2K2 Y Y ex(n,G) n ≥ n0 Theorem 2.3
1 By Lemma 2.7.

Table 1. Amoebas and Omnitonal graphs on at most four edges.

Graphs bal(n,G) Valid n Comments
4K2 n− 1 n ≥ 10 Theorem 2.12
2K2 ∪K1,2 1 n ≥ 8 Theorem 2.13
2K1,2 1 n ≥ 7 1

K2 ∪ P4 1 n ≥ 7 1

P5 1 n ≥ 6 1

K1,3 with extended leaf 1 n ≥ 7 1

K2 ∪K3 3 n ≥ 7 Theorem 2.14
C4 1 n ≥ 4 1

K1,3 ∪K2 n− 1 n ≥ 9 Theorem 2.15
K1,4 n− 1 n ≥ 5 Theorem E
K3 + e 1 n ≥ 5 1

K1,3 0 Observation 2.17
P4 0 Observation 2.17
K3 0 Observation 2.17
3K2 0 Observation 2.17
P3 ∪K2 0 Observation 2.17

1 The proofs are in nature very similar to the proof of Theorem 2.13 and

are left to the interested reader to verify.

Table 2. Balanced graphs on at most four edges.
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Graphs Strong balanced sbal(n,G) Valid n Comments
K1,3 Y n− 1 n ≥ 4 Theorem 2.16
P4 Y 1 n ≥ 7 Theorem 2.4
K3 N Lemma 2.8
3K2 Y n− 1 n ≥ 7 Theorem 3.4
P3 ∪K2 Y 1 n ≥ 7 Theorem 2.4

Table 3. Strongly balanced graphs on at most four edges.

5. Conclusion

In this paper, by computing the values of bal(n,G), sbal(n,G) and ot(n,G) for all
graphs G on at most four edges we have tried to convey the flavour of the results
in [6] and the techniques used to obtain them. We have also tried to obtain some
new techniques which could shed more insight on these problems. We hope that
this paper will be an invitation to the interested reader to delve into [6] for a
more comprehensive treatment of balanceable and omnitonal graphs.
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