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Abstract

A nowhere-zero unoriented flow of graph G is an assignment of non-zero
real numbers to the edges of G such that the sum of the values of all edges
incident with each vertex is zero. Let k be a natural number. A nowhere-
zero unoriented k-flow is a flow with values from the set {±1, . . . ,±(k−1)},
for short we call it NZ-unoriented k-flow. Let H1 and H2 be two graphs,
H1 ⊕H2 denote the 2-sum of H1 and H2, if E(H1 ⊕H2) = E(H1)∪E(H2),
|V (H1)∩V (H2)| = 2, and |E(H1)∩E(H2)| = 1. A triangle-path in a graph G
is a sequence of distinct triangles T1, T2, . . . , Tm inG such that for 1 ≤ i ≤ m,
|E(Ti) ∩ E(Ti+1)| = 1 and E(Ti) ∩ E(Tj) = ∅ if j > i + 1. A triangle-star
is a graph with triangles such that each triangle having one common edges
with other triangles. Let G be a graph which can be partitioned into some
triangle-paths or wheels H1, H2, . . . , Ht such that G = H1⊕H2⊕· · ·⊕Ht. In
this paper, we prove that G except a triangle-star admits an NZ-unoriented
6-flow. Moreover, if each Hi is a triangle-path, then G except a triangle-star
admits an NZ-unoriented 5-flow.
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1. Introduction

All graphs in this paper are finite and undirected without loops, possibly with
parallel edges. A nowhere-zero k-flow in a graph with orientation is an assignment
of an integer from {±1, . . . ,±(k − 1)} to each of its edges such that Kirchhoff’s
law is respected, that is, the total incoming flow is equal to the total outgoing flow
at each vertex. As noted in [8], the existence of a nowhere-zero flow of a graph
G is independent of the choice of the orientation. Nowhere-zero flows in graphs
were introduced by Tutte [12] in 1949. A great deal of research in the area has
been motivated by Tutte’s 5-Flow Conjecture which asserts that every 2-edge-
connected graph admits a nowhere-zero 5-flow. In 1983, Bouchet [5] generalized
this concept to bidirected graphs. A bidirected graph G is a graph with vertex
set V (G) and edge set E(G) such that each edge is oriented as one of the four
possibilities in Figure 1.

(a) (b)

(c) (d)

Figure 1. Orientations of edges in bidirected graph

An edge with orientation as (a) (respectively, (b)) is called an in-edge (re-
spectively, out-edge). An edge that is neither an in-edge nor an out-edge is called
an ordinary edge as in (c) or (d). An integer-valued function f on E(G) is a
nowhere-zero bidirected k-flow if for every e ∈ E(G), 0 < |f(e)| < k, and at ev-
ery vertex v, the sum of values of f on all coming-in edges incident with v is equal
to the sum of values of f on all going-out edges incident with v. The following
conjecture, posed by Bouchet [5] and known as Bouchet’s 6-flow conjecture, is
one of the most important problems on nowhere-zero integer flows in bidirected
graphs.

Conjecture 1 [5]. If a bidirected graph admits a nowhere-zero k-flow for some

positive integer k, then it admits a nowhere-zero 6-flow.

In [5], Bouchet showed that the value 6 in this conjecture is best possible.
Raspaud and Zhu [11] proved that, if a 4-edge-connected bidirected graph admits
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a nowhere-zero integer flow, then it admits a nowhere-zero 4-flow, which is best
possible. In [13], Zyka proved the result in Bouchet’s Conjecture is true if 6 is
replaced by 30.

A nowhere-zero unoriented flow (also called zero-sum flow) in a graph is an
assignment of non-zero integers to the edges of G such that the total sum of the
assignments of all edges incident with any vertex of G is zero. A nowhere-zero
unoriented k-flow in a graph G is an unoriented flow with flow values from the
set {±1, . . . ,±(k − 1)}, for short we call it NZ-unoriented k-flow. The following
conjecture is known as Zero-Sum Conjecture.

Conjecture 2 [1]. If a graph G admits an NZ-unoriented flow, then it admits

an NZ-unoriented 6-flow.

Indeed an NZ-unoriented k-flow in G is exactly a nowhere-zero k-flow in
the bidirected graph with underlying graph G such that each edge is an in-edge
or out-edge. The following theorem shows the equivalence between Bouchet’s
Conjecture and Zero-Sum Conjecture.

Theorem 3 [2]. Bouchet’s Conjecture and Zero-Sum Conjecture are equivalent.

There are many results about Zero-Sum Conjecture recently. Akbari, Daemi
et al. [3] proved that Zero-Sum Conjecture is true for hamiltonian graphs, with 6
replaced by 12. Akbari et al. [2] proved that every r-regular graph (r ≥ 3) admits
an NZ-unoriented 7-flow. Moreover, Akbari et al. [4] showed that every r-regular
graph, where r ≥ 3 and r 6= 5, admits an NZ-unoriented 5-flow. Recently, Yang
and Li [14] proved that every 5-regular graph admits an NZ-unoriented 6-flow.

In this paper we prove the existence of NZ-unoriented k-flow in certain tri-
angular graphs.

Theorem 4. Let G = H1⊕H2⊕· · ·⊕Ht, where Hi is a triangle-path or a wheel.

If G is not a triangle-star, then G admits an NZ-unoriented 6-flow. Moreover, if

each Hi is a triangle-path, then G admits a NZ-unoriented 5-flow.

We will prove this result in Section 3. In Section 2, we establish some lemmas
which are crucial to our result.

2. Preliminaries

Given a subgraph H of G, we use G/H to denote the graph obtained from G
by contracting all edges in H and deleting the resulting loops. Let n-path be
a path with n edges. For a graph G and X ⊆ E(G), we use G − X denote a
graph obtained from G by deleting edge set X. When X = {e}, we use G − e
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for conveniences. For ui ∈ V (G) and each i = 1, 2, G+ u1u2 means a new graph
obtained from G by adding edge u1u2.

Akbari, Ghareghani [1] et al. deduce the following two results which present
a geometric interpretation for graphs having an NZ-unoriented flow.

Theorem 5. Suppose G is not a bipartite graph. Then G has an NZ-unoriented

flow if and only if for any edge e of G, G− e has no bipartite component.

Lemma 6. Let G be a 2-edge-connected bipartite graph. Then G has an NZ-

unoriented 6-flow.

A graph G is called even (respectively, odd), if its number of edges is even
(respectively, odd). A circuit in G is a closed walk with no repeated edge. A
cycle in this paper is a connected 2-regular graph. Two parallel edges form a
cycle of length two. An n-cycle denotes a cycle with n edges. The following easy
lemma will be useful.

Lemma 7 [2]. Every even circuit admits an NZ-unoriented 2-flow.

Let H1 and H2 be two graphs, H1 ⊕H2 denote the 2-sum of H1 and H2, if
E(H1) ∪E(H2) = E(H1 ⊕H2), |V (H1) ∩ V (H2)| = 2, and |E(H1) ∩E(H2)| = 1.
We define that H1 ⊕H2 ⊕ · · · ⊕Ht

∼= (H1 ⊕H2 ⊕ · · · ⊕Ht−1) ⊕Ht. A triangle-
path in a graph G is a sequence of distinct triangles T1, T2, . . . , Tm such that
for 1 ≤ i ≤ m, |E(Ti) ∩ E(Ti+1)| = 1 and E(Ti) ∩ E(Tj) = ∅ if j > i + 1.
For simplify, in the rest of this paper we use Tm to denote a triangle-path with
m triangles. An n-triangle-star H is a graph with n triangles such that each
triangle has one common edge with other triangles (see Figure 2). By definition,
a triangle is a 1-triangle-star and K−

4
is a 2-triangle-star. A triangle-tree G is

a graph which can be partitioned into some triangle-paths H1, H2, . . . , Ht such
that G = H1 ⊕H2 ⊕ · · · ⊕Ht. By the definition of triangle-tree, we know that a
triangle-star is also a special triangle-tree with each Hi as a triangle.

e

T1

T2

T3

Figure 2. A 3-triangle-star with common edge e.

