ANTIMAGIC LABELING OF SOME BIREGULAR BIPARTITE GRAPHS

Kecai Deng ${ }^{1}$
School of Mathematical Sciences
Huaqiao University
Quanzhou 362000, Fujian, P.R. China
e-mail: kecaideng@126.com
AND
Yunfei Li
School of Accounting and Finance Xiamen University Tan Kah Kee College Zhangzhou 363000, Fujian, P.R. China
e-mail: lyfdkc@xujc.com

Abstract

An antimagic labeling of a graph $G=(V, E)$ is a one-to-one mapping from E to $\{1,2, \ldots,|E|\}$ such that distinct vertices receive different label sums from the edges incident to them. G is called antimagic if it admits an antimagic labeling. It was conjectured that every connected graph other than K_{2} is antimagic. The conjecture remains open though it was verified for several classes of graphs such as regular graphs. A bipartite graph is called $\left(k, k^{\prime}\right)$-biregular, if each vertex of one of its parts has the degree k, while each vertex of the other parts has the degree k^{\prime}. This paper shows the following results. (1) Each connected ($2, k$)-biregular ($k \geq 3$) bipartite graph is antimagic; (2) Each ($k, p k$)-biregular ($k \geq 3, p \geq 2$) bipartite graph is antimagic; (3) Each $\left(k, k^{2}+y\right)$-biregular $(k \geq 3, y \geq 1)$ bipartite graph is antimagic.

Keywords: antimagic labeling, bipartite, biregular.
2010 Mathematics Subject Classification: 05C69.

[^0]
1. Introduction

Let $G=(V, E)$ be a graph. Suppose f is a one-to-one mapping from E to $\{1,2, \ldots,|E|\}$. For each vertex v in V, the vertex $\operatorname{sum} \varphi_{f}(v)$ at v under f is defined as $\varphi_{f}(v)=\sum_{e \in E(v)} f(e)$, where $E(v)$ is the set of edges incident to v. If $\varphi_{f}(u) \neq \varphi_{f}(v)$ for any vertex pair $u, v \in V$, then f is called an antimagic labeling of G. A graph G is called antimagic if G admits an antimagic labeling. The antimagic labeling of graphs was introduced by Hartsfield and Ringel [8] in 1989 (also in [9]), who verified the antimagicnesses of paths, 2-regular graphs and complete graphs. Moreover, they put forth the following conjecture.
Conjecture 1 [9]. Every connected graph other than K_{2} is antimagic.
The conjecture has received much attention, but remains open. It was proved by Alon et al. [1] that there is an absolute constant c such that graphs with minimum degree $\delta(G) \geq c \log |V|$ are antimagic, and graphs with maximum degree at least $|V|-2$ and complete bipartite graphs except K_{2} are antimagic. And then graphs of large linear size were shown to be antimagic [6]. For regular graphs, the antimagicnesses of k-regular $(k \geq 2)$ bipartite graphs [3], cubic graphs [12], odd degree regular graphs [4], and finally even regular graphs [2] were verified, respectively. For more results on antimagic labeling such as those about trees, one can refer to $[5,10,11,13,14,17]$ and the survey of Gallian [7].

A bipartite graph is called $\left(k, k^{\prime}\right)$-biregular, if each vertex in one of its two parts has the degree k, while each vertex in the other part has the degree k^{\prime}. This paper shows the following results. (1) Each connected $(2, k)$-biregular $(k \geq 3)$ bipartite graph is antimagic; (2) Each ($k, p k$)-biregular ($k \geq 3, p \geq 2$) bipartite graph is antimagic; (3) Each ($k, k^{2}+y$)-biregular $(k \geq 3, y \geq 1)$ bipartite graph is antimagic. The first result is shown in Section 2, where we treat each connected $(2, k)$-biregular $(k \geq 3)$ bipartite graph as the subdivision graph of a connected k-regular graph. A subdivision graph G_{s} of a graph G, is obtained from G by replacing each edge with a path of length two. The second and the third results are shown in Section 3, based on an extended version of Hall's matching theorem $[15,16]$.

2. Connected $(2, k)$-Biregular $(k \geq 3)$ Bipartite Graph

With respect to a given labeling, two vertices are in conflict if they have a common vertex sum. When we have labeled a subset of the edges, we call the resulting sum at each vertex a partial vertex-sum. For short, we denote by $[i, j]$ the integer set $\{i, i+1, \ldots, j\}$ for integers i and j (where $i<j$).
Theorem 2. The subdivision graph G_{s} of every connected k-regular $(k \geq 3)$ graph G is antimagic.

Proof. Choose an arbitrary vertex v^{*} in G as a root. Let α be the longest distance of a vertex from v^{*} in G. Suppose $i \in[1, \alpha]$. Denote by V_{i} the sets of vertices at distance exactly i from v^{*}, by $G\left[V_{i}\right]$ the subgraph induced by V_{i}, and by $G\left[V_{i-1} ; V_{i}\right]$ (here we suppose $V_{0}=\left\{v^{*}\right\}$) the induced bipartite subgraph with parts V_{i-1} and V_{i}, respectively. For $v \in V_{i}$, let $\sigma(v)$ be an arbitrary edge in $G\left[V_{i-1} ; V_{i}\right]$ which is incident to v. Let $\sigma\left(V_{i}\right)=\left\{\sigma(v) \mid v \in V_{i}\right\}$ and $G_{\sigma}\left[V_{i-1} ; V_{i}\right]=$ $G\left[V_{i-1} ; V_{i}\right] \backslash \sigma\left(V_{i}\right)$.

Now subdivide G into G_{s}. Then every vertex in V_{i} is at distance exactly $2 i$ from v^{*} in G_{s}. Denote by S_{i}, U_{i} and W_{i} the newly added vertex sets on the edges of $G\left[V_{i}\right], G_{\sigma}\left[V_{i-1} ; V_{i}\right]$ and $\sigma\left(V_{i}\right)$, respectively, when subdividing G into G_{s}. Let $X=\bigcup_{i=1}^{\alpha} X_{i}$ for $X=V, S, U, W$. For a vertex $v \in V_{i}$, let $w(v)$ be the vertex in W_{i} which is adjacent to v. For every vertex $x \in\left(S_{i} \cup U_{i} \cup W_{i}\right)$, let \underline{e}^{x} and \bar{e}^{x} be the two edges incident to x. If $x \in\left(U_{i} \cup W_{i}\right)$, we suppose e^{x} is incident to some vertex in V_{i}, while \bar{e}^{x} is incident to some vertex in V_{i-1}. For $X=S, U, W$, let $\underline{E}_{i}^{X}=\left\{\underline{e}^{x} \mid x \in X_{i}\right\}, \bar{E}_{i}^{X}=\left\{\bar{e}^{x} \mid x \in X_{i}\right\}$ and $E_{i}^{X}=\underline{E}_{i}^{X} \cup \bar{E}_{i}^{X}$.

Respect to a labeling f on $E\left(G_{s}\right)$, if $v \in V_{i}$, we denote the partial sum at v (omitting the label on $\underline{e}^{w(v)}$) by $p(v)=\sum_{e \in E(v) \backslash\left\{e^{w(v)}\right\}} f(e)=\varphi_{f}(v)-f\left(\underline{e}^{w(v)}\right)$. Let $p\left(v^{*}\right)=\varphi_{f}\left(v^{*}\right)-f\left(e^{*}\right)$ where e^{*} is the edge in $E\left(v^{*}\right)$ which receives the greatest label among $E\left(v^{*}\right)$.

