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Abstract

An antimagic labeling of a graph G = (V,E) is a one-to-one mapping
from E to {1, 2, . . . , |E|} such that distinct vertices receive different label
sums from the edges incident to them. G is called antimagic if it admits
an antimagic labeling. It was conjectured that every connected graph other
than K2 is antimagic. The conjecture remains open though it was verified
for several classes of graphs such as regular graphs. A bipartite graph is
called (k, k′)-biregular, if each vertex of one of its parts has the degree k,
while each vertex of the other parts has the degree k′. This paper shows
the following results. (1) Each connected (2, k)-biregular (k ≥ 3) bipartite
graph is antimagic; (2) Each (k, pk)-biregular (k ≥ 3, p ≥ 2) bipartite graph
is antimagic; (3) Each (k, k2 + y)-biregular (k ≥ 3, y ≥ 1) bipartite graph is
antimagic.
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1. Introduction

Let G = (V,E) be a graph. Suppose f is a one-to-one mapping from E to
{1, 2, . . . , |E|}. For each vertex v in V , the vertex sum ϕf (v) at v under f is
defined as ϕf (v) =

∑

e∈E(v) f(e), where E(v) is the set of edges incident to v.
If ϕf (u) 6= ϕf (v) for any vertex pair u, v ∈ V , then f is called an antimagic

labeling of G. A graph G is called antimagic if G admits an antimagic labeling.
The antimagic labeling of graphs was introduced by Hartsfield and Ringel [8] in
1989 (also in [9]), who verified the antimagicnesses of paths, 2-regular graphs and
complete graphs. Moreover, they put forth the following conjecture.

Conjecture 1 [9]. Every connected graph other than K2 is antimagic.

The conjecture has received much attention, but remains open. It was proved
by Alon et al. [1] that there is an absolute constant c such that graphs with mini-
mum degree δ(G) ≥ c log |V | are antimagic, and graphs with maximum degree at
least |V | − 2 and complete bipartite graphs except K2 are antimagic. And then
graphs of large linear size were shown to be antimagic [6]. For regular graphs,
the antimagicnesses of k-regular (k ≥ 2) bipartite graphs [3], cubic graphs [12],
odd degree regular graphs [4], and finally even regular graphs [2] were verified,
respectively. For more results on antimagic labeling such as those about trees,
one can refer to [5, 10, 11, 13, 14, 17] and the survey of Gallian [7].

A bipartite graph is called (k, k′)-biregular, if each vertex in one of its two
parts has the degree k, while each vertex in the other part has the degree k′. This
paper shows the following results. (1) Each connected (2, k)-biregular (k ≥ 3)
bipartite graph is antimagic; (2) Each (k, pk)-biregular (k ≥ 3, p ≥ 2) bipartite
graph is antimagic; (3) Each (k, k2+y)-biregular (k ≥ 3, y ≥ 1) bipartite graph is
antimagic. The first result is shown in Section 2, where we treat each connected
(2, k)-biregular (k ≥ 3) bipartite graph as the subdivision graph of a connected
k-regular graph. A subdivision graph Gs of a graph G, is obtained from G by
replacing each edge with a path of length two. The second and the third results
are shown in Section 3, based on an extended version of Hall’s matching theorem
[15, 16].

2. Connected (2, k)-Biregular (k ≥ 3) Bipartite Graph

With respect to a given labeling, two vertices are in conflict if they have a common
vertex sum. When we have labeled a subset of the edges, we call the resulting
sum at each vertex a partial vertex-sum. For short, we denote by [i, j] the integer
set {i, i+ 1, . . . , j} for integers i and j (where i < j).

Theorem 2. The subdivision graph Gs of every connected k-regular (k ≥ 3)
graph G is antimagic.
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Proof. Choose an arbitrary vertex v∗ in G as a root. Let α be the longest
distance of a vertex from v∗ in G. Suppose i ∈ [1, α]. Denote by Vi the sets
of vertices at distance exactly i from v∗, by G[Vi] the subgraph induced by Vi,
and by G[Vi−1;Vi] (here we suppose V0 = {v∗}) the induced bipartite subgraph
with parts Vi−1 and Vi, respectively. For v ∈ Vi, let σ(v) be an arbitrary edge in
G[Vi−1;Vi] which is incident to v. Let σ(Vi) = {σ(v) | v ∈ Vi} and Gσ[Vi−1;Vi] =
G[Vi−1;Vi] \ σ(Vi).

Now subdivide G into Gs. Then every vertex in Vi is at distance exactly 2i
from v∗ in Gs. Denote by Si, Ui and Wi the newly added vertex sets on the edges
of G[Vi], Gσ[Vi−1;Vi] and σ(Vi), respectively, when subdividing G into Gs. Let
X =

⋃α
i=1Xi for X = V, S, U,W. For a vertex v ∈ Vi, let w(v) be the vertex in

Wi which is adjacent to v. For every vertex x ∈ (Si ∪ Ui ∪Wi), let e
x and ex be

the two edges incident to x. If x ∈ (Ui ∪Wi), we suppose ex is incident to some
vertex in Vi, while ex is incident to some vertex in Vi−1. For X = S,U,W , let

EX
i = {ex |x ∈ Xi}, E

X
i = {ex|x ∈ Xi} and EX

i = EX
i ∪ E

X
i .