By Theorem 5, the following lemma is obvious.
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Lemma 8. A triangle-star does not admit an NZ-unoriented flow.

Proof. Let G be a n-triangle-star. If n = 1, then G is a triangle which is an odd
cycle. Clearly, G does not admit an NZ-unoriented flow. Assume that n ≥ 2 and
e0 is the common edge of G. Then G − e0 is a graph containing no odd cycles,
that is a bipartite graph. By Theorem 5, G does not admit an NZ-unoriented
flow.

Definition [11]. A barbell is a graph if it consists of two odd cycles that have
exactly one common vertex, or two vertex-disjoint odd cycles together with a path
with exactly one end-vertex on each of them and all internal vertices outside of
them.

By applying Lemma 2.6 in [11], the following result is obvious.

Lemma 9. Any barbell admits an NZ-unoriented 3-flow that assigns 1 or −1 to

the edges on the odd cycles and 2 or −2 to all other edges.

The following results are technical key to prove Theorem 4.

Lemma 10. Let G admit an NZ-unoriented k-flow (k ≥ 4) and u1, u2 ∈ V (G). If
there is a 3-path between u1 and u2 in G, then G+ u1u2 admits a NZ-unoriented

(k + 1)-flow.

Proof. Let f1 be an NZ-unoriented k-flow of G. Since there is a 3-path between
u1 and u2, there exists two vertices, say u3, u4, such that u2u3, u3u4, u4u1 ∈ E(G).
In this case, this 3-path plus the new added edge u1u2 is a 4-cycle u1u2u3u4u1 of
G+u1u2. In the rest of the proof, u1u2 means the new added edge. By Lemma 7,
u1u2u3u4u1 admits an NZ-unoriented flow f2 such that f2(u1u4) = f2(u3u2) = a,
f2(u1u2) = f2(u4u3) = −a and a ∈ {±1,±2}. Let f be a function on G+u1u2 as
follows: f(e) = f1(e) if e ∈ E(G) \ {u1u4, u4u3, u2u3}; f(e) = f2(e) if e ∈ {u1u2};
f(e) = f1(e)+f2(e) if e ∈ {u1u4, u4u3, u2u3}. Clearly, if f(e) ∈ {±1,±2, . . . ,±k}
for each e ∈ {u1u4, u4u3, u2u3}, then f is an NZ-unoriented (k + 1)-flow of G +
u1u2. In order to satisfy that f(e) ∈ {±1,±2, . . . ,±k}, for e ∈ {u1u4, u4u3, u2u3},
we have the next observation (see the following table).

f1(e) f2(e) f(e) = f1(e) + f2(e)

1 S1 = S \ {−1}
−1 S−

1
= S \ {1}

k − 1,−2 S2 = S \ {2} ±1, . . . ,±k
−(k − 1), 2 S−

2
= S \ {−2}

±3, . . . ,±(k − 2) S = {±1,±2}

Observation. (a) If f1(e) = 1 (or −1), then f2(e) ∈ S1 = {1,±2} (or f2(e) ∈
S−

1
= {−1,±2});
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(b) If f1(e) ∈ {k− 1,−2} (or {2,−(k− 1)}), then f2(e) ∈ S2 = {±1,−2} (or
f2(e) ∈ S−

2
= {±1, 2});

(c) If f1(e) ∈ {±3, . . . ,±(k − 2)}, then f2(e) ∈ S = {±1,±2}.

By the above observation, we have that {±1} ⊆ S2, S
−

2
, S and 1 ∈ S1,−1 ∈

S−

1
. If there is one edge in {u1u4, u2u3, u3u4}, say u1u4, such that the value of f1

on this edges is in the set {±2,±3, . . . ,±(k− 1)}, then we only need to prove the
case that the values of other two edges are not equal and are in the set {±1}. Since
±2 ⊆ S1, S

−

1
, S, we only need to prove the case that f1(u1u4) ∈ {±2,±(k − 1)}.

If f1(u1u4) ∈ {2,−(k − 1)} (or {−2, k − 1}), then a = 2 (or a = −2), we have
done, f is an NZ-unoriented (k + 1)-flow.

Thus suppose f1(u1u4), f1(u2u3), f1(u3u4) ∈ {±1}. Then in this case, {±2} ⊆
S1, S

−

1
. Thus a ∈ {±2}, we have done, f is an NZ-unoriented (k + 1)-flow.

Let G and H be two different graphs with E(G) ∩E(H) = ∅. In this paper,
G ∪H denote a graph with vertex-set V (G) ∪ V (H) and edge-set E(G) ∪E(H).

Lemma 11. Let G admit an NZ-unoriented k-flow (k ≥ 4) and let T be a triangle

such that E(G) ∩ E(T ) = ∅ and u1 ∈ V (G) ∩ V (T ). If there is a triangle in G
containing u1 as a vertex, then G ∪ T admits a NZ-unoriented (k + 1)-flow.

Proof. Let f1 be an NZ-unoriented k-flow of G. Without loss of generality, we
assume that T1 = u1e1u2e2u3e3u1 is a triangle in G which contains u1. In this
case, T1 ∪ T is an even circuit.

By Lemma 7, T1 ∪ T admits an NZ-unoriented flow f2 such that f2(e1) =
f2(e3) = a, f2(e2) = −a and a ∈ {±1,±2}. Let f be a function on G ∪ T
as follows: f(e) = f1(e) if e ∈ E(G) \ {e1, e2, e3}; f(e) = f2(e) if e ∈ E(T );
f(e) = f1(e) + f2(e) if e ∈ {e1, e2, e3}. Clearly, if f(e) ∈ {±1,±2, . . . ,±k} for
each e ∈ {e1, e2, e3}, then f is an NZ-unoriented (k + 1)-flow of G ∪ T . By
the similar discussion in Lemma 10, we can find a proper a such that f is a
NZ-unoriented (k + 1)-flow of G ∪ T .

Lemma 12. Let G admit an NZ-unoriented k-flow and let H be a t-triangle-star.
Assume that E(G)∩E(H) = {e0}. If e0 is an edge of a triangle of G, then G⊕H
admits an NZ-unoriented (k + 1)-flow such that there is at most one edge with

value k or −k for each k ≥ 4. Moreover, if t is odd, lemma holds for k ≥ 3.

Proof. Let f1 be an NZ-unoriented k-flow of G and without loss of generality,
we assume that T = u1e1u2e2u3e0u1 is a triangle of G containing e0. Clearly,
t ≥ 1.