Note that $V\left(G_{s}\right)=V \cup S \cup U \cup W \cup\left\{v^{*}\right\}$. To show G_{s} is antimagic, we will construct a labeling f which satisfies the following conditions.
(1) The vertex sums in X_{i} are all odd and pairwise different, for $X \in$ $\{S, U, W\}$ and $i \in[1, \alpha]$.
(2) The vertex sums in V_{i} are all even and pairwise different for $i \in[1, \alpha]$.
(3) The vertex sums in $\left(S_{i} \cup U_{i} \cup W_{i}\right)$ are smaller than those in $\left(S_{i-1} \cup U_{i-1} \cup\right.$ $\left.W_{i-1}\right)$ for $i \in[2, \alpha]$.
(4) The vertex sums in S_{i} are smaller than those in U_{i}, while the later ones are smaller than those in W_{i} for $i \in[1, \alpha]$.
(5) The vertex sums in V_{i} are smaller than those in V_{i-1} for $i \in[2, \alpha]$.
(6) The vertex sum at v^{*} is greater than those in V_{1} and those in W_{1}.

Conditions (1) and (2) make sure there is no conflict between V and $(S \cup U \cup$ $W)$. Conditions (1), (3), (4) make sure there is no conflict inside $(S \cup U \cup W)$. Conditions (2) and (5) make sure there is no conflict inside V. Conditions (3), (4), (5) and (6) make sure there is no conflict between v^{*} and any other vertex in G_{s}. So these conditions imply that f is antimagic.

Note that $E\left(G_{s}\right)=\bigcup_{i=1}^{\alpha}\left(E_{i}^{S} \cup E_{i}^{U} \cup E_{i}^{W}\right)$. We will label $E\left(G_{s}\right)$ in the order $E_{\alpha}^{S},\left(E_{\alpha}^{U} \cup E_{\alpha}^{W}\right), E_{\alpha-1}^{S},\left(E_{\alpha-1}^{U} \cup E_{\alpha-1}^{W}\right), \ldots, E_{1}^{S},\left(E_{1}^{U} \cup E_{1}^{W}\right)$, using the smallest unused labels on each edge set when we come to it. This label assignment immediately implies that (3) holds, and that the vertex sums in S_{i} are smaller than those in $\left(U_{i} \cup W_{i}\right)$ for $i \in[1, \alpha]$.

Suppose $i \in[1, \alpha]$ in the following. Note that $\left|E_{i}^{X}\right|=2\left|X_{i}\right|$, for $X=S, U, W$.
(I) The labeling of E^{S}. We first label \underline{E}_{i}^{S} arbitrarily using the $\left|S_{i}\right|$ odd labels from the $2\left|S_{i}\right|$ assigned labels for E_{i}^{S}. Secondly let $f\left(\bar{e}^{s}\right)=f\left(\underline{e}^{s}\right)+1$ for each $s \in S_{i}$. Then the vertex sums in S_{i} are odd and pairwise different.
(II) The labeling of $\left(E^{U} \cup E^{W}\right)$. If $\left|U_{i}\right|$ is odd, then $i \in[2, \alpha]$, since U_{1} is an empty set. We will label $\left(E_{i}^{U} \cup E_{i}^{W}\right)$ in the order $\underline{E}_{i}^{U}, \bar{E}_{i}^{U}, E_{i}^{W}$ using the smallest unused assigned labels on each edge subset when we come to it. This sub-assignment (based on our global assignment), gives that $p(v)<p\left(v^{\prime}\right)$ for arbitrary $v \in V_{i}$ and $v^{\prime} \in V_{i-1}$, which implies $\varphi_{f}(v)=p(v)+f(v w(v))<$ $p\left(v^{\prime}\right)+f\left(v^{\prime} w\left(v^{\prime}\right)\right)=\varphi_{f}\left(v^{\prime}\right)$, since $f(v w(v))<f\left(v^{\prime} w\left(v^{\prime}\right)\right)$ by our global assignment. So (5) holds for those i with $\left|U_{i}\right|$ being odd. It gives that the vertex sums in U_{i} are smaller than those in W_{i}. So (4) holds for those i with $\left|U_{i}\right|$ being odd. We first label \underline{E}_{i}^{U} arbitrarily using its assigned labels. Secondly let $f\left(\bar{e}^{u}\right)=f\left(\underline{e}^{u}\right)+\left|U_{i}\right|$ for each $u \in U_{i}$. This gives that the vertex sums in U_{i} are odd and pairwise different. Third, suppose $V_{i}=\left\{v_{1}, v_{2}, \ldots, v_{\left|V_{i}\right|}\right\}$ where $p\left(v_{1}\right) \leq p\left(v_{2}\right) \leq \cdots \leq p\left(v_{\left|V_{i}\right|}\right)$. For $r \in\left[1,\left|V_{i}\right|\right]$, label $\underline{e}^{w\left(v_{r}\right)}$ with the r-th smallest label among the odd (even) assigned labels for E_{i}^{W}, when $p\left(v_{r}\right)$ is odd (even). This implies that the vertex sums in V_{i} are even and pairwise different. So (2) holds for those i with $\left|U_{i}\right|$ being odd. Fourth, let $f\left(\bar{e}^{w}\right)=f\left(\underline{e}^{w}\right)+1$ when $f\left(\underline{e}^{w}\right)$ is odd, while $f\left(\bar{e}^{w}\right)=f\left(\underline{e}^{w}\right)-1$ when $f\left(\underline{e}^{w}\right)$ is even. This implies that vertex sums in W_{i} are odd and pairwise different. So (1) holds for those i with $\left|U_{i}\right|$ being odd.