Respect to a labeling f on E(Gs), if v ∈ Vi, we denote the partial sum at v
(omitting the label on ew(v)) by p(v) =

∑

e∈E(v)\{ew(v)} f(e) = ϕf (v) − f(ew(v)).
Let p(v∗) = ϕf (v

∗) − f(e∗) where e∗ is the edge in E(v∗) which receives the
greatest label among E(v∗).

Note that V (Gs) = V ∪ S ∪U ∪W ∪ {v∗}. To show Gs is antimagic, we will
construct a labeling f which satisfies the following conditions.

(1) The vertex sums in Xi are all odd and pairwise different, for X ∈
{S,U,W} and i ∈ [1, α].

(2) The vertex sums in Vi are all even and pairwise different for i ∈ [1, α].

(3) The vertex sums in (Si∪Ui∪Wi) are smaller than those in (Si−1∪Ui−1∪
Wi−1) for i ∈ [2, α].

(4) The vertex sums in Si are smaller than those in Ui, while the later ones
are smaller than those in Wi for i ∈ [1, α].

(5) The vertex sums in Vi are smaller than those in Vi−1 for i ∈ [2, α].

(6) The vertex sum at v∗ is greater than those in V1 and those in W1.

Conditions (1) and (2) make sure there is no conflict between V and (S∪U ∪
W ). Conditions (1), (3), (4) make sure there is no conflict inside (S ∪ U ∪W ).
Conditions (2) and (5) make sure there is no conflict inside V . Conditions (3),
(4), (5) and (6) make sure there is no conflict between v∗ and any other vertex
in Gs. So these conditions imply that f is antimagic.

Note that E(Gs) =
⋃α

i=1(E
S
i ∪ EU

i ∪ EW
i ). We will label E(Gs) in the

order ES
α , (EU

α ∪ EW
α ), ES

α−1, (EU
α−1 ∪ EW

α−1), . . . , E
S
1 , (EU

1 ∪ EW
1 ), using the

smallest unused labels on each edge set when we come to it. This label assignment
immediately implies that (3) holds, and that the vertex sums in Si are smaller
than those in (Ui ∪Wi) for i ∈ [1, α].

Suppose i ∈ [1, α] in the following. Note that |EX
i | = 2|Xi|, for X = S,U,W .
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(I) The labeling of ES . We first label ES
i arbitrarily using the |Si| odd labels

from the 2|Si| assigned labels for ES
i . Secondly let f(es) = f(es) + 1 for each

s ∈ Si. Then the vertex sums in Si are odd and pairwise different.

(II) The labeling of
(

EU ∪ EW
)

. If |Ui| is odd, then i ∈ [2, α], since U1

is an empty set. We will label (EU
i ∪ EW

i ) in the order EU
i , E

U
i , EW

i using
the smallest unused assigned labels on each edge subset when we come to it.
This sub-assignment (based on our global assignment), gives that p(v) < p(v′)
for arbitrary v ∈ Vi and v′ ∈ Vi−1, which implies ϕf (v) = p(v) + f(vw(v)) <
p(v′)+f(v′w(v′)) = ϕf (v

′), since f(vw(v)) < f(v′w(v′)) by our global assignment.
So (5) holds for those i with |Ui| being odd. It gives that the vertex sums in Ui

are smaller than those in Wi. So (4) holds for those i with |Ui| being odd. We first
label EU

i arbitrarily using its assigned labels. Secondly let f(eu) = f(eu)+|Ui| for
each u ∈ Ui. This gives that the vertex sums in Ui are odd and pairwise different.
Third, suppose Vi =

{

v1, v2, . . . , v|Vi|

}

where p(v1) ≤ p(v2) ≤ · · · ≤ p(v|Vi|).

For r ∈ [1, |Vi|], label e
w(vr) with the r-th smallest label among the odd (even)

assigned labels for EW
i , when p(vr) is odd (even). This implies that the vertex

sums in Vi are even and pairwise different. So (2) holds for those i with |Ui| being
odd. Fourth, let f(ew) = f(ew) + 1 when f(ew) is odd, while f(ew) = f(ew)− 1
when f(ew) is even. This implies that vertex sums in Wi are odd and pairwise
different. So (1) holds for those i with |Ui| being odd.