Case 1. t = 1. In this case, H is a triangle. Without loss of generality,
we assume that H is u1e0u3e3ve4u1. Then e1e2e3e4 is a 4-cycle of G ⊕ H. By
Lemma 7, e1e2e3e4 admits a NZ-unoriented k-flow f2 such that f2(e1) = f2(e3) =
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a, f2(e2) = f2(e4) = −a and a ∈ {±1,±2}. Let f be a function on G ⊕ H
as follows: f(e) = f1(e) if e ∈ E(G) \ {e1, e2}; f(e) = f2(e) if e ∈ {e3, e4};
f(e) = f1(e) + f2(e) if e ∈ {e1, e2}. Clearly, if f(e1), f(e2) ∈ {±1,±2, . . . ,±k},
then f is an NZ-unoriented (k+1)-flow of G⊕H. Next we prove that there exists
f2 on e1e2e3e4 such that f(e1), f(e2) ∈ {±1,±2, . . . ,±k}.

By reversing the value of f1 on each edge of G, we can assume that f1(e1) ∈
{1, 2, . . . , k − 1}.

When f1(e1) = 1. If f1(e2) ∈ {−(k − 1), 1}, then let a = −2 and f is a NZ-
unoriented k-flow of G⊕H if k ≥ 4. If k = 3 and f1(e2) = −(k−1) = −2, then let
a = 1 and f is an NZ-unoriented (k+1)-flow of G⊕H just with f(e2) = −3 = −k.
If k = 3 and f1(e2) = 1, then let a = −2 and f is an NZ-unoriented (k + 1)-flow
of G ⊕H just with f(e2) = 3 = k. If f1(e2) /∈ {−(k − 1), 1}, then let a = 1 and
f is an NZ-unoriented k-flow of G⊕H for k ≥ 3.

When f1(e1) ∈ {2, 3, . . . , k − 2}. If f1(e2) ∈ {−(k − 1), 1}, then a = −1 and
f is an NZ-unoriented k-flow of G⊕H for k ≥ 3. If f1(e2) /∈ {−(k − 1), 1}, then
a = 1 and f is an NZ-unoriented k-flow of G⊕H for k ≥ 3.

When f1(e1) = k−1. If f1(e2) = −1, then a = −2 and f is an NZ-unoriented
k-flow of G⊕H for k ≥ 4. If k = 3, then let a = 1 and f is a NZ-unoriented (k+1)-
flow of G⊕H just with f(e1) = 3 = k. If f1(e2) = k − 1, then a = 1 and f is an
NZ-unoriented (k+1)-flow of G⊕H just with f(e1) = k. If f1(e2) /∈ {−1, k− 1},
then a = −1 and f is an NZ-unoriented k-flow of G⊕H.

Case 2. t ≥ 3 and t is odd. In this case, G ⊕ H = (G ⊕ T ) ∪ C, where T
is a triangle of H containing the edge e0 and C = H − E(T ) is an even circuit.
By Case 1, G⊕ T admits an NZ-unoriented (k + 1)-flow for k ≥ 3 with at most
one edge having value k or −k. By Lemma 7, G ⊕H = (G ⊕ T ) ∪ C admits an
NZ-unoriented (k + 1)-flow with at most one edge having value k or −k for each
k ≥ 3.

By Case 1 and 2, if t is odd, then G⊕H admits an NZ-unoriented (k+1)-flow
such that there is at most one edge with value k or −k for each k ≥ 3.

Case 3. t ≥ 2 and t is even. Without loss of generality, we assume that e1 is
the common edge of H. If e1 = e0, then G ⊕H ∼= G ∪ C, where C = H − e1 is
an even circuit. Since G admits an NZ-unoriented k-flow, by Lemma 7, G ⊕H
admits an NZ-unoriented k-flow for each k ≥ 3. Thus we assume that e1 6= e0.
In this case, G ⊕ H = (G ⊕ C) + e1, where C = H − e1 is an even circuit. By
Lemma 7, C admits an NZ-unoriented 2-flow, say f2. Without loss of generality,
we assume that f2(e0) = 1. In this case, if f1(e0) ∈ {1,−2,−3, . . . ,−(k−1)}, then
the combination of f1 and f2 is also an NZ-unoriented k-flow of G⊕C. Hence we
have done, because f1(e0) can be an element in the set {1,−2,−3, . . . ,−(k− 1)}
by reversing the value of f1 on each edge ofG. By Lemma 10, G⊕H = (G⊕C)+e1
admits an NZ-unoriented (k + 1)-flow for each k ≥ 4.
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Lemma 13. Let G = G1 ⊕ G2, where Gi admits an NZ-unoriented k-flow for

each i ∈ {1, 2}.

(i) If k ≥ 5 and there exists i ∈ {1, 2} such that Gi has a NZ-unoriented k-
flow with value on E(G1) ∩ E(G2) in the set {±1,±2}, then G admits an

NZ-unoriented k-flow.

(ii) If k ≥ 3 and there exists i ∈ {1, 2} such that Gi has a NZ-unoriented k-
flow with value on E(G1) ∩ E(G2) in the set {±1}, then G admits an NZ-

unoriented k-flow.

Proof. We only prove (i), since (ii) can be proved similarly.
Since G = G1 ⊕ G2, |E(G1) ∩ E(G2)| = 1. Without loss of generality, we

assume that E(G1) ∩ E(G2) = {e0}. By the assumption of lemma, we can
assume that fi is an NZ-unoriented k-flow of Gi for each i ∈ {1, 2} satisfying
f1(e0) ∈ {±1,±2}. Define a flow f on G as follows.

(1) f(e) =

{

f1(e) + f2(e), if e = e0,

fi(e), if e ∈ E(Gi) \ {e0}, for i ∈ {1, 2}.

We only need to discuss cases that f1(e0) ∈ {1, 2} by reversing values of f1.
When f1(e0) = 1. In this case, if f2(e0) ∈ {1,−2,−3, . . . ,−(k− 1)}, then G is an
NZ-unoriented k-flow. By reversing value of flow on G2, we can get a desired flow
of G2 such that f2(e0) ∈ {1,−2,−3, . . . ,−(k − 1)}, hence f is an NZ-unoriented
k-flow of G.

When f1(e0) = 2. In this case, if f2(e0) ∈ {1, 2,−3,−4, . . . ,−(k − 1)}, then
G is an NZ-unoriented k-flow. By reversing value of flow on G2, we can get a
desired flow of G2 such that f2(e0) ∈ {1, 2,−3,−4, . . . ,−(k − 1)}, hence f is an
NZ-unoriented k-flow of G.

Next we discuss the existence of NZ-unoriented flow on triangle-paths and
wheels.

Lemma 14. Triangle-path Tm (m ≥ 3) admits an NZ-unoriented k-flow, where

(2) k =

{

3, if m ≡ 0 (mod 3),
4, otherwise.

Moreover, for m ≡ 1 (mod 3), Tm admits an unoriented 3-flow such that

there is at most one edge with value 0, where this edge is an arbitrary edge of the

second triangle and not the edge in the first triangle.

Proof. Without loss of generality, assume that Tm is a triangle-path T1 ⊕ T2 ⊕
· · ·⊕Tm. Suppose m ≡ 0 (mod 3). If m = 3, then T 3 admits an NZ-unoriented 3-
flow shown in Figure 3. By induction hypothesis, we suppose that if m = 3(t−1)
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1 1

−1 −1

2

−1 −1

(a)

−1 −1

1 1

−2

1 1

(b)

2 −1

−2 1

1

1 −2

(c)

−2 1

2 −1

−1

−1 2

(d)

Figure 3. NZ-unoriented 3-flow of graph T 3

(t > 1), Tm admits an NZ-unoriented 3-flow. Next we assume that m = 3t.
By the definition of triangle-path, Tm = Tm−3 ⊕ T 3. By Figure 3, there is an
NZ-unoriented 3-flow of T 3 such that the value on edge E(Tm−3) ∩ E(T 3) is in
the set {±1}. By Lemma 13(ii), Tm admits an NZ-unoriented 3-flow.