If $\left|U_{i}\right|$ is even $\left(\left|U_{i}\right|\right.$ may equal to 0$)$, then $i \in[1, \alpha]$. We will label edges in E_{i}^{U} using the smallest $\left(2\left|U_{i}\right|+1\right)$ assigned labels for $E_{i}^{U} \cup E_{i}^{W}$ except the $\left(\left|U_{i}\right|+1\right)$-th smallest one (denoted by $\left.\xi_{\left|U_{i}\right|+1}\right)$. We first label the edges of \underline{E}_{i}^{U} arbitrarily using the $\left|U_{i}\right|$ smallest assigned labels. This gives that $p(v)<p\left(v^{\prime}\right)$ for arbitrary $v \in V_{i}$ and $v^{\prime} \in V_{i-1}$. And then, if $i \neq 1$, one has $\varphi_{f}(v)=$ $p(v)+f(v w(v))<p\left(v^{\prime}\right)+f\left(v^{\prime} w\left(v^{\prime}\right)\right)=\varphi_{f}\left(v^{\prime}\right)$ for arbitrary $v \in V_{i}$ and $v^{\prime} \in V_{i-1}$, since $f(v w(v))<f\left(v^{\prime} w\left(v^{\prime}\right)\right)$ by our global assignment. So (5) also holds for those $i(i \neq 1)$ with $\left|U_{i}\right|$ being even. Secondly let $f\left(\bar{e}^{u}\right)=f\left(\underline{e}^{u}\right)+\left|U_{i}\right|+1$ for each $u \in U_{i}$. This implies that the vertex sums in U_{i} are odd and pairwise different. It also implies that the vertex sums in U_{i} are smaller than those in W_{i}, since any pair of the rest assigned labels left for W_{i} has a sum greater than any vertex sum in U_{i}. So (4) also holds for those i with $\left|U_{i}\right|$ being even. Note that, $\xi_{\left|U_{i}\right|+1}$ and $\left(\xi_{\left|U_{i}\right|+1}+\left|U_{i}\right|+1\right)$ have distinct parity, and so far, they are the smallest two unused assigned labels for W_{i}. Third, suppose $\left|V_{i}\right|=\left\{v_{1}, v_{2}, \ldots, v_{\left|V_{i}\right|}\right\}$ where $p\left(v_{1}\right) \leq p\left(v_{2}\right) \leq \cdots \leq p\left(v_{\left|V_{i}\right|}\right)$. For $r \in\left[1,\left|V_{i}\right|\right]$, label $\underline{e}^{w\left(v_{r}\right)}$ with the r-th smallest label among the rest odd (even) assigned labels, if $p\left(v_{r}\right)$ is odd (even). This implies that the vertex sums in V_{i} are even and pairwise different. So (2) also holds for those i with $\left|U_{i}\right|$ being even. And note that either $\xi_{\left|U_{i}\right|+1}$ or $\left(\xi_{\left|U_{i}\right|+1}+\left|U_{i}\right|+1\right)$ is assigned to $w\left(v_{1}\right)$ by our labeling way. Fourth, let $f\left(\bar{e}^{w\left(v_{1}\right)}\right)=$ $\xi_{\left|U_{i}\right|+1}$ if $f\left(\underline{e}^{w\left(v_{1}\right)}\right)=\xi_{\left|U_{i}\right|+1}+\left|U_{i}\right|+1$, while $f\left(\bar{e}^{w\left(v_{1}\right)}\right)=\xi_{\left|U_{i}\right|+1}+\left|U_{i}\right|+1$ if
$f\left(\underline{e}^{w\left(v_{1}\right)}\right)=\xi_{\left|U_{i}\right|+1}$, so that $\left\{f\left(\underline{e}^{w\left(v_{1}\right)}\right), f\left(\bar{e}^{w\left(v_{1}\right)}\right)\right\}=\left\{\xi_{\left|U_{i}\right|+1}, \xi_{\left|U_{i}\right|+1}+\left|U_{i}\right|+1\right\}$. And for $r \in\left[2,\left|V_{i}\right|\right]$, let $f\left(\bar{e}^{w\left(v_{r}\right)}\right)=f\left(\underline{e}^{w\left(v_{r}\right)}\right)+1$ if $f\left(\underline{e}^{w\left(v_{r}\right)}\right)$ is odd, while $f\left(\bar{e}^{w\left(v_{r}\right)}\right)=f\left(\underline{e}^{w\left(v_{r}\right)}\right)-1$ if $f\left(\underline{e}^{w}\right)$ is even. This implies that vertex sums in W_{i} are odd and pairwise different. So (1) also holds for those i with $\left|U_{i}\right|$ being even.

For (6), note that the process of the labeling of $E\left(v^{*}\right)=\bar{E}_{1}^{W}$ is discussed in the case when $\left|U_{i}\right|$ is even (since $U_{1}=\emptyset$ and $\left|U_{1}\right|=0$). Recall that, $\left|E_{1}^{W}\right|=2 k$ and E_{1}^{W} are assigned with the greatest $2 k$ labels, i.e., those labels in $L_{2 k}=$ $\left\{\left|E\left(G_{s}\right)\right|,\left|E\left(G_{s}\right)\right|-1, \ldots,\left|E\left(G_{s}\right)\right|-2 k+1\right\}$. More precisely, $\bar{E}_{1}^{W}=E\left(v^{*}\right)$ are assigned with the labels in $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq L_{2 k}$ where either $i_{j}=\left|E\left(G_{s}\right)\right|-2 j+1$ or $i_{j}=\left|E\left(G_{s}\right)\right|-2 j+2$ for $j=1,2, \ldots, k$. So $p\left(v^{*}\right) \geq p\left(v_{1}\right)+1+3+\cdots+(2 k-3)>$ $p\left(v_{1}\right)+3$ for arbitrary $v_{1} \in V_{1}$ (recall that $\left.k \geq 3\right)$. Then $\varphi_{f}\left(v^{*}\right)=p\left(v^{*}\right)+f\left(e^{*}\right) \geq$ $p\left(v^{*}\right)+\left|E\left(G_{s}\right)\right|-1>p\left(v_{1}\right)+\left|E\left(G_{s}\right)\right|+2>p\left(v_{1}\right)+\left|E\left(G_{s}\right)\right| \geq p\left(v_{1}\right)+f\left(v_{1} w\left(v_{1}\right)\right)=$ $\varphi_{f}\left(v_{1}\right)$ for each $v_{1} \in V_{1}$. On the other hand, $\varphi_{f}\left(v^{*}\right) \geq\left(\left|E\left(G_{s}\right)\right|-1\right)+\left(\left|E\left(G_{s}\right)\right|-\right.$ $3)+\left(\left|E\left(G_{s}\right)\right|-5\right)=3\left|E\left(G_{s}\right)\right|-9$, since $k \geq 3$. Thus, each vertex in W_{1} receives a sum at most $\left(2\left|E\left(G_{s}\right)\right|-1\right)$. So $\varphi_{f}\left(v^{*}\right) \geq 3\left|E\left(G_{s}\right)\right|-9>2\left|E\left(G_{s}\right)\right|-1 \geq \varphi_{f}\left(w_{1}\right)$ for each $w_{1} \in W_{1}$ (one has $\left|E\left(G_{s}\right)\right| \geq 12$, because $k \geq 3$). So (6) holds.

Thus, G_{s} is antimagic. This completes our proof.
It is interesting to consider the case when G is k-regular ($k \geq 3$) but disconnected. In the proof of Theorem 2, suppose G has m edges. Then G_{s} has m 2 -vertices. Note that the total sum of all the vertex sums is even, since each label contributes to the total sum twice. Thus, each 2 -vertex contributes an odd value to the total sum, while each k-vertex other than v^{*} contributes an even value, under our labeling way in the proof of Theorem 2. Thus, $\varphi_{f}\left(v^{*}\right)$ is odd if and only if m is odd.
Theorem 3. Let G be an disconnected k-regular $(k \geq 3)$ graph, which has at most one connected component with an odd number of edges. Then G_{s} is antimagic.
Proof. Suppose G consists of the connected components $H_{1}, H_{2}, \ldots, H_{\beta}(\beta \geq 2)$, where H_{i} has an even number of edges for each $i \in[1, \beta-1]$. We can label $E\left(G_{s}\right)$ in the order $E\left(\left(H_{1}\right)_{s}\right), E\left(\left(H_{2}\right)_{s}\right), \ldots, E\left(\left(H_{\beta}\right)_{s}\right)$ using the smallest unused labels on each edge set when we come to it. Next, we label each connected component of G_{s} in the same way to that in Theorem 2, choosing a root for each component of G. Then there is no conflict among each $\left(H_{i}\right)_{s}$ for $i \in[1, \beta]$. Each 2-vertex receives an odd sum, while each k-vertex other than the root of $\left(H_{\beta}\right)_{s}$ receives an even sum. Each 2-vertex in $\left(H_{i}\right)_{s}$ receives a smaller sum than each 2-vertex in $\left(H_{j}\right)_{s}$, while each k-vertex in $\left(H_{i}\right)_{s}$ receives a smaller sum than each k-vertex in $\left(H_{j}\right)_{s}$, whenever $i<j \leq \beta$ holds. And the root vertex in $\left(H_{\beta}\right)_{s}$ receives a greater sum than those of any other vertex in G_{s}. So we obtain an antimagic labeling.