If |Ui| is even (|Ui| may equal to 0), then i ∈ [1, α]. We will label edges
in EU

i using the smallest (2|Ui| + 1) assigned labels for EU
i ∪ EW

i except the
(|Ui| + 1)-th smallest one (denoted by ξ|Ui|+1). We first label the edges of EU

i

arbitrarily using the |Ui| smallest assigned labels. This gives that p(v) < p(v′)
for arbitrary v ∈ Vi and v′ ∈ Vi−1. And then, if i 6= 1, one has ϕf (v) =
p(v) + f(vw(v)) < p(v′) + f(v′w(v′)) = ϕf (v

′) for arbitrary v ∈ Vi and v′ ∈ Vi−1,
since f(vw(v)) < f(v′w(v′)) by our global assignment. So (5) also holds for those
i (i 6= 1) with |Ui| being even. Secondly let f(eu) = f(eu) + |Ui| + 1 for each
u ∈ Ui. This implies that the vertex sums in Ui are odd and pairwise different.
It also implies that the vertex sums in Ui are smaller than those in Wi, since
any pair of the rest assigned labels left for Wi has a sum greater than any vertex
sum in Ui. So (4) also holds for those i with |Ui| being even. Note that, ξ|Ui|+1

and (ξ|Ui|+1 + |Ui|+ 1) have distinct parity, and so far, they are the smallest two
unused assigned labels for Wi. Third, suppose |Vi| =

{

v1, v2, . . . , v|Vi|

}

where

p(v1) ≤ p(v2) ≤ · · · ≤ p
(

v|Vi|

)

. For r ∈ [1, |Vi|], label ew(vr) with the r-th
smallest label among the rest odd (even) assigned labels, if p(vr) is odd (even).
This implies that the vertex sums in Vi are even and pairwise different. So
(2) also holds for those i with |Ui| being even. And note that either ξ|Ui|+1 or

(ξ|Ui|+1+|Ui|+1) is assigned to w(v1) by our labeling way. Fourth, let f
(

ew(v1)
)

=

ξ|Ui|+1 if f
(

ew(v1)
)

= ξ|Ui|+1 + |Ui| + 1, while f
(

ew(v1)
)

= ξ|Ui|+1 + |Ui| + 1 if
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f
(

ew(v1)
)

= ξ|Ui|+1, so that
{

f
(

ew(v1)
)

, f
(

ew(v1)
)}

=
{

ξ|Ui|+1, ξ|Ui|+1 + |Ui| + 1
}

.

And for r ∈ [2, |Vi|], let f
(

ew(vr)
)

= f
(

ew(vr)
)

+ 1 if f
(

ew(vr)
)

is odd, while

f
(

ew(vr)
)

= f
(

ew(vr)
)

− 1 if f
(

ew
)

is even. This implies that vertex sums in Wi

are odd and pairwise different. So (1) also holds for those i with |Ui| being even.

For (6), note that the process of the labeling of E(v∗) = E
W
1 is discussed in

the case when |Ui| is even (since U1 = ∅ and |U1| = 0). Recall that, |EW
1 | = 2k

and EW
1 are assigned with the greatest 2k labels, i.e., those labels in L2k =

{|E(Gs)|, |E(Gs)| − 1, . . . , |E(Gs)| − 2k + 1}. More precisely, E
W
1 = E(v∗) are

assigned with the labels in {i1, i2, . . . , ik} ⊆ L2k where either ij = |E(Gs)|−2j+1
or ij = |E(Gs)|−2j+2 for j = 1, 2, . . . , k. So p(v∗) ≥ p(v1)+1+3+· · ·+(2k−3) >
p(v1)+3 for arbitrary v1 ∈ V1 (recall that k ≥ 3). Then ϕf (v

∗) = p(v∗)+f(e∗) ≥
p(v∗)+|E(Gs)|−1 > p(v1)+|E(Gs)|+2 > p(v1)+|E(Gs)| ≥ p(v1)+f(v1w(v1)) =
ϕf (v1) for each v1 ∈ V1. On the other hand, ϕf (v

∗) ≥ (|E(Gs)| − 1)+ (|E(Gs)| −
3)+(|E(Gs)|−5) = 3|E(Gs)|−9, since k ≥ 3. Thus, each vertex in W1 receives a
sum at most (2|E(Gs)| − 1). So ϕf (v

∗) ≥ 3|E(Gs)| − 9 > 2|E(Gs)| − 1 ≥ ϕf (w1)
for each w1 ∈ W1 (one has |E(Gs)| ≥ 12, because k ≥ 3). So (6) holds.

Thus, Gs is antimagic. This completes our proof.

It is interesting to consider the case when G is k-regular (k ≥ 3) but dis-
connected. In the proof of Theorem 2, suppose G has m edges. Then Gs has m
2-vertices. Note that the total sum of all the vertex sums is even, since each label
contributes to the total sum twice. Thus, each 2-vertex contributes an odd value
to the total sum, while each k-vertex other than v∗ contributes an even value,
under our labeling way in the proof of Theorem 2. Thus, ϕf (v

∗) is odd if and
only if m is odd.

Theorem 3. Let G be an disconnected k-regular (k ≥ 3) graph, which has at most

one connected component with an odd number of edges. Then Gs is antimagic.

Proof. Suppose G consists of the connected components H1, H2, . . . , Hβ (β ≥ 2),
where Hi has an even number of edges for each i ∈ [1, β−1]. We can label E(Gs)
in the order E((H1)s), E((H2)s), . . . , E((Hβ)s) using the smallest unused labels
on each edge set when we come to it. Next, we label each connected component
of Gs in the same way to that in Theorem 2, choosing a root for each component
of G. Then there is no conflict among each (Hi)s for i ∈ [1, β]. Each 2-vertex
receives an odd sum, while each k-vertex other than the root of (Hβ)s receives
an even sum. Each 2-vertex in (Hi)s receives a smaller sum than each 2-vertex in
(Hj)s, while each k-vertex in (Hi)s receives a smaller sum than each k-vertex in
(Hj)s, whenever i < j ≤ β holds. And the root vertex in (Hβ)s receives a greater
sum than those of any other vertex in Gs. So we obtain an antimagic labeling.