Suppose m = 3t+1 ≡ 1 (mod 3). In this case, Tm = T1⊕T 3t. By the above
discussion, T 3t admits an NZ-unoriented 3-flow. By Lemma 12, Tm admits NZ-
unoriented 4-flow.

Next we prove that Tm = T1 ⊕ T 3t admits an unoriented 3-flow such that at
most one edge with value 0, where this edge is an arbitrary edge of the second
triangle and not the edge in the first triangle. Without loss of generality, we
assume that e1, e2 ∈ E(T1), e3, e4, e5 ∈ T 3t, see Figure 4. Clearly, we can get
an NZ-unoriented flow f1 of T 3t such that f1(e4) = 1, f1(e3) = f1(e5) = −1.
If e5 ∈ E(T1) (see Figure 4(a)), then assign −1, 1,−1, 1 on edges e1, e2, e3, e4,
respectively. Then combining with f1, we get an NZ-unoriented 3-flow of Tm. If
e4 ∈ E(T1) (see Figure 4(b)), then assign −1, 1,−1, 1 (or 1,−1, 1,−1) on edges
e1, e2, e5, e3, respectively. Then combining with f1, we get a unoriented 3-flow of
Tm such that there is just edge e3 (or e5) with value 0. We know that e3 and e5
are edges in T2 but not edges in T1.

Supposem = 3t+2 ≡ 2 (mod 3). In this case, Tm = T1⊕T2⊕T 3t = K−

4
⊕T 3t.

By the above discussion, T 3t admits an NZ-unoriented 3-flow with value on edge
of T3 in the set {±1} as shown in Figure 3(a) (b). By the similar discussion in
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e2

T1

e1 e5

e3

e4

T 3t
T 3t−3

(a) e5 ∈ E(T1)

e5

e3

e4

T 3t

T1e2

e1

T 3t−3

(b) e4 ∈ E(T1)

Figure 4. Two types of graph Tm, where m ≡ 1 (mod 3).

Case 3 of Lemma 12, we can deduce that Tm admits an NZ-unoriented 4-flow.

Suppose that a wheel denotes a graph consisting of a vertex v and a cycle C
such that v is adjacent to all vertices of C, where v is called the center of this
wheel. A m-wheel is a wheel such that the cycle is m-cycle. In this paper, a
wheel means a m-wheel with m ≥ 3.

Lemma 15. Let Wm be a m-wheel (m ≥ 3). Then Wm admits an NZ-unoriented

k-flow,

(3) k =











3, if m ≡ 0 (mod 3),

4, if m ≡ 1 (mod 3),

5, otherwise.

Proof. Clearly, W3
∼= K4. For any given edge e0 ∈ E(K4), we can find a perfect

matching of K4 containing e0. Let {e0, e1} be a perfect matching of K4. Thus
define f → E(K4) as follows: f(e0) = f(e1) = 2 (or −2), and the other edges e
of K4, f(e) = −1 (or 1). Clearly, f is an NZ-unoriented 3-flow of K4. Suppose
m ≥ 4. Wm is a graph obtained from m triangles. We assume that Wm contains
triangles T1, T2, . . . , Tm, where V (Ti) = {ui, ui+1, v} for each i ∈ {1, 2, . . . ,m}
(mod m).
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If m = 3t (t ≥ 2), then define a function f1 on E(T1 ⊕ T2 ⊕ T3) as follows:
f1(vu1) = −2, f1(vu2) = −1, f1(vu3) = 2, f1(vu4) = 1. Then f1(u1u2) = 2,
f1(u2u3) = −1, f1(u3u4) = −1. Then f1 is a NZ-unoriented 3-flow on E(T1⊕T2⊕
T3). Then similarly define an NZ-unoriented 3-flow fj on E(T3j−2⊕T3j−1⊕T3j),
where j ∈ {1, 2, . . . , t} such that fj(vu3j−2) = −2, fj(vu3j−1) = −1, fj(vu3j) = 2,
fj(vu3j+1) = 1. Then fj(u3j−2u3j−1) = 2, fj(u3j−1u3j) = −1, fj(u3ju3j+1) =
−1. Let f be a function of Wm as follows: if e ∈ E(T3j−2 ⊕ T3j−1 ⊕ T3j) and
e /∈ {vu3j−2, vu3j+1}, then f(e) = fj(e) for each j ∈ {1, 2, . . . , t}; if e ∈ E(T3j−2⊕
T3j−1 ⊕ T3j)∩E(T3j+1 ⊕ T3j+2 ⊕ T3j+3) for each j ∈ {1, 2, . . . , t− 1, t} (mod 3t),
then f(e) = fj(e) + fj+1(e) = 1 − 2 = −1. In this case, f is an NZ-unoriented
3-flow of Wm.

If m = 3t+ 1 (t ≥ 1), then Wm is a graph obtained from T 3t by adding one
edge. Let T 3t = T1 ⊕ T2 ⊕ · · · ⊕ T3t. Then Wm = T 3t + u1u3t+1. By Lemma 14,
T 3t admits an NZ-unoriented 3-flow f1 with f1(u1u2) = 2, f1(u2v) = −1 and
f1(vu3t+1) = 1. We know that u1u2vu3t+1u1 is a 4-cycle. Assign 1,−1, 1,−1 on
edges of this cycle starting from u1u2. By this way, the combination of these two
flows is an NZ-unoriented 4-flow of Wm.

If m = 3t+2 (t ≥ 1), then Wm is a graph obtained from T 3t+1 by adding one
edge. Then Wm = T 3t+1 + u1u3t+2. By Lemma 14 and Lemma 10, Wm admits
an NZ-unoriented 5-flow.

3. Proof of Theorem 4

Lemma 16. A triangle-tree except triangle-star admits a nowhere-zero unori-

ented 5-flow.

Proof. We prove this lemma by induction on |V (G)|. Since G is not a triangle-
star, n ≥ 5. If n = 5, then G is a T 3, by Lemma 14, G admits a NZ-unoriented
3-flow, so NZ-unoriented 5-flow.

By induction hypothesis, we assume that G admits an NZ-unoriented 5-flow
if G is a triangle-tree except triangle-star with less than n vertices (n ≥ 6).

Suppose n ≥ 6 and our theorem holds for G with the number of vertices less
than n vertices. Now we prove our theorem holds for |V (G)| = n.

Since G is a triangle-tree with n ≥ 6, G contains at least three triangles.
Since G is not a triangle-star, there exist three triangles constituting a T 3 which
is an induced subgraph of G with one 2-vertex. Without loss of generality, we
assume that T 3 = T1 ⊕ T2 ⊕ T3 and T1 has one vertex with degree two in G.
Without loss of generality, we assume that u is the 2-vertex of T1, the other two
vertices are u1, u2 (see Figure 5). Without loss of generality, we assume that
V (T2) = {u1, u2, u3}, V (T3) = {u2, u3, u4}. In this case, G = T 3 ⊕ G1 ⊕ G2 ⊕
G3 ⊕G4 ⊕G5, where Gi is a triangle-tree with less then n vertices, and may be
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an empty graph. Note that E(Gi)∩E(T 3) = ei and E(Gi)∩E(Gj) = ∅ for i 6= j,
where i, j ∈ {1, 2, 3, 4, 5}.

u u4

u1 u3

u2

T2

e2

e5

e4

e3e1T1 T3

Figure 5. G contains an induced subgraph T 3 with a 2-vertex u.