Sice $m=\frac{n k}{2}$, for each k-regular graph with n vertices and m edges, we have the following corollary.

Corollary 4. Let G be an disconnected k-regular $(k \geq 3)$ graph. Then G_{s} is antimagic if one of the following holds.
(1) $k=4 t(t \geq 1)$;
(2) k is even and at most one of the connected components of G has an odd number of vertices;
(3) At most one of the connected components of G has a number of vertices which is not a multiple of 4 .

3. ($k, p k$)-Biregular $(k \geq 3, p \geq 2)$ Bipartite Graph

For a bipartite graph $G(A, B)$, a complete p-claw matching $C M$ from A to B is a set of edges of G that induce a subgraph $G[C M]$ such that each vertex of A in G is also a vertex in $G[C M]$ and each component of $G[C M]$ is a copy of $K_{1, p}$ where the vertex of degree p is in A, while the vertices of degree 1 are in B. For $A_{0} \subseteq A$, denote by $N\left(A_{0}\right)$ the set of vertices in B each of which has a neighbor in A_{0}. Let $E_{1}, E_{2}, \ldots, E_{k} \subseteq E(G)$ be disjoint edge sets. If $E_{1} \cup E_{2} \cup \cdots \cup E_{k}=E(G)$, then we say G decomposes into $E_{1}, E_{2}, \ldots, E_{k}$.

Lemma 5 (An extended version of Hall's theorem, [15, 16]). A bipartite graph $G[A, B]$ admits a complete p-claw matching from A to B, if and only if $p\left|A_{0}\right| \leq$ $\left|N\left(A_{0}\right)\right|$ for every subset A_{0} of A.

Lemma 6. Let $G[A, B]$ be a $(k, p k)$-biregular $(k \geq 3, p \geq 2)$ bipartite graph where the degree of each vertex in A is $k p$, while each vertex in B has degree k. Then G decomposes into k complete p-claw matchings from A to B.

Proof. Let $A_{0} \subseteq A$. Let $G\left[A_{0}, N\left(A_{0}\right)\right]$ be the graph induced by $A_{0} \cup N\left(A_{0}\right)$. Then each vertex of A_{0} in $G\left[A_{0}, N\left(A_{0}\right)\right]$ has the degree $k p$, while each vertex of $N\left(A_{0}\right)$ in $G\left[A_{0}, N\left(A_{0}\right)\right]$ has the degree at most k. So there are exactly $k p\left|A_{0}\right|$ edges in $G\left[A_{0}, N\left(A_{0}\right)\right]$. On the other hand, suppose $\left|N\left(A_{0}\right)\right|<p\left|A_{0}\right|$. Then the number of edges in $G\left[A_{0}, N\left(A_{0}\right)\right]$ is less than $k \cdot p\left|A_{0}\right|$, a contradiction. So $\left|N\left(A_{0}\right)\right| \geq p\left|A_{0}\right|$. By Lemma 5 , there exists a complete p-claw matching $C M_{1}$ from A to B in $G[A, B]$. Then $G_{1}=G[A, B]-C M_{1}$ is a $(k-1, p(k-1))$ biregular bipartite graph. So we can use Lemma 5 repeatedly until we obtain a $(1, p)$-biregular bipartite graph G_{k-1} which is also a complete p-claw matching from A to B. Thus, $G[A, B]$ decomposes into k complete p-claw matchings from A to B.

Lemma 7. Let $I=[i+1, i+2 q]$. Then, there exist partitions P_{1} (when q is odd) and $\left\{P_{2}, P_{3}, P_{4}\right\}\left(\right.$ when q is even) of I, such that under $P_{j}, j \in[1,4], I$ is departed into q parts where each part has 2 integers, integers in $[i+(x-1) q+1, i+x q]$ $(x \in[1,2])$ are in distinct parts and the following conditions are satisfied.
(1) Under P_{1}, the q parts have distinct sums which attain all the values in $[(2 i+$ $2 q+1)-(q-1) / 2,(2 i+2 q+1)+(q-1) / 2] ;$
(2) Under $P_{2}, q / 2$ parts have distinct sums which attain all the values in $[(2 i+$ $2 q+1)-(q / 2-1), 2 i+2 q+1]$, while the other $q / 2$ parts have distinct sums which attain all the values in $[2 i+2 q+1,(2 i+2 q+1)+(q / 2-1)]$;
(3) Under P_{3}, the $(q-1)$ parts have distinct sums which attain all the values in $[(2 i+2 q+2)-(q / 2-1),(2 i+2 q+2)+(q / 2-1)]$ and the other part has the sum $2 i+q+2$;
(4) Under P_{4}, the $(q-1)$ parts have distinct sums which attain all the values in $[(2 i+2 q)-(q / 2-1),(2 i+2 q)+(q / 2-1)]$ and the other part has the sum $2 i+3 q$.

Proof. It is sufficient to show the case when $i=0$.
(1) If q is odd, let $\{2 j-1,-j+(3 q+1) / 2+1\}$ be in the same partition for $j \in[1,(q+1) / 2]$, and let $\{2 j,-j+2 q+1\}$ be in the same partition for $j \in[1,(q-1) / 2]$, which is the desired partition P_{1}.
(2) If q is even, let $\{2 j,-j+3 q / 2+1\}$ be in the same partition and let $\{2 j-1,-j+2 q+1\}$ be in the same partition for $j \in[1, q / 2]$, which is the desired partition P_{2}.
(3) If q is even, let $\{2 j,-j+3 q / 2+2\}$ be in the same partition for $j \in[1, q / 2]$, let $\{2 j+1,-j+2 q+1\}$ be in the same partition for $j \in[1, q / 2-1]$, and let $\{1, q+1\}$ be in the same partition, which is the desired partition P_{3}.
(4) If q is even, let $\{2 j-1,-j+3 q / 2+1\}$ be in the same partition for $j \in[1, q / 2]$, let $\{2 j,-j+2 q\}$ be in the same partition for $j \in[1, q / 2-1]$, and let $\{q, 2 q\}$ be in the same partition, which is the desired partition P_{4}.

Lemma 8. Let $I=[i+1, i+z q](z \geq 3)$. Then, there exist partitions P_{1} (when z is even or q is odd) and $\left\{P_{2}, P_{3}\right\}$ (when z is odd and q is even) of I, such that under $P_{j}, j \in[1,3], I$ is departed into q parts where each part has z integers, integers in $[i+(x-1) q+1, i+x q](x \in[1, z])$ are in distinct parts and the following conditions are satisfied.
(1) Under P_{1}, the q parts have the same sum $(2 i+z q+1) z / 2$;
(2) Under $P_{2}, q / 2$ parts have the same sum $(2 i+z q+1) z / 2+1 / 2$ and the other $q / 2$ parts have the same sum $(2 i+z q+1) z / 2-1 / 2$;
(3) Under $P_{3},(q-1)$ parts have the same sum $(2 i+z q+1) z / 2+3 / 2$ and the other part has the sum $(2 i+z q+1) z / 2-3 q / 2+3 / 2$.