Sice m = nk
2 , for each k-regular graph with n vertices and m edges, we have

the following corollary.
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Corollary 4. Let G be an disconnected k-regular (k ≥ 3) graph. Then Gs is

antimagic if one of the following holds.

(1) k = 4t (t ≥ 1);

(2) k is even and at most one of the connected components of G has an odd

number of vertices;

(3) At most one of the connected components of G has a number of vertices

which is not a multiple of 4.

3. (k, pk)-Biregular (k ≥ 3, p ≥ 2) Bipartite Graph

For a bipartite graph G(A,B), a complete p-claw matching CM from A to B is a
set of edges of G that induce a subgraph G[CM ] such that each vertex of A in G
is also a vertex in G[CM ] and each component of G[CM ] is a copy of K1,p where
the vertex of degree p is in A, while the vertices of degree 1 are in B. For A0 ⊆ A,
denote by N(A0) the set of vertices in B each of which has a neighbor in A0. Let
E1, E2, . . . , Ek ⊆ E(G) be disjoint edge sets. If E1 ∪ E2 ∪ · · · ∪ Ek = E(G), then
we say G decomposes into E1, E2, . . . , Ek.

Lemma 5 (An extended version of Hall’s theorem, [15, 16]). A bipartite graph

G[A,B] admits a complete p-claw matching from A to B, if and only if p|A0| ≤
|N(A0)| for every subset A0 of A.

Lemma 6. Let G[A,B] be a (k, pk)-biregular (k ≥ 3, p ≥ 2) bipartite graph where

the degree of each vertex in A is kp, while each vertex in B has degree k. Then

G decomposes into k complete p-claw matchings from A to B.

Proof. Let A0 ⊆ A. Let G[A0, N(A0)] be the graph induced by A0 ∪ N(A0).
Then each vertex of A0 in G[A0, N(A0)] has the degree kp, while each vertex of
N(A0) in G[A0, N(A0)] has the degree at most k. So there are exactly kp|A0|
edges in G[A0, N(A0)]. On the other hand, suppose |N(A0)| < p|A0|. Then
the number of edges in G[A0, N(A0)] is less than k · p|A0|, a contradiction. So
|N(A0)| ≥ p|A0|. By Lemma 5, there exists a complete p-claw matching CM1

from A to B in G[A,B]. Then G1 = G[A,B] − CM1 is a (k − 1, p(k − 1))-
biregular bipartite graph. So we can use Lemma 5 repeatedly until we obtain a
(1, p)-biregular bipartite graph Gk−1 which is also a complete p-claw matching
from A to B. Thus, G[A,B] decomposes into k complete p-claw matchings from
A to B.

Lemma 7. Let I = [i+1, i+2q]. Then, there exist partitions P1 (when q is odd)
and {P2, P3, P4} (when q is even) of I, such that under Pj, j ∈ [1, 4], I is departed

into q parts where each part has 2 integers, integers in [i + (x − 1)q + 1, i + xq]
(x ∈ [1, 2]) are in distinct parts and the following conditions are satisfied.
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(1) Under P1, the q parts have distinct sums which attain all the values in [(2i+
2q + 1)− (q − 1)/2, (2i+ 2q + 1) + (q − 1)/2];

(2) Under P2, q/2 parts have distinct sums which attain all the values in [(2i+
2q+1)− (q/2− 1), 2i+2q+1], while the other q/2 parts have distinct sums

which attain all the values in [2i+ 2q + 1, (2i+ 2q + 1) + (q/2− 1)];

(3) Under P3, the (q− 1) parts have distinct sums which attain all the values in

[(2i + 2q + 2) − (q/2 − 1), (2i + 2q + 2) + (q/2 − 1)] and the other part has

the sum 2i+ q + 2;

(4) Under P4, the (q− 1) parts have distinct sums which attain all the values in

[(2i+ 2q)− (q/2− 1), (2i+ 2q) + (q/2− 1)] and the other part has the sum

2i+ 3q.

Proof. It is sufficient to show the case when i = 0.

(1) If q is odd, let {2j − 1,−j + (3q + 1)/2 + 1} be in the same partition
for j ∈ [1, (q + 1)/2], and let {2j,−j + 2q + 1} be in the same partition for
j ∈ [1, (q − 1)/2], which is the desired partition P1.

(2) If q is even, let {2j,−j + 3q/2 + 1} be in the same partition and let
{2j−1,−j+2q+1} be in the same partition for j ∈ [1, q/2], which is the desired
partition P2.

(3) If q is even, let {2j,−j+3q/2+2} be in the same partition for j ∈ [1, q/2],
let {2j + 1,−j + 2q + 1} be in the same partition for j ∈ [1, q/2 − 1], and let
{1, q + 1} be in the same partition, which is the desired partition P3.