Claim 1. If Gi is not a triangle-star for each i ∈ {1, 2, 3, 4, 5}, then G admits

an NZ-unoriented 5-flow.

Proof. In this case, by induction hypothesis, each Gi admits a NZ-unoriented
5-flow, say fi, respectively. (If Gi is an empty graph, then Gi is not needed
to discuss in this case.) By Lemma 14, T 3 admits an NZ-unoriented 3-flow,
which means the value of each edge is in {±1,±2}. Since E(Gi) ∩ E(Gj) = ∅,
E(Gi) ∩ E(T 3) = ei for each i 6= j ∈ {1, 2, 3, 4, 5}, by Lemma 13(i), G admits an
NZ-unoriented 5-flow. �

By Claim 1, we assume that there is at least one Gi, such that Gi is a
triangle-star.

Claim 2. If Gi is a 2-triangle-star with the common edge ei or a k-triangle-star
with k ≥ 3 for some i ∈ {1, 2, 3, 4, 5}, then G admits an NZ-unoriented 5-flow.

Proof. In this case, Gi contains a 4-cycle, say C. Hence G = C ∪ H, where
H is a triangle-tree containing T 3. By induction hypothesis, H admits an NZ-
unoriented 5-flow. By Lemma 7, C admits an NZ-unoriented 2-flow. Thus G
admits an NZ-unoriented 5-flow. �

Claim 3. If G1 is a k-triangle-star, then G admits a NZ-unoriented 5-flow.

Proof. By Claim 2, we only need to prove cases that k = 1 or k = 2 and the
common edge of G1 is not e1. If k = 1, then G1⊕T1−e1 is a 4-cycle, say C. Thus
G = C∪H, and H is a triangle-tree containing T2⊕T3. If H is not a triangle-star,
then by induction hypothesis, H admits an NZ-unoriented 5-flow. By Lemma 7,
C admits a NZ-unoriented 2-flow. Thus G admits an NZ-unoriented 5-flow. If
H is a triangle-star, then H is a 2-triangle-star or a 3-triangle-star by Claim 2.
This means G = T1 ⊕ T2 ⊕ T3 ⊕G1 or G = T1 ⊕ T2 ⊕ T3 ⊕G1 ⊕G3, where G1, G3

are triangles. By Lemma 14, T1 ⊕ T2 ⊕ T3 admits an NZ-unoriented 3-flow. By
Lemma 12, G = T1 ⊕ T2 ⊕ T3 ⊕G1 admits an NZ-unoriented 4-flow. By Lemma
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12, G = T1 ⊕ T2 ⊕ T3 ⊕G1 ⊕G3 admits a NZ-unoriented 5-flow. Hence, in either
case, G admits an NZ-unoriented 5-flow.

If k = 2 and the common edge of G1 is not e1, then G1 ⊕ T1 is a T 3. Thus
G = T 3 ⊕ H, where H is a triangle-tree containing T2 ⊕ T3. If H is not a
triangle-star, then by induction hypothesis, H admits an NZ-unoriented 5-flow.
By Lemma 14 and Lemma 13(i), G admits an NZ-unoriented 5-flow. If H is
a triangle-star, then H is a 2-triangle-star or a 3-triangle-star by Claim 2. By
Lemma 14, T 3 admits an NZ-unoriented 3-flow. By Lemma 12, T 3 ⊕H admits
an NZ-unoriented 5-flow. �

Claim 4. If G2 is a k-triangle-star, then G admits a NZ-unoriented 5-flow.

Proof. By Claim 2, k = 1 or k = 2 and the common edge of G2 is not e2. If
k = 1, then T1⊕T2⊕G2 is a T 3. Thus G = T1⊕T2⊕G2⊕H⊕G1 = T 3⊕H⊕G1,
where H is a triangle-tree with less than n vertices. By Claim 3, G1 is either
an empty graph or a triangle-tree except a triangle-star. If G1 is a triangle-tree
except a triangle-star, then by induction hypothesis, G1 admits an NZ-unoriented
5-flow.

If H is not a triangle-star, then by induction hypothesis, H admits a NZ-
unoriented 5-flow. By Lemma 14 and 13(i), G = T 3 ⊕ H ⊕ G1 admits an NZ-
unoriented 5-flow whatever G1 is a triangle-tree except triangle-star or an empty
graph. If H is a triangle-star, by Claim 2, H is a 1-triangle-star or 2-triangle-
star with common edge e4 or e5. Then G2 ⊕ T2 ⊕ H is a T 3 or a T 4. Thus
G = T 3 ⊕ T1 ⊕ G1 or G = T 4 ⊕ T1 ⊕ G1. If G1 is an empty graph, then
either G = T 3 ⊕ T1 or G = T 4 ⊕ T1, both of which admit an NZ-unoriented
5-flow by Lemma 14 and Lemma 12. Thus we assume that G1 is not an empty
graph. Clearly, T1 ⊕ G1 is a triangle-tree except a triangle-star. By induction
hypothesis, T1 ⊕G1 admits an NZ-unoriented 5-flow. By Lemma 14 and Lemma
13(i), G = T 3 ⊕ T1 ⊕G1 admits an NZ-unoriented 5-flow. By Lemma 14, either
T 4 has an NZ-unoriented 3-flow or T 4 admits an unoriented 3-flow just with
edge e1 having value zero. If T 4 has an NZ-unoriented 3-flow, by Lemma 13(i),
G = T 4 ⊕ T1 ⊕G1 admits an NZ-unoriented 5-flow. If T 4 admits a unoriented 3-
flow with edge e1 having value zero, then combining this flow with NZ-unoriented
5-flow of T1 ⊕G1, G = T 4 ⊕ T1 ⊕G1 admits an NZ-unoriented 5-flow.

Thus we assume that k = 2 and the common edge of G2 is not e2. In this
case, T2 ⊕ G2 is a T 3. Thus G = T1 ⊕ G1 ⊕ T 3 ⊕H, where H is a triangle-tree
with less than n vertices.

If H is not a triangle-star, then by induction hypothesis, H admits a NZ-
unoriented 5-flow. When G1 is an empty graph. By Lemma 14, T1⊕G1⊕T 3 = T 4

admits an NZ-unoriented 3-flow or an unoriented 3-flow such that the value just
on edge e3 is zero. In either case, by Lemma 13(i), G admits an NZ-unoriented
5-flow. When G1 is a triangle-tree except a triangle-star, T1⊕G1 is a triangle-tree
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except triangle-star, T1⊕G1 admits an NZ-unoriented 5-flow. By Lemma 14 and
Lemma 13(i), G = T1 ⊕G1 ⊕ T 3 ⊕H admits a NZ-unoriented 5-flow.