Proof. It is sufficient to show the case when $i=0$.
(1) If z is even, let $\{(j-1) q+l \mid j \in[1, z / 2]\} \cup\{j q-l+1 \mid j \in[z / 2+1, z]\}$ be in the partition for $l \in[1, q]$, which is the desired partition P_{1} and (1) holds in this case.

If z is odd (then $(z-3)$ is even) and q is odd, we first assign the $(z-3) q$ integers in $[2 q+1,(z-1) q]$ to the q parts (suppose $I_{1}, I_{2}, \ldots, I_{q}$ are the q parts) such that these q parts receive the same partial sum $(z q+q+1)(z-3) / 2$. We can do this since $(z-3)$ is even. Second, assign $[(z-1) q+l]$ to I_{l} for $l \in$ $[1, q]$ such that the q parts have distinct partial sums and attain all values in $[(q z+q+1)(z-3) / 2+(z-1) q+1,(q z+q+1)(z-3) / 2+z q]$. Third, partition $[1,2 q]$ into q parts (denoted by $I_{1}^{\prime}, I_{2}^{\prime}, \ldots, I_{q}^{\prime}$) which have distinct sums which attain all the values in $[(2 q+1)-(q-1) / 2,(2 q+1)+(q-1) / 2]$. We can do this owing to the partition in Lemma $7(1)$. Then assign $I_{i_{l}}^{\prime}$ to I_{l} if the sum of $I_{i_{l}}^{\prime}$ equals to $[(2 q+1)+(q-1) / 2-l+1]$ for $l \in[1, q]$. Then the final sum of I_{l} equals to $[(q z+q+1)(z-3) / 2]+[(z-1) q+l]+[(2 q+1)+(q-1) / 2-l+1]=(q z+1) z / 2$ for each $l \in[1, q]$. So (1) also holds in this case.
(2) If z is odd and q is even, we first partition $[2 q+1, z q]$ into q parts $I_{1}, I_{2}, \ldots, I_{q}$ which have distinct partial sums and attain all values in $[(q z+$ $q+1)(z-3) / 2+(z-1) q+1,(q z+q+1)(z-3) / 2+z q]$. We can do this owing to the discussion in (1). Then partition $[1,2 q]$ into q parts (denoted by $\left.I_{1}^{\prime}, I_{2}^{\prime}, \ldots, I_{q}^{\prime}\right)$ such that $q / 2$ parts have distinct sums which attain all the values in $[(2 q+1)-(q / 2-1), 2 q+1]$, while the other $q / 2$ parts have distinct sums which attain all the values in $[2 q+1,(2 q+1)+(q / 2-1)]$. We can do this owing to the partition in Lemma $7(2)$. Denote by $I_{i_{q / 2,1}}^{\prime}$ and $I_{i_{q / 2,2}}^{\prime}$ the two parts each of which admits the sum $(2 q+1)$. Then assign $I_{i_{l}}^{\prime}$ to I_{l} if the sum of $I_{i_{l}}^{\prime}$ equals to $[(2 q+1)+(q / 2-1)-l+1]$ for $l \in[1, q / 2-1]$. Assign $I_{i_{q / 2,1}}^{\prime}$ to $I_{q / 2}$, while assign $I_{i_{q / 2,2}}^{\prime}$ to $I_{q / 2+1}$. And assign $I_{i_{l}}^{\prime}$ to I_{l} if the sum of $I_{i_{l}}^{\prime}$ equals to $(2 q+1)+(q / 2-1)-l+2$ for $l \in[q / 2+2, q]$. Then for $l \in[1, q / 2-1]$ the final sum of I_{l} equals to $[(q z+q+1)(z-3) / 2]+[(z-1) q+l]+[(2 q+$ $1)+(q / 2-1)-l+1]=(q z+1) z / 2-1 / 2$. The final sum of $I_{q / 2}$ equals to $[(q z+q+1)(z-3) / 2]+[(z-1) q+q / 2]+[(2 q+1)]=(q z+1) z / 2-1 / 2$, while the final sum of $I_{q / 2+1}$ equals to $[(q z+q+1)(z-3) / 2]+[(z-1) q+q / 2+1]+[(2 q+$ $1)]=(q z+1) z / 2+1 / 2$. Thus, for $l \in[q / 2+2, q]$ the final sum of I_{l} equals to $[(q z+q+1)(z-3) / 2]+[(z-1) q+l]+[(2 q+1)+(q / 2-1)-l+2]=(q z+1) z / 2+1 / 2$. So (2) holds.
(3) If z is odd and q is even, we first partition $[2 q+1, z q]$ into q parts $I_{1}, I_{2}, \ldots, I_{q}$ which have distinct partial sums and attain all values in $[(q z+q+$ 1) $(z-3) / 2+(z-1) q+1,(q z+q+1)(z-3) / 2+z q]$. We can do this owing to the discussion in (1). Then partition $[1,2 q]$ into q parts (denoted by $I_{1}^{\prime}, I_{2}^{\prime}, \ldots, I_{q}^{\prime}$) such that the $(q-1)$ parts have distinct sums which attain all the values in $[(2 q+2)-(q / 2-1),(2 q+2)+(q / 2-1)]$ and the other part has the sum $(q+2)$. We can do this owing to the partition in Lemma $7(3)$. Denote by $I_{i_{1}}^{\prime}$ the part with the sum $(q+2)$. Then assign $I_{i_{1}}^{\prime}$ to I_{1}, and assign $I_{i_{l}}^{\prime}$ to I_{l} if the sum of $I_{i_{l}}^{\prime}$ equals to $[(2 q+2)+(q / 2-1)-l+2]$ for $l \in[2, q]$. Then the final sum of I_{1} equals to $[(q z+q+1)(z-3) / 2]+[(z-1) q+l]+[q+2]=(q z+1) z / 2-3 q / 2+3 / 2$, and
for $l \in[2, q]$, the final sum of I_{l} equals to $[(q z+q+1)(z-3) / 2]+[(z-1) q+l]+$ $[(2 q+2)+(q / 2-1)-l+2]=(q z+1) z / 2+3 / 2$. So (3) holds.

Theorem 9. Every $(k, p k)$-biregular $(k \geq 3, p \geq 2)$ bipartite graph is antimagic.
Proof. Let $G[A, B]$ be a $(k, p k)$-biregular $(k \geq 3, p \geq 2)$ bipartite graph, where each vertex in A has the degree $p k$, while each vertex in B has the degree k. Suppose $|A|=n(n \geq k)$ and $|B|=p n$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=$ $\left\{b_{1}, b_{2}, \ldots, b_{p n}\right\}$. By Lemma $6, G$ decomposes into k complete p-claw matchings $C M_{1}, C M_{2}, \ldots, C M_{k}$ from A to B. Denote by $C M_{i}\left(V_{0}\right)(i \in[1, k])$ the edges in $C M_{i}$ which are incident to some vertex in V_{0} for $V_{0} \subseteq V(G)$.
Step 1. Label $\left(\bigcup_{i=1}^{k-1} C M_{i}\right)$ with $[1,(k-1) p n]$.
First, label $C M_{k-1}$ with $[(k-2) p n+1,(k-1) p n]$, i.e., $[(k-2) p n+1,(k-$ 2) $p n+p n]$ such that the following conditions are satisfied.
(1.1) Within $C M_{k-1}$, vertices in A have the same partial sum $[(2 k-3) p n+1] p / 2$ if p is even or n is odd. We can do this owing to the partition in Lemma $8(1)$.
(1.2) Within $C M_{k-1}, n / 2$ vertices in A have the same partial sum $[(2 k-3) p n+$ $1] p / 2+1 / 2$ and the other $n / 2$ vertices in A have the same partial sum [(2k3) $p n+1] p / 2-1 / 2$ if p is odd and n is even. We can do this owing to the partition in Lemma 8(2).