(4) If q is even, let {2j − 1,−j + 3q/2 + 1} be in the same partition for
j ∈ [1, q/2], let {2j,−j +2q} be in the same partition for j ∈ [1, q/2− 1], and let
{q, 2q} be in the same partition, which is the desired partition P4.

Lemma 8. Let I = [i+ 1, i+ zq] (z ≥ 3). Then, there exist partitions P1 (when
z is even or q is odd) and {P2, P3} (when z is odd and q is even) of I, such that

under Pj, j ∈ [1, 3], I is departed into q parts where each part has z integers,

integers in [i+(x−1)q+1, i+xq] (x ∈ [1, z]) are in distinct parts and the following

conditions are satisfied.

(1) Under P1, the q parts have the same sum (2i+ zq + 1)z/2;

(2) Under P2, q/2 parts have the same sum (2i+ zq+1)z/2+1/2 and the other

q/2 parts have the same sum (2i+ zq + 1)z/2− 1/2;

(3) Under P3, (q − 1) parts have the same sum (2i + zq + 1)z/2 + 3/2 and the

other part has the sum (2i+ zq + 1)z/2− 3q/2 + 3/2.

Proof. It is sufficient to show the case when i = 0.

(1) If z is even, let {(j − 1)q + l|j ∈ [1, z/2]} ∪ {jq − l + 1|j ∈ [z/2 + 1, z]}
be in the partition for l ∈ [1, q], which is the desired partition P1 and (1) holds
in this case.
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If z is odd (then (z − 3) is even) and q is odd, we first assign the (z − 3)q
integers in [2q + 1, (z − 1)q] to the q parts (suppose I1, I2, . . . , Iq are the q parts)
such that these q parts receive the same partial sum (zq + q + 1)(z − 3)/2. We
can do this since (z − 3) is even. Second, assign [(z − 1)q + l] to Il for l ∈
[1, q] such that the q parts have distinct partial sums and attain all values in
[(qz + q+ 1)(z − 3)/2+ (z − 1)q+ 1, (qz + q+1)(z − 3)/2+ zq]. Third, partition
[1, 2q] into q parts (denoted by I ′1, I

′
2, . . . , I

′
q) which have distinct sums which

attain all the values in [(2q + 1) − (q − 1)/2, (2q + 1) + (q − 1)/2]. We can do
this owing to the partition in Lemma 7(1). Then assign I ′il to Il if the sum of I ′il
equals to [(2q+1)+(q−1)/2− l+1] for l ∈ [1, q]. Then the final sum of Il equals
to [(qz+q+1)(z−3)/2]+[(z−1)q+ l]+[(2q+1)+(q−1)/2− l+1] = (qz+1)z/2
for each l ∈ [1, q]. So (1) also holds in this case.

(2) If z is odd and q is even, we first partition [2q + 1, zq] into q parts
I1, I2, . . . , Iq which have distinct partial sums and attain all values in [(qz +
q + 1)(z − 3)/2 + (z − 1)q + 1, (qz + q + 1)(z − 3)/2 + zq]. We can do this
owing to the discussion in (1). Then partition [1, 2q] into q parts (denoted by
I ′1, I

′
2, . . . , I

′
q) such that q/2 parts have distinct sums which attain all the values

in [(2q + 1) − (q/2 − 1), 2q + 1], while the other q/2 parts have distinct sums
which attain all the values in [2q + 1, (2q + 1) + (q/2 − 1)]. We can do this
owing to the partition in Lemma 7(2). Denote by I ′iq/2,1 and I ′iq/2,2 the two parts

each of which admits the sum (2q + 1). Then assign I ′il to Il if the sum of I ′il
equals to [(2q + 1) + (q/2 − 1) − l + 1] for l ∈ [1, q/2 − 1]. Assign I ′iq/2,1 to

Iq/2, while assign I ′iq/2,2 to Iq/2+1. And assign I ′il to Il if the sum of I ′il equals

to (2q + 1) + (q/2 − 1) − l + 2 for l ∈ [q/2 + 2, q]. Then for l ∈ [1, q/2 − 1]
the final sum of Il equals to [(qz + q + 1)(z − 3)/2] + [(z − 1)q + l] + [(2q +
1) + (q/2 − 1) − l + 1] = (qz + 1)z/2 − 1/2. The final sum of Iq/2 equals to
[(qz+ q+1)(z−3)/2]+ [(z−1)q+ q/2]+ [(2q+1)] = (qz+1)z/2−1/2, while the
final sum of Iq/2+1 equals to [(qz+ q+1)(z− 3)/2] + [(z− 1)q+ q/2+ 1]+ [(2q+
1)] = (qz + 1)z/2 + 1/2. Thus, for l ∈ [q/2 + 2, q] the final sum of Il equals to
[(qz+q+1)(z−3)/2]+[(z−1)q+l]+[(2q+1)+(q/2−1)−l+2] = (qz+1)z/2+1/2.
So (2) holds.