IfH is a triangle-star, then by Lemma 14 and Lemma 12, G = T1⊕G1⊕T 3⊕H
admits an NZ-unoriented 5-flow when G1 is an empty graph. Next we assume
that G1 is not an empty graph. In this case, by Claim 2, H is a 1-triangle-star or
a 2-triangle-star. Then T 3⊕H = G2⊕T2⊕H is T 4 or T 5. If T 3⊕H = T 4, then
by Lemma 14, T 3⊕H admits an NZ-unoriented 3-flow or a unoriented 3-flow just
with edge e1 having value zero. By Lemma 13, G = T1 ⊕G1 ⊕T 3 ⊕H admits an
NZ-unoriented 5-flow. If T 3⊕H = T 5, then in this case T 3⊕H = G2⊕T2⊕T3⊕Gi,
where Gi is a triangle and i = 4 or i = 5. By Lemma 14, G2⊕T2⊕T3 = T 4 admits
an NZ-unoriented 3-flow or an unoriented 3-flow just with edge e1 having value
zero. Then Lemma 12, T 5 = G2 ⊕ T2 ⊕ T3 ⊕Gi admits an NZ-unoriented 4-flow
f1 with f1(e1) ∈ {±1,±2} or an unoriented 4-flow just with edge e1 having value
zero. By Lemma 13(i), G = T1 ⊕G1 ⊕ T 5 admits an NZ-unoriented 5-flow. �

Claim 5. If G3 is a k-triangle-star, then G admits a NZ-unoriented 5-flow.

Proof. By Claim 2, k = 1 or k = 2 and the common edge of G3 is not e3. If both
G4 and G5 are empty graphs, then we can discuss this case similarly as Claim 3.
Hence we can assume that at least one of G4 and G5 is not an empty graph. By
Claims 3 and 4, Gi is either a triangle-tree except triangle-star or an empty graph
for each i ∈ {1, 2}. If k = 1, then T1⊕T2⊕G3 is a T

3. Then G = T 3⊕G1⊕G2⊕H,
where H is a triangle-tree containing T3, G4 and G5. If H is not a triangle-star,
then by induction hypothesis, H admits an NZ-unoriented 5-flow. By Lemma 14
and Lemma 13(i), G admits an NZ-unoriented 5-flow. Thus we assume H is
a triangle-star. By Claim 2, H is a 2-triangle-star. In this case, G3 ⊕ H is a
T 3 and G = G3 ⊕ H ⊕ L = T 3 ⊕ L, where L contains G1, G2, T1, T2. If L is a
triangle-tree except a triangle-star, then by induction hypothesis and Lemma 14,
Lemma 13(i), G admits an NZ-unoriented 5-flow. If L is a triangle-star, then L
is a 2-triangle-star. By Lemma 14 and Lemma 12, G admits an NZ-unoriented
5-flow.

If k = 2, then T1 ⊕ T2 ⊕ G3 is a T 4. Then G = T 4 ⊕ G1 ⊕ G2 ⊕ H, where
H is a triangle-tree containing T3, G4 and G5. If H is not a triangle-star, then
by induction hypothesis, H admits a NZ-unoriented 5-flow. By Lemma 14, T1 ⊕
T2 ⊕G3 admits a NZ-unoriented 3-flow or an unoriented 3-flow just with edge e3
having value zero. By Lemma 13(i), G admits an NZ-unoriented 5-flow. Thus
we assume H is a triangle-star. By Claim 2, H is a 2-triangle-star. In this case,
G3⊕H is a T 4 and G = G3⊕H⊕L = T 4⊕L, where L contains G1, G2, T1, T2. If
L is a triangle-tree except a triangle-star, then by induction hypothesis, L admits
an NZ-unoriented 5-flow. By Lemma 14, T 4 admits an NZ-unoriented 3-flow or
an unoriented 3-flow with edge e3 having value zero. By Lemma 13(i), G admits
a NZ-unoriented 5-flow. If L is a triangle-star, by Lemma 14 and Lemma 12, G
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admits an NZ-unoriented 5-flow. �

Claim 6. If G4 is a k-triangle-star, then G admits a NZ-unoriented 5-flow.

Proof. By Claim 2, k = 1 or k = 2 and the common edge of G4 is not e4. By
Claims 3, 4, 5, Gi is an empty graph or triangle-tree except a triangle-star for
i ∈ {1, 2, 3}. If k = 1, then T2 ⊕ T3 ⊕ G4 is a T 3. Then G = T 3 ⊕ (G1 ⊕ T1) ⊕
G2 ⊕G3 ⊕G5.

Suppose first G5 is either an empty graph or a triangle-tree except a triangle-
star. If G1 is not an empty graph, then G admits an NZ-unoriented 5-flow by
induction hypothesis, Lemma 14 and Lemma 13(i). If G1 is an empty graph,
then T1 ⊕ T2 ⊕ T3 ⊕ G4 is a T 4. If G2, G3, G5 are empty graphs, then G = T 4,
which admits an NZ-unoriented 4-flow by Lemma 14. If there exists one Gi such
that Gi is not empty for some i ∈ {2, 3, 5}, then by Lemma 14, T 4 admits an
NZ-unoriented 3-flow or an unoriented 3-flow just with edge ei having value zero.
By Lemma 13(i), G admits an NZ-unoriented 5-flow.

Suppose G5 is a triangle-star. By Claim 2, G5 is a 1-triangle-star or a 2-
triangle-star. In this case, G = G4 ⊕ T3 ⊕ G5 ⊕ H, where H is a triangle-tree
containing T1, T2, G1, G2, G3. Clearly, G4 ⊕ T3 ⊕G5 is a T 3 or a T 4. If H is not
triangle-star, then by induction hypothesis, H admits an NZ-unoriented 5-flow.
By Lemma 14, G4⊕T3⊕G5 admits an NZ-unoriented 3-flow or an unoriented 3-
flow just with edge e3 having value zero. Then G admits an NZ-unoriented 5-flow
by Lemma 13(i). Thus we can assume that H is a triangle-star. By Lemma 14
and Lemma 12, G admits an NZ-unoriented 5-flow.

If k = 2 and the common edge of G4 is not e4, then T3 ⊕ G4 is a T 3. Then
G = T 3 ⊕ H ⊕ G5, where H contains T1, T2, G1, G2, G3. If H,G5 are triangle-
trees except triangle-star, then by induction hypothesis, H and G5 admit NZ-
unoriented 5-flow, respectively. By Lemma 14 and Lemma 13(i), G admits an
NZ-unoriented 5-flow. If G5 is a triangle-star, then by Claim 2, G5 is a 1-triangle-
star or a 2-triangle-star with common edge which is not e5. In either case, by
Lemmas 14 and 12, T 3 ⊕ G5 admits an NZ-unoriented 4-flow with the value
on e3 in {±1,±2} or an unoriented 4-flow just with edge e3 having value 0. (If
G5 is a 1-triangle-star, then T 3 ⊕G5 is a T 4, by Lemma 14, T 3 ⊕G5 admits an
NZ-unoriented 3-flow or an unoriented 3-flow just with edge e3 having value 0,
we have done. If G5 is a 2-triangle-star, then T 3 ⊕G5 is a T 5, by Lemma 14, T 4

admits an NZ-unoriented 3-flow or an unoriented 3-flow just with edge e3 having
value 0. By Lemma 12, T 5 admits an NZ-unoriented 4-flow with the value on e3
in {±1,±2} or an unoriented 4-flow just with edge e3 having value 0.) When H
is not a triangle-star. By induction hypothesis and Lemma 13(i), G admits an
NZ-unoriented 5-flow. When H is a triangle-star, by Lemma 14, T 3 ⊕G5 admits
an NZ-unoriented 4-flow. By Lemma 12, G admits an NZ-unoriented 5-flow.
Next we only need to prove the case that G5 is not a triangle-star and H is a
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triangle-star. By Claim 2, H is a 2-triangle-star. This means H ⊕ T3 ⊕ G4 is a
T 5. By Lemma 14, H ⊕ T3 ⊕ G4 admits an NZ-unoriented 4-flow with value on
edge e5 in {±1,±2} or an unoriented 4-flow just with edge e5 having value 0. By
induction hypothesis and Lemma 13(i), G admits an NZ-unoriented 5-flow. �

Claim 7. If G5 is a k-triangle-star, then G admits a NZ-unoriented 5-flow.