Second, based on the labeling to $C M_{k-1}$, for each $i \in[1, k-2]$, label $C M_{i}$ with $[(i-1) p n+1, i p n]$, such that the following conditions are satisfied.
(1.3) Within $\left(\bigcup_{i=1}^{k-1} C M_{i}\right)$, the vertices in B have the same partial sum $[(k-$ 1) $p n+1](k-1) / 2$ if $(k-1)$ even or $p n$ is odd. We can do this owing to the partition in Lemma 8(1).
(1.4) Within $\left(\bigcup_{i=1}^{k-1} C M_{i}\right),(p n-1)$ vertices in B have the same partial sum $[(k-1) p n+1](k-1) / 2+3 / 2$ while the other vertex (denoted by b_{0}) has the partial sum $[(k-1) n p+1](k-1) / 2+3 / 2-3 p n / 2$ if $(k-1)$ is odd and $p n$ is even. We can do this owing to the partition in Lemma 8(3).

Note that, (1.3) implies the vertices in B will receive distinct final vertex sums, when $(k-1)$ is even or $p n$ is odd, if we label the rest edges $C M_{k}$ using the rest labels $[(k-1) p n+1, k p n]$. Thus in (1.4), the partial sum of b_{0} is at least $3 p n / 2$ smaller than those of the vertices in $\left(B \backslash\left\{b_{0}\right\}\right)$. So the final vertex sum of b_{0} will still be smaller than those of the vertices in $\left(B \backslash\left\{b_{0}\right\}\right)$, if we label $C M_{k}$ with $[(k-1) p n+1, k p n]$. Hence, the final vertex sums of in $\left(B \backslash\left\{b_{0}\right\}\right)$ will be pairwise different. That is, all vertices in B will also receive distinct final vertex sums when $(k-1)$ is odd and $p n$ is even.

Step 2. Label $C M_{k}$ with $[(k-1) p n+1, k p n]$, i.e., $[(k-1) p n+1,(k-1) p n+p n]$.
Suppose $f_{1}\left(a_{t_{1}}\right) \leq f_{1}\left(a_{t_{2}}\right) \leq \cdots \leq f_{1}\left(a_{t_{n}}\right)$ where $f_{1}\left(a_{t_{j}}\right)$ is the partial vertex sum of $a_{t_{j}}$ within $\left(\bigcup_{i=1}^{k-1} C M_{i}\right)$ for $j \in[1, n]$.
(2.1) If p is odd (then $(p-1)$ is even) or n is odd, let $\sigma(a)$ be an edge in $C M_{k}(a)$ for each $a \in A$. Label $\left[C M_{k} \backslash\left(\bigcup_{a \in A}\{\sigma(a)\}\right)\right]$ with $[(k-1) p n+1,(k-1) p n+(p-1) n]$ such that, within $\left[C M_{k} \backslash\left(\bigcup_{a \in A}\{\sigma(a)\}\right)\right]$, the vertices in A have the same partial sum $[(2 k-1) p n-n+1](p-1) / 2$. We can do this owing to the partition in Lemma 8(1). Next label $\sigma\left(a_{t_{j}}\right)$ with $(k p n-n+j)$ for $j \in[1, n]$. Then the vertex sums in A are pairwise different.
(2.2) If p is even (then $(p-2)$ is also even) and n is even, let $\sigma_{1}(a)$ and $\sigma_{2}(a)$ be two distinct edges in $C M_{k}(a)$ for each $a \in A$. Label $\left[C M_{k} \backslash\left(\bigcup_{a \in A}\left\{\sigma_{1}(a), \sigma_{2}(a)\right\}\right)\right]$ using the labels in $[(k-1) p n+1,(k-1) p n+(p-2) n]$ such that, within $\left[C M_{k} \backslash\right.$ $\left.\left(\bigcup_{a \in A}\left\{\sigma_{1}(a), \sigma_{2}(a)\right\}\right)\right]$, the vertices in A have the same partial sum $[(2 k-1) p n-$ $2 n+1](p-2) / 2$. We can do this owing to the partition in Lemma 8(1). Then label $\left(\bigcup_{a \in A}\left\{\sigma_{1}(a), \sigma_{2}(a)\right\}\right)$ with $[(k p n-2 n)+1,(k p n-2 n)+2 n]$ such that $f\left(\sigma_{1}\left(a_{t_{j}}\right)\right)+f\left(\sigma_{2}\left(a_{t_{j}}\right)\right)=2 k p n-5 n / 2+j$ for $j \in[1, n-1]$ while $f\left(\sigma_{1}\left(a_{t_{n}}\right)\right)+$ $f\left(\sigma_{2}\left(a_{t_{n}}\right)\right)=2 k p n-n$. We can do this owing to the partition in Lemma 7(4). Then the vertex sums in A are also pairwise different.

Recall that, owing to Step 1 (1.3) and (1.4), for each $b \in B$, one has

$$
\varphi_{f}(b) \leq \frac{[(k-1) p n+1](k-1)}{2}+\frac{3}{2}+k p n
$$

On the other hand, owing to the labeling way in Step 1 (1.3) and (1.4), the labels assigned to $C M_{i}$ are those in $[(i-1) p n+1$, ipn] for $i \in[1, k-2]$. Let $a \in A$. Then the sum of the labels in $C M_{i}(a)$ is at least $\sum_{j=1}^{p}[(i-1) p n+j]$ for $i \in[1, k-2]$. So the sum of the labels in $\left(\bigcup_{i=1}^{k-2} C M_{i}(a)\right)$ is at least $\sum_{i=1}^{k-2} \sum_{j=1}^{p}[(i-1) p n+j]$. Recall that, owing to Step 1 (1.1) and (1.2), the sum of labels in $C M_{k-1}(a)$ is at least $[(2 k-3) p n+1] p / 2-1 / 2$. Next recall that, owing to Step $2(2.1)$, the sum of labels in $C M_{k}(a)$ is at least $[(2 k-1) p n-n+1](p-1) / 2+(k p n-n+1)$ if p is odd (then $(p-1)$ is even) or n is odd, while owing to Step $2(2.2)$, the sum of labels in $C M_{k}(a)$ is at least $[(2 k-1) p n-2 n+1](p-2) / 2+(2 k p n-5 n / 2+1)$ if p is even (then $(p-2)$ is also even) and n is even. Thus, the later lower bound is $1 / 2$ smaller than the first lower bound. So

$$
\begin{aligned}
\varphi_{f}(a) & \geq \sum_{i=1}^{k-2} \sum_{j=1}^{p}[(i-1) p n+j]+\left\{\frac{[(2 k-3) p n+1] p}{2}-\frac{1}{2}\right\} \\
& +\left\{\frac{[(2 k-1) p n-2 n+1](p-2)}{2}+\left(2 k p n-\frac{5 n}{2}+1\right)\right\}
\end{aligned}
$$

Then for each $a \in A$ and $b \in B$, one has

$$
\begin{aligned}
\varphi_{f}(a)-\varphi_{f}(b) & \geq \frac{1}{2}\left[\left(\frac{1}{2} k-1\right) p^{2} k n+(k-3) p^{2}+k^{2}\left(\frac{1}{2} p-1\right) p n\right. \\
& \left.+(p-1)(n p+k)+\left(p^{2}-1\right) n+\left(p^{2}-3\right)\right]>0
\end{aligned}
$$

since $k \geq 3$ and $p \geq 2$.
Thus, we obtain an antimagic labeling. This completes our proof.
Theorem 10. Every $\left(k, k^{2}+y\right)$-biregular $(k \geq 3, y \geq 1)$ bipartite graph is antimagic.