(3) If z is odd and q is even, we first partition [2q + 1, zq] into q parts
I1, I2, . . . , Iq which have distinct partial sums and attain all values in [(qz + q +
1)(z−3)/2+(z−1)q+1, (qz+ q+1)(z−3)/2+ zq]. We can do this owing to the
discussion in (1). Then partition [1, 2q] into q parts (denoted by I ′1, I

′
2, . . . , I

′
q)

such that the (q − 1) parts have distinct sums which attain all the values in
[(2q+2)− (q/2− 1), (2q+2)+ (q/2− 1)] and the other part has the sum (q+2).
We can do this owing to the partition in Lemma 7(3). Denote by I ′i1 the part
with the sum (q + 2). Then assign I ′i1 to I1, and assign I ′il to Il if the sum of I ′il
equals to [(2q+2)+(q/2−1)− l+2] for l ∈ [2, q]. Then the final sum of I1 equals
to [(qz+ q+1)(z− 3)/2]+ [(z− 1)q+ l] + [q+2] = (qz+1)z/2− 3q/2+ 3/2, and
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for l ∈ [2, q], the final sum of Il equals to [(qz+ q+1)(z− 3)/2] + [(z− 1)q+ l] +
[(2q + 2) + (q/2− 1)− l + 2] = (qz + 1)z/2 + 3/2. So (3) holds.

Theorem 9. Every (k,pk)-biregular (k ≥ 3, p ≥ 2) bipartite graph is antimagic.

Proof. Let G[A,B] be a (k, pk)-biregular (k ≥ 3, p ≥ 2) bipartite graph, where
each vertex in A has the degree pk, while each vertex in B has the degree k.
Suppose |A| = n (n ≥ k) and |B| = pn. Let A = {a1, a2, . . . , an} and B =
{b1, b2, . . . , bpn}. By Lemma 6, G decomposes into k complete p-claw matchings
CM1, CM2, . . . , CMk from A to B. Denote by CMi(V0) (i ∈ [1, k]) the edges in
CMi which are incident to some vertex in V0 for V0 ⊆ V (G).

Step 1. Label
(
⋃k−1

i=1 CMi

)

with [1, (k − 1)pn].
First, label CMk−1 with [(k − 2)pn + 1, (k − 1)pn], i.e., [(k − 2)pn + 1, (k −

2)pn+ pn] such that the following conditions are satisfied.

(1.1) Within CMk−1, vertices in A have the same partial sum [(2k−3)pn+1]p/2
if p is even or n is odd. We can do this owing to the partition in Lemma 8(1).

(1.2) Within CMk−1, n/2 vertices in A have the same partial sum [(2k − 3)pn+
1]p/2 + 1/2 and the other n/2 vertices in A have the same partial sum [(2k −
3)pn+1]p/2−1/2 if p is odd and n is even. We can do this owing to the partition
in Lemma 8(2).

Second, based on the labeling to CMk−1, for each i ∈ [1, k − 2], label CMi

with [(i− 1)pn+ 1, ipn], such that the following conditions are satisfied.

(1.3) Within
(
⋃k−1

i=1 CMi

)

, the vertices in B have the same partial sum [(k −
1)pn + 1](k − 1)/2 if (k − 1) even or pn is odd. We can do this owing to the
partition in Lemma 8(1).

(1.4) Within
(
⋃k−1

i=1 CMi

)

, (pn − 1) vertices in B have the same partial sum
[(k − 1)pn + 1](k − 1)/2 + 3/2 while the other vertex (denoted by b0) has the
partial sum [(k − 1)np + 1](k − 1)/2 + 3/2 − 3pn/2 if (k − 1) is odd and pn is
even. We can do this owing to the partition in Lemma 8(3).

Note that, (1.3) implies the vertices in B will receive distinct final vertex
sums, when (k− 1) is even or pn is odd, if we label the rest edges CMk using the
rest labels [(k − 1)pn + 1, kpn]. Thus in (1.4), the partial sum of b0 is at least
3pn/2 smaller than those of the vertices in (B \ {b0}). So the final vertex sum of
b0 will still be smaller than those of the vertices in (B \ {b0}), if we label CMk

with [(k − 1)pn + 1, kpn]. Hence, the final vertex sums of in (B \ {b0}) will be
pairwise different. That is, all vertices in B will also receive distinct final vertex
sums when (k − 1) is odd and pn is even.

Step 2. Label CMk with [(k−1)pn+1, kpn], i.e., [(k−1)pn+1, (k−1)pn+pn].
Suppose f1(at1) ≤ f1(at2) ≤ · · · ≤ f1(atn) where f1(atj ) is the partial vertex

sum of atj within
(
⋃k−1

i=1 CMi

)

for j ∈ [1, n].
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(2.1) If p is odd (then (p−1) is even) or n is odd, let σ(a) be an edge in CMk(a) for
each a ∈ A. Label

[

CMk \
(
⋃

a∈A{σ(a)}
)]

with [(k−1)pn+1, (k−1)pn+(p−1)n]
such that, within

[

CMk \
(
⋃

a∈A{σ(a)}
)]

, the vertices in A have the same partial
sum [(2k−1)pn−n+1](p−1)/2. We can do this owing to the partition in Lemma
8(1). Next label σ(atj ) with (kpn − n + j) for j ∈ [1, n]. Then the vertex sums
in A are pairwise different.