Proof. By Claim 2, k = 1 or k = 2 and the common edge of G5 is not e5. If
k = 1, then T2 ⊕ T3 ⊕G5 is a T 3. Then G = T 3 ⊕ (G1 ⊕ T1)⊕G2 ⊕G3 ⊕G4. By
Claims 3, 4, 5, 6, Gi is not a triangle-star, for each i ∈ {1, 2, 3, 4}.

IfG1 is not empty graph, thenG admits an NZ-unoriented 5-flow by induction
hypothesis, Lemma 14 and Lemma 13(i). If G1 is an empty graph, then T1 ⊕
T2 ⊕ T3 ⊕ G5 is a T 4. If G2, G3, G4 are empty, then G = T 4, which admits an
NZ-unoriented 4-flow by Lemma 14. If there exists one Gi such that Gi is not
empty for some i ∈ {2, 3, 4}, then by Lemma 14, T 4 admits an NZ-unoriented
3-flow or an unoriented 3-flow just with edge ei having value zero. By Lemma
13(i), G admits a NZ-unoriented 5-flow.

If k = 2 and the common edge of G5 is not e5, then T3 ⊕ G5 is a T 3. Then
G = T 3 ⊕ H ⊕ G4, where H contains T1, T2, G1, G2, G3. If H is a triangle-tree
except triangle-star, then by induction hypothesis, H admits an NZ-unoriented
5-flow. By Lemma 14 and Lemma 13(i), G admits an NZ-unoriented 5-flow.
If H is a triangle-star, then H is a 2-triangle-star by Claim 2. In this case,
T3 ⊕ G5 ⊕ H is a T 5. If G4 is empty, then G is a T 5. Hence G admits an NZ-
unoriented 4-flow by Lemma 14. Thus G4 is a triangle-tree except triangle-star.
By induction hypothesis, G4 admits an NZ-unoriented 5-flow. By Lemma 14,
T3 ⊕ G5 ⊕ H admits an unoriented 4-flow just with edge e4 having value zero
or an NZ-unoriented 4-flow with value on edge e4 in the set {±1,±2}. Thus
T3 ⊕G5 ⊕H ⊕G4 admits a NZ-unoriented 5-flow. �

By Claims 3, 4, 5, 6, 7, we can assume that Gi is an empty graph or a
triangle-tree except a triangle-star for i ∈ {1, 2, 3, 4, 5}. By induction hypothesis,
Lemma 14, Lemma 13(i), G admits an NZ-unoriented 5-flow.

In the rest of this paper, we assume that G is not a triangle-star and can
be partitioned into some triangle-paths or wheels H1, H2, . . . , Ht such that G =
H1⊕H2⊕· · ·⊕Ht, where Hi is a triangle-path or a wheel, where i ∈ {1, 2, . . . , t}
and t ≥ 1.

Proof of Theorem 4. Let m be the number of wheels in H1, H2, . . . , Ht. If
m = 0, then G is a triangle-tree except a triangle-star. By Lemma 16, G admits
a NZ-unoriented 5-flow, hence an NZ-unoriented 6-flow. If m = 1, then without
loss of generality, we assume that Hj is a wheel for some 1 ≤ j ≤ t. By the
definition of G, Hj and H1 ⊕H2 ⊕ · · · ⊕Hj−1 just have one common edge. Since
Hj is a wheel, Hj has at least three edges which is not adjacent to its center. Then
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we can choose an edge, say e0, of Hj such that e0 is not adjacent to the center of
Hj and is not an edge of H1 ⊕H2 ⊕ · · · ⊕Hj−1. Then Hj − e0 is a triangle-path
with at least two triangles. If e0 is not an edge of Hj+1 ⊕Hj+2 ⊕ · · · ⊕Ht, then
G = T + e0, where T = H1 ⊕ H2 ⊕ · · · ⊕ Hj−1 ⊕ (Hj − e0) ⊕ Hj+1 ⊕ · · · ⊕ Ht.
If T is not a triangle-star, then T is a triangle-tree. By Lemma 16, T admits an
NZ-unoriented 5-flow. By Lemma 10, G = T +e admits an NZ-unoriented 6-flow.
If T is a triangle-star, then Hj is 3-wheel and other His are triangle-star with a
common edge. In this case, G = W3 ⊕ S, where S is a k-triangle-star and W3 is
a 3-wheel, E(W3) ∩ E(S) is the common edge of S. If k = 0, then G = W3. By
Lemma 15, G admits an NZ-unoriented 3-flow, hence an NZ-unoriented 6-flow.
Thus k ≥ 1. By Lemma 15 and Lemma 12, G admits an NZ-unoriented 5-flow,
hence NZ-unoriented 6-flow.

If e0 is also an edge of Hj+1 ⊕ Hj+2 ⊕ · · · ⊕ Ht, then set e0 = uv and
G−{u, v} contains at least two connected components such that one component,
say H, contains the center of Hj . Let G1 be the subgraph comprised of H, {u, v}
and E(H, {u, v}), G2 = G − E(G1). Clearly, G = G1 ∪ G2 and e0 ∈ E(G2),
E(G1)∩E(G2) = ∅. By the definition of G1 and G2, Gi is a triangle-tree for each
i ∈ {1, 2}.

If Gi is not a triangle-star for each i ∈ {1, 2}, then by Lemma 16, Gi admits
an NZ-unoriented 5-flow, say fi, for each i ∈ {1, 2}. Since E(G1)∩E(G2) = ∅, we
can define f on E(G) as follows. Let f(e) = f1(e) when e ∈ E(G1), f(e) = f2(e)
when e ∈ E(G2). Clearly, f is an NZ-unoriented 5-flow of G, hence an NZ-
unoriented 6-flow.

Next we assume that there exists one Gi such that Gi is a triangle-star.
Without loss of generality, we assume that G1 is not a triangle-star and G2 is
a k-triangle-star. In this case, G1 is a triangle-tree except a triangle-star and
without loss of generality, we assume that the common edge of G2 is e1. (The
proofs are the same whatever e1 is e0 or not.) By Lemma 16, G1 admits an
NZ-unoriented 5-flow. If k = 1, then by Lemma 11, G admits an NZ-unoriented
6-flow. If k ≥ 2 and k is even, then G2−e1 is an even circuit. By Lemma 7, G2−e1
admits a NZ-unoriented 2-flow, hence the combination of flows on G1 and G2−e1
is an NZ-unoriented 5-flow of G − e1 = G1 ∪ (G2 − e1). Thus G admits a NZ-
unoriented 6-flow by Lemma 10. If k ≥ 2 and k is odd, then G2−E(T ) is an even
circuit, where T is an arbitrary triangle of G2. By Lemma 7, G2 − E(T ) admits
an NZ-unoriented 2-flow, hence the combination of flows on G1 and G2−E(T ) is
an NZ-unoriented 5-flow of G − E(T ). Thus G admits an NZ-unoriented 6-flow
by Lemma 11.