Proof. Let $G[A, B]$ be a $\left(k, k^{\prime}\right)$-biregular $\left(k^{\prime}=k^{2}+y\right)$ bipartite graph, where each vertex in A has the degree k^{\prime}, while each vertex in B has the degree k. Suppose $|A|=k \eta$ and $|B|=k^{\prime} \eta$ where η may be not an integer. It is sufficient to consider the case when $k^{\prime}=k p+r$ for some integers p and r satisfying $p \geq k$ and $1 \leq r \leq k-1$ (note that $r \eta$ is an integer since $k \eta$ and $k^{\prime} \eta$ are integers). Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k \eta}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{k^{\prime} \eta}\right\}$. For $A_{0} \subseteq A$, the graph $G\left[A_{0}, N\left(A_{0}\right)\right]$ has $k^{\prime}\left|A_{0}\right|$ edges, since each vertex of A_{0} in $G\left[A_{0}, N\left(A_{0}\right)\right]$ has the degree k^{\prime}. On the other hand, suppose $\left|N\left(A_{0}\right)\right|<p\left|A_{0}\right|$. Then the number of edges in $G\left[A_{0}, N\left(A_{0}\right)\right]$ is at most $k\left|N\left(A_{0}\right)\right|<p k\left|A_{0}\right|<k^{\prime}\left|A_{0}\right|$, since each vertex of $N\left(A_{0}\right)$ in $G\left[A_{0}, N\left(A_{0}\right)\right]$ has the degree at most k, a contradiction. So $\left|N\left(A_{0}\right)\right| \geq p\left|A_{0}\right|$. So, by Lemma 5, G admits a complete p-claw matching $C M$ from A to B. Suppose $B=B_{1} \cup B_{2}$ where $B_{1}=V(C M) \cap B$ and $B_{2}=B \backslash B_{1}$. Then $\left|B_{1}\right|=k p \eta$ and $\left|B_{2}\right|=r \eta$. Let $\sigma(b)$ be an edge incident to b for each $b \in B_{2}$, and let $\sigma\left(B_{2}\right)=\left\{\sigma(b) \mid b \in B_{2}\right\}$.

Step 1. Label $\left(E(G)-C M-\sigma\left(B_{2}\right)\right)$ with $\left[1,(k-1) k^{\prime} \eta\right]$.
(1.1) If $(k-1)$ is even or $k^{\prime} \eta$ is odd, label $\left(E(G)-C M-\sigma\left(B_{2}\right)\right)$ with $\left[1,(k-1) k^{\prime} \eta\right]$ such that, within $\left(E(G)-C M-\sigma\left(B_{2}\right)\right)$, the vertices in B have the same partial sum $\left((k-1) k^{\prime} \eta+1\right)(k-1) / 2$. We can do this owing to the partition in Lemma 8(1).
(1.2) If $(k-1)$ is odd and $k^{\prime} \eta$ is even, label $\left(E(G)-C M-\sigma\left(B_{2}\right)\right)$ with $\left[1,(k-1) k^{\prime} \eta\right]$ such that, within $\left(E(G)-C M-\sigma\left(B_{2}\right)\right)$, the vertices in B have the same partial sum $\left[(k-1) k^{\prime} \eta+1\right](k-1) / 2+3 / 2$ except one (denoted by b_{0}) which equals to $\left[(k-1) k^{\prime} \eta+1\right](k-1) / 2-3 k^{\prime} \eta / 2+3 / 2$. We can do this owing to the partition in Lemma 8(3).

Note that (1.1) implies the final vertex sums in B will be pairwise different when $(k-1)$ is even or $k^{\prime} \eta$ is odd, if we label the rest edges $\left(C M \cup \sigma\left(B_{2}\right)\right)$ with the rest labels $\left[(k-1) k^{\prime} \eta+1, k k^{\prime} \eta\right]$. Then in (1.2), the partial sum of b_{0} is at least $3 k^{\prime} \eta / 2$ smaller than those of the vertices in $\left(B \backslash\left\{b_{0}\right\}\right)$. So the final vertex sum of b_{0} will be smaller than those of the vertices in $\left(B \backslash\left\{b_{0}\right\}\right)$, if we label $\left(C M \cup \sigma\left(B_{2}\right)\right)$ with $\left[(k-1) k^{\prime} \eta+1, k k^{\prime} \eta\right]$. Next, the final vertex sums of in $\left(B \backslash\left\{b_{0}\right\}\right)$ will be pairwise different. That is, vertices in B will also receive distinct final vertex sums, when $(k-1)$ is odd and $k^{\prime} \eta$ is even.

Step 2. Label $\sigma\left(B_{2}\right)$ with $\left[(k-1) k^{\prime} \eta+1,(k-1) k^{\prime} \eta+r \eta\right]$ arbitrarily.