(2.2) If p is even (then (p−2) is also even) and n is even, let σ1(a) and σ2(a) be two
distinct edges in CMk(a) for each a ∈ A. Label

[

CMk \
(
⋃

a∈A{σ1(a), σ2(a)}
)]

using the labels in [(k− 1)pn+1, (k− 1)pn+ (p− 2)n] such that, within
[

CMk \
(
⋃

a∈A{σ1(a), σ2(a)}
)]

, the vertices in A have the same partial sum [(2k−1)pn−
2n + 1](p − 2)/2. We can do this owing to the partition in Lemma 8(1). Then
label

(
⋃

a∈A{σ1(a), σ2(a)}
)

with [(kpn − 2n) + 1, (kpn − 2n) + 2n] such that
f(σ1(atj )) + f(σ2(atj )) = 2kpn − 5n/2 + j for j ∈ [1, n − 1] while f(σ1(atn)) +
f(σ2(atn)) = 2kpn − n. We can do this owing to the partition in Lemma 7(4).
Then the vertex sums in A are also pairwise different.

Recall that, owing to Step 1 (1.3) and (1.4), for each b ∈ B, one has

ϕf (b) ≤
[(k − 1)pn+ 1](k − 1)

2
+

3

2
+ kpn.

On the other hand, owing to the labeling way in Step 1 (1.3) and (1.4), the
labels assigned to CMi are those in [(i−1)pn+1, ipn] for i ∈ [1, k−2]. Let a ∈ A.
Then the sum of the labels in CMi(a) is at least

∑p
j=1[(i−1)pn+j] for i ∈ [1, k−2].

So the sum of the labels in
(
⋃k−2

i=1 CMi(a)
)

is at least
∑k−2

i=1

∑p
j=1[(i− 1)pn+ j].

Recall that, owing to Step 1 (1.1) and (1.2), the sum of labels in CMk−1(a) is at
least [(2k − 3)pn+ 1]p/2− 1/2. Next recall that, owing to Step 2 (2.1), the sum
of labels in CMk(a) is at least [(2k − 1)pn− n+ 1](p− 1)/2 + (kpn− n+ 1) if p
is odd (then (p− 1) is even) or n is odd, while owing to Step 2 (2.2), the sum of
labels in CMk(a) is at least [(2k− 1)pn− 2n+1](p− 2)/2+ (2kpn− 5n/2+ 1) if
p is even (then (p − 2) is also even) and n is even. Thus, the later lower bound
is 1/2 smaller than the first lower bound. So

ϕf (a) ≥
k−2
∑

i=1

p
∑

j=1

[(i− 1)pn+ j] +

{

[(2k − 3)pn+ 1]p

2
−

1

2

}

+

{

[(2k − 1)pn− 2n+ 1](p− 2)

2
+

(

2kpn−
5n

2
+ 1

)}

.

Then for each a ∈ A and b ∈ B, one has

ϕf (a)− ϕf (b) ≥
1

2

[(

1

2
k − 1

)

p2kn+ (k − 3)p2 + k2
(

1

2
p− 1

)

pn

+ (p− 1)(np+ k) +
(

p2 − 1
)

n+
(

p2 − 3
)

]

> 0,
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since k ≥ 3 and p ≥ 2.

Thus, we obtain an antimagic labeling. This completes our proof.

Theorem 10. Every (k, k2 + y)-biregular (k ≥ 3, y ≥ 1) bipartite graph is an-

timagic.

Proof. Let G[A,B] be a (k, k′)-biregular (k′ = k2 + y) bipartite graph, where
each vertex in A has the degree k′, while each vertex in B has the degree k.
Suppose |A| = kη and |B| = k′η where η may be not an integer. It is sufficient
to consider the case when k′ = kp+ r for some integers p and r satisfying p ≥ k
and 1 ≤ r ≤ k − 1 (note that rη is an integer since kη and k′η are integers).
Let A = {a1, a2, . . . , akη} and B = {b1, b2, . . . , bk′η}. For A0 ⊆ A, the graph
G[A0, N(A0)] has k′|A0| edges, since each vertex of A0 in G[A0, N(A0)] has the
degree k′. On the other hand, suppose |N(A0)| < p|A0|. Then the number
of edges in G[A0, N(A0)] is at most k|N(A0)| < pk|A0| < k′|A0|, since each
vertex of N(A0) in G[A0, N(A0)] has the degree at most k, a contradiction. So
|N(A0)| ≥ p|A0|. So, by Lemma 5, G admits a complete p-claw matching CM
from A to B. Suppose B = B1 ∪ B2 where B1 = V (CM) ∩ B and B2 = B \B1.
Then |B1| = kpη and |B2| = rη. Let σ(b) be an edge incident to b for each b ∈ B2,
and let σ(B2) = {σ(b)|b ∈ B2}.

Step 1. Label (E(G)− CM − σ(B2)) with [1, (k − 1)k′η].