If Gi is a triangle-star for each i ∈ {1, 2}, then without loss of generality, we
assume that Gi is a ki-triangle-star. Since Hj − e0 is contained in G1, k1 ≥ 2 and
Hj is a 3-wheel. In this case, G = S1 ⊕W3 ⊕G2, where S1 is a (k1 − 2)-triangle-
star and E(S1) ∩ E(G2) = ∅. If k1 = 2, then G = W3 ⊕ G2. By Lemma 15
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and Lemma 12, G admits an NZ-unoriented 5-flow. If k1 ≥ 3, by Lemma 15
and Lemma 12, S1 ⊕ W3 admits an NZ-unoriented 5-flow. By Lemma 12, G =
S1 ⊕W3 ⊕G2 admits an NZ-unoriented 6-flow.

Thus by induction hypothesis, theorem holds for less then m wheels in
{H1, H2, . . . , Ht}. Next we prove the case that there are m wheels in {H1, H2,
. . . , Ht}.

If there exists an edge on cycle of a wheel such that this edge is also an edge
of another connected subgraph except a triangle-star, that is, G = G1 ⊕G2 and
E(G1) ∩ E(G2) = {e0}, where G1 contains a wheel which e0 is an edge of the
cycle of this wheel, G2 is not a triangle-star. In this case, we can choose G1 such
that e0 is not a common edge in G1. Then G = (G1 − e0) ∪ G2. If G1 − e0
is not a triangle-star, then by induction hypothesis, G1 − e0 and G2 admit an
NZ-unoriented 6-flow. Then G admits an NZ-unoriented 6-flow. If G1 − e0 is a
triangle-star, then G1 = W3⊕S, where S is a triangle-star and E(S)∩E(G2) = ∅.
By Lemma 15 and Lemma 12, G1 admits an NZ-unoriented 4-flow with e0 having
value in the set {±1,±2}. By Lemma 13(i), G admits an NZ-unoriented 6-flow.
Then we can assume that each edge of a cycle of wheel is not contained in other
subgraph of G or is an edge of another connected subgraph which is a triangle-
star. This means edges of cycle of wheel can be divided into two types.

Type 1. edge is contained in just one Hi, where Hi is a wheel;

Type 2. edge is contained in one Hi and other Hjs, where Hi is a wheel,
other Hjs constitute a triangle-star.

For each wheel of G, we can choose one edge from cycles of wheel, say
e1, e2, . . . , . . . , em, such that the number of edges of type 1 is maximal and ei, ej
are different edges from different wheels. If all eis are edges of type 1, then
G−{e1, . . . , em} is a triangle-tree. If G−{e1, . . . , em} is not a triangle-star, then
by Lemma 16, G−{e1, . . . , em} admits an NZ-unoriented 5-flow. Since e1, . . . , em
are contained in different wheels, by Lemma 10, G admits an NZ-unoriented 6-
flow. If G− {e1, . . . , em} is a triangle-star, then Hi is a W3 or a k-triangle-path,
where k ∈ {1, 2} for each i ∈ {1, 2, . . . , t} and all His have a common edge.
Without loss of generality, we assume that Hi is W3 for each i ∈ {1, 2, . . . ,m}.
Clearly, others constitute a triangle-star. By types 1 and 2, we can deduce that
m = 1 since each edge of W3 can be an edge of cycle of this wheel. This case we
have done.

If there exist an edge, say e1, which is an edge of type 2, then by the maxi-
mization, each edge of cycle of this wheel is an edge of type 2. This means m = 1,
and we have done.

Acknowledgements

The first author was supported by NSFC No. 11501256, the second author was
supported by NSFC No. 11301254, the Youth Backbone Teacher Foundation of



Nowhere-Zero Unoriented 6-Flows on Certain Triangular ... 745

Henan’s University (Grant No. 2015GGJS-115), Basic Research Foundation of
Henan Educational Committee (No. 20ZX004) and State Scholarship Fund.

References

[1] S. Akbari, N. Ghareghani, G.B. Khosrovshahi and A. Mahmoody, On zero-sum 6-
flows of graphs , Linear Algebra Appl. 430 (2009) 3047–3052.
https://doi.org/10.1016/j.laa.2009.01.027

[2] S. Akbari, A. Daemi, O. Hatami, A. Javanmard and A. Mehrabian, Zero-sum flows

in regular graphs , Graphs Combin. 26 (2010) 603–615.
https://doi.org/10.1007/s00373-010-0946-5

[3] S. Akbari, A. Daemi, O. Hatami, A. Javanmard and A. Mehrabian, Nowhere-zero
unoriented flows in Hamiltonian graphs , Ars Combin. 120 (2015) 51–63.

[4] S. Akbari, N. Ghareghani, G.B. Khosrovshahi and S. Zare, A note on zero-sum 5-
flows in regular graphs , Electron. J. Combin. 19 (2012) #P7.
https://doi.org/10.37236/2145

[5] A. Bouchet, Nowhere-zero integeral flows on a bidirected graph, J. Combin. Theory
Ser. B 34 (1983) 279–292.
https://doi.org/10.1016/0095-8956(83)90041-2

[6] M. DeVos, Flows in bidirected graphs , Mathematics 43 (2013) 95–115.

[7] J. Edmonds, Maximum matching and a polyhedron with 0, 1-vertices , J. Res. Nat.
Bur. Stand. 69B (1965) 125–130.
https://doi.org/10.6028/jres.069B.013

[8] F. Jaeger, Nowhere-zero flow problems , in: Selected topics in Graph Theory 3, L.W.
Beineke and R.J. Wilson (Ed(s)), (Academic Press, London, 1988) 70–95.

[9] M. Kano, Factors of regular graphs , J. Combin. Theory Ser. B 41 (1986) 27–36.
https://doi.org/10.1016/0095-8956(86)90025-0

[10] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms
(Springer, Berlin, 2006).
https://doi.org/10.1007/3-540-29297-7

[11] A. Raspaud and X. Zhu, Circular flow on signed graphs , J. Combin. Theory Ser. B
101 (2011) 464–479.
https://doi.org/10.1016/j.jctb.2011.02.007

[12] W.T. Tutte, On the imbedding of linear graphs in surfaces , Proc. Lond. Math. Soc.
(2) 51 (1949) 474–483.
https://doi.org/10.1112/plms/s2-51.6.474

[13] O. Zyka, Nowhere-zero 30-flows on bidirected graphs, Thesis (Charles University,
Praha, 1987).

https://doi.org/10.1016/j.laa.2009.01.027
https://doi.org/10.1007/s00373-010-0946-5
https://doi.org/10.37236/2145
https://doi.org/10.1016/0095-8956\(83\)90041-2
https://doi.org/10.6028/jres.069B.013
https://doi.org/10.1016/0095-8956\(86\)90025-0
https://doi.org/10.1007/3-540-29297-7
https://doi.org/10.1016/j.jctb.2011.02.007
https://doi.org/10.1112/plms/s2-51.6.474


746 F. Yang, L. Li and S. Zhou

[14] F. Yang and X. Li, Zero-sum 6-flows in 5-regular graphs , Bull. Malays. Math. Sci.
Soc. 42 (2019) 1319–1327.
https://doi.org/10.1007/s40840-017-0547-z

Received 2 January 2019
Revised 7 January 2020

Accepted 7 January 2020

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1007/s40840-017-0547-z
http://www.tcpdf.org