Step 3. Label $C M$ with $\left[(k-1) k^{\prime} \eta+r \eta+1, k k^{\prime} \eta\right]$, i.e., $\left[\left(k k^{\prime} \eta-p k \eta\right)+1,\left(k k^{\prime} \eta-\right.\right.$ $p k \eta)+p k \eta]$. Suppose $f_{1}\left(a_{t_{1}}\right) \leq f_{1}\left(a_{t_{2}}\right) \leq \cdots \leq f_{1}\left(a_{t_{k}}\right)$, where $f_{1}\left(a_{t_{j}}\right)$ is the partial vertex sum of $a_{t_{j}}$ after Steps 1 and 2 , for $j \in[1, k \eta]$.
(3.1) If p is odd (then $(p-1)$ is even) or $k \eta$ is odd, let $\sigma(a)$ be an edge in $C M(a)$ for each $a \in A$. Label $\left[C M \backslash\left(\bigcup_{a \in A}\{\sigma(a)\}\right)\right]$ with $\left[\left(k k^{\prime} \eta-p k \eta\right)+1,\left(k k^{\prime} \eta-\right.\right.$ $p k \eta)+(p-1) k \eta]$ such that, within $\left[C M \backslash\left(\bigcup_{a \in A}\{\sigma(a)\}\right)\right]$, vertices in A have the same vertex sum $\left[2\left(k k^{\prime} \eta-p k \eta\right)+(p-1) k \eta+1\right](p-1) / 2$. We can do this owing to the partition in Lemma 8(1). And label $\sigma\left(a_{t_{j}}\right)$ with $\left(k k^{\prime} \eta-k \eta+j\right)$ for $j \in[1, k \eta]$. Then vertex sums in A are pairwise different.
(3.2) If p is even (then $(p-2)$ is also even) and $k \eta$ is even, let $\sigma_{1}(a)$ and $\sigma_{2}(a)$ be two distinct edges in $C M(a)$ for each $a \in A$. Label $\left[C M \backslash\left(\bigcup_{a \in A}\left\{\sigma_{1}(a), \sigma_{2}(a)\right\}\right)\right]$ with $\left[\left(k k^{\prime} \eta-p k \eta\right)+1,\left(k k^{\prime} \eta-p k \eta\right)+(p-2) k \eta\right]$ such that, within $[C M \backslash$ $\left.\left(\bigcup_{a \in A}\left\{\sigma_{1}(a), \sigma_{2}(a)\right\}\right)\right]$, vertices in A have the same vertex sum $\left[2\left(k k^{\prime} \eta-p k \eta\right)+\right.$ $(p-2) k \eta+1](p-2) / 2$. We can do this owing to the partition in Lemma 8(1). Next, label $\left(\bigcup_{a \in A}\left\{\sigma_{1}(a), \sigma_{2}(a)\right\}\right)$ with $\left[\left(k k^{\prime} \eta-2 k \eta\right)+1,\left(k k^{\prime} \eta-2 k \eta\right)+2 k \eta\right]$ such that $f\left(\sigma_{1}\left(a_{t_{j}}\right)\right)+f\left(\sigma_{2}\left(a_{t_{j}}\right)\right)=2 k k^{\prime} \eta-5 k \eta / 2+j$ for $j \in[1, k \eta-1]$, while $f\left(\sigma_{1}\left(a_{t_{k} \eta}\right)\right)+f\left(\sigma_{2}\left(a_{t_{k \eta}}\right)\right)=2 k k^{\prime} \eta-k \eta$. We can do this owing to the partition in Lemma $7(4)$. Then the vertex sums in A are also pairwise different.

Recall that, owing to Step 1 (1.1) and (1.2), for each $b \in B$, one has

$$
\varphi_{f}(b) \leq \frac{\left((k-1) k^{\prime} \eta+1\right)(k-1)}{2}+\frac{3}{2}+k k^{\prime} p .
$$

On the other hand, let $a \in A$. Recall that, owing to Step 3 (3.1) the sum of the labels in $C M(a)$ is at least $\left\{\left[2\left(k k^{\prime} \eta-p k \eta\right)+(p-1) k \eta+1\right](p-1) / 2\right\}+\left(k k^{\prime} \eta-k \eta+1\right)$ if p is odd (then $(p-1)$ is even) or $k \eta$ is odd. Then owing to Step 3 (3.2), the sum of the labels in $C M(a)$ is at least $\left\{\left[2\left(k k^{\prime} \eta-p k \eta\right)+(p-2) k \eta+1\right](p-2) / 2\right\}+$ $\left(2 k k^{\prime} \eta-5 k \eta / 2+1\right)$ if p is even (then $(p-2)$ is also even) and $k \eta$ is even. And the later lower bound is $1 / 2$ smaller than the first lower bound. So

$$
\varphi_{f}(a)>\frac{\left[2\left(k k^{\prime} \eta-p k \eta\right)+(p-2) k \eta+1\right](p-2)}{2}+\left(2 k k^{\prime} \eta-\frac{5 k \eta}{2}+1\right) .
$$

Then for each $a \in A$ and $b \in B$ one has

$$
\begin{aligned}
\varphi_{f}(a)-\varphi_{f}(b) & >\frac{1}{2}\left[(p-k) k k^{\prime} \eta+\left(k^{\prime}-2 p-1\right) p k \eta+\left(p^{2}-3\right) k \eta\right. \\
& \left.+\left(p k+k-k^{\prime}\right) \eta+(\eta-1) k+(p-2)\right]>0
\end{aligned}
$$

since $p \geq k \geq 3$ and $2 p+1<k^{\prime}=p k+r \leq p k+k$.
Thus, we obtain an antimagic labeling. This completes our proof.

Acknowledgments

The authors would like to thank very much the anonymous referees for valuable suggestions, corrections and comments which results in a great improvement of the original manuscript. The first author is supported by NSFC (No. 11701195) and by the Scientific Research Funds of Huaqiao University (No. 16BS808).

References

[1] N. Alon, G. Kaplan, A. Lev, Y. Roditty and R. Yuster, Dense graphs are antimagic, J. Graph Theory 47 (2004) 297-309. https://doi.org/10.1002/jgt. 20027
[2] F. Chang, Y.C. Liang, Z. Pan and X. Zhu, Antimagic labeling of regular graphs, J. Graph Theory 82 (2016) 339-349.
https://doi.org/10.1002/jgt.21905
[3] D.W. Cranston, Regular bipartite graphs are antimagic, J. Graph Theory 60 (2009) 173-182. https://doi.org/10.1002/jgt. 20347
[4] D.W. Cranston, Y.C. Liang and X. Zhu, Regular graphs of odd degree are antimagic, J. Graph Theory 80 (2015) 28-33. https://doi.org/10.1002/jgt. 21836
[5] K.C. Deng and Y.F. Li, Caterpillars with maximum degree 3 are antimagic, Discrete Math. 342 (2019) 1799-1801. https://doi.org/10.1016/j.disc.2019.02.021
[6] T. Eccles, Graphs of large linear size are antimagic, J. Graph Theory 81 (2016) 236-261. https://doi.org/10.1002/jgt.21872
[7] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2018) \#DS6. https://doi.org/10.37236/27
[8] N. Hartsfield and G. Ringel, Super magic and antimagic graphs, J. Recreat. Math. 21 (1989) 107-115.
[9] N. Hartsfield and G. Ringel, Pearls in Graph Theory (Academic Press, INC, Boston, 1990).
[10] G. Kaplan, A. Lev and Y. Roditty, On zero-sum partitions and anti-magic trees, Discrete Math. 309 (2009)) 2010-2014.
https://doi.org/10.1016/j.disc.2008.04.012
[11] Y.--C. Liang, T.-L. Wong and X. Zhu, Anti-magic labeling of trees, Discrete Math. 331 (2014) 9-14. https://doi.org/10.1016/j.disc.2014.04.021
[12] Y.-C. Liang and X. Zhu, Antimagic labeling of cubic graphs, J. Graph Theory 75 (2014) 31-36.
https://doi.org/10.1002/jgt. 21718
[13] A. Lozano, M. Mora and C. Seara, Antimagic labelings of caterpillars, Appl. Math. Comput. 347 (2019) 734-740.
https://doi.org/10.1016/j.amc.2018.11.043
[14] A. Lozano, M. Mora, C. Seara and J. Tey, Caterpillars are antimagic. arXiv:1812.06715v2
[15] V. Longani, Extension of Hall's theorem and an algorithm for finding the ($1, n$)complete matching, Thai J. Math. 6 (2008) 271-277.
[16] L. Mirsky, Transversal Theory (Academic Press, New York, 1971).
[17] J.L. Shang, Spiders are antimagic, Ars Combin. 118 (2015) 367-372.
Received 12 August 2019
Revised 1 June 2020
Accepted 1 June 2020

[^0]: ${ }^{1}$ Corresponding author.