(1.1) If (k−1) is even or k′η is odd, label (E(G)−CM−σ(B2)) with [1, (k−1)k′η]
such that, within (E(G)−CM − σ(B2)), the vertices in B have the same partial
sum ((k − 1)k′η + 1)(k − 1)/2. We can do this owing to the partition in Lemma
8(1).

(1.2) If (k−1) is odd and k′η is even, label (E(G)−CM−σ(B2)) with [1, (k−1)k′η]
such that, within (E(G)−CM − σ(B2)), the vertices in B have the same partial
sum [(k − 1)k′η + 1](k − 1)/2 + 3/2 except one (denoted by b0) which equals to
[(k − 1)k′η + 1](k − 1)/2 − 3k′η/2 + 3/2. We can do this owing to the partition
in Lemma 8(3).

Note that (1.1) implies the final vertex sums in B will be pairwise different
when (k − 1) is even or k′η is odd, if we label the rest edges (CM ∪ σ(B2)) with
the rest labels [(k−1)k′η+1, kk′η]. Then in (1.2), the partial sum of b0 is at least
3k′η/2 smaller than those of the vertices in (B \ {b0}). So the final vertex sum of
b0 will be smaller than those of the vertices in (B\{b0}), if we label (CM∪σ(B2))
with [(k − 1)k′η + 1, kk′η]. Next, the final vertex sums of in (B \ {b0}) will be
pairwise different. That is, vertices in B will also receive distinct final vertex
sums, when (k − 1) is odd and k′η is even.

Step 2. Label σ(B2) with [(k − 1)k′η + 1, (k − 1)k′η + rη] arbitrarily.
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Step 3. Label CM with [(k−1)k′η+ rη+1, kk′η], i.e., [(kk′η−pkη)+1, (kk′η−
pkη) + pkη]. Suppose f1(at1) ≤ f1(at2) ≤ · · · ≤ f1(atkη), where f1(atj ) is the
partial vertex sum of atj after Steps 1 and 2, for j ∈ [1, kη].

(3.1) If p is odd (then (p− 1) is even) or kη is odd, let σ(a) be an edge in CM(a)
for each a ∈ A. Label

[

CM \
(
⋃

a∈A{σ(a)}
)]

with [(kk′η − pkη) + 1, (kk′η −
pkη) + (p − 1)kη] such that, within

[

CM \
(
⋃

a∈A{σ(a)}
)]

, vertices in A have
the same vertex sum [2(kk′η − pkη) + (p − 1)kη + 1](p − 1)/2. We can do this
owing to the partition in Lemma 8(1). And label σ(atj ) with (kk′η − kη + j) for
j ∈ [1, kη]. Then vertex sums in A are pairwise different.

(3.2) If p is even (then (p− 2) is also even) and kη is even, let σ1(a) and σ2(a) be
two distinct edges in CM(a) for each a ∈ A. Label

[

CM \
(
⋃

a∈A{σ1(a), σ2(a)}
)]

with [(kk′η − pkη) + 1, (kk′η − pkη) + (p − 2)kη] such that, within
[

CM\
(
⋃

a∈A{σ1(a), σ2(a)}
)]

, vertices in A have the same vertex sum [2(kk′η− pkη) +
(p − 2)kη + 1](p − 2)/2. We can do this owing to the partition in Lemma 8(1).
Next, label

(
⋃

a∈A{σ1(a), σ2(a)}
)

with [(kk′η − 2kη) + 1, (kk′η − 2kη) + 2kη]
such that f(σ1(atj )) + f(σ2(atj )) = 2kk′η − 5kη/2 + j for j ∈ [1, kη − 1], while
f(σ1(atkη)) + f(σ2(atkη)) = 2kk′η− kη. We can do this owing to the partition in
Lemma 7(4). Then the vertex sums in A are also pairwise different.

Recall that, owing to Step 1 (1.1) and (1.2), for each b ∈ B, one has

ϕf (b) ≤
((k − 1)k′η + 1)(k − 1)

2
+

3

2
+ kk′p.

On the other hand, let a ∈ A. Recall that, owing to Step 3 (3.1) the sum of the
labels in CM(a) is at least {[2(kk′η−pkη)+(p−1)kη+1](p−1)/2}+(kk′η−kη+1)
if p is odd (then (p − 1) is even) or kη is odd. Then owing to Step 3 (3.2), the
sum of the labels in CM(a) is at least {[2(kk′η−pkη)+(p−2)kη+1](p−2)/2}+
(2kk′η − 5kη/2 + 1) if p is even (then (p − 2) is also even) and kη is even. And
the later lower bound is 1/2 smaller than the first lower bound. So

ϕf (a) >
[2(kk′η − pkη) + (p− 2)kη + 1](p− 2)

2
+

(

2kk′η −
5kη

2
+ 1

)

.

Then for each a ∈ A and b ∈ B one has

ϕf (a)− ϕf (b) >
1

2

[

(p− k)kk′η + (k′ − 2p− 1)pkη + (p2 − 3)kη

+ (pk + k − k′)η + (η − 1)k + (p− 2)
]

> 0,

since p ≥ k ≥ 3 and 2p+ 1 < k′ = pk + r ≤ pk + k.

Thus, we obtain an antimagic labeling. This completes our proof.
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